1
|
Zhang H, Li J, Chen Y, Wu J, Wang K, Chen L, Wang Y, Jiang X, Liu Y, Wu Y, Jin D, Bu W. Magneto-Electrically Enhanced Intracellular Catalysis of FePt-FeC Heterostructures for Chemodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100472. [PMID: 33759262 DOI: 10.1002/adma.202100472] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Intracellular catalytic reactions can tailor tumor cell plasticity toward high-efficiency treatments, but the application is hindered by the low efficiency of intracellular catalysis. Here, a magneto-electronic approach is developed for efficient intracellular catalysis by inducing eddy currents of FePt-FeC heterostructures in mild alternating magnetic fields (frequency of f = 96 kHz and amplitude of B ≤ 70 mT). Finite element simulation shows a high density of induced charges gathering at the interface of FePt-FeC heterostructure in the alternating magnetic field. As a result, the concentration of an essential coenzyme-β-nicotinamide adenine dinucleotide-in cancer cells is significantly reduced by the enhanced catalytic hydrogenation reaction of FePt-FeC heterostructures under alternating magnetic stimulation, leading to over 80% of senescent cancer cells-a vulnerable phenotype that facilitates further treatment. It is further demonstrated that senescent cancer cells can be efficiently killed by the chemodynamic therapy based on the enhanced Fenton-like reaction. By promoting intracellular catalytic reactions in tumors, this approach may enable precise catalytic tumor treatment.
Collapse
Affiliation(s)
- Huilin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yang Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jiyue Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Kun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lijie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ya Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xingwu Jiang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, New South Wales, 2007, Australia
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Santaus TM, Greenberg K, Suri P, Geddes CD. Elucidation of a non-thermal mechanism for DNA/RNA fragmentation and protein degradation when using Lyse-It. PLoS One 2019; 14:e0225475. [PMID: 31790434 PMCID: PMC6886747 DOI: 10.1371/journal.pone.0225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
Rapid sample preparation is one of the leading bottlenecks to low-cost and efficient sample component detection. To overcome this setback, a technology known as Lyse-It has been developed to rapidly (less than 60 seconds) lyse Gram-positive and-negative bacteria alike, while simultaneously fragmenting DNA/RNA and proteins into tunable sizes. This technology has been used with a variety of organisms, but the underlying mechanism behind how the technology actually works to fragment DNA/RNA and proteins has hitherto been studied. It is generally understood how temperature affects cellular lysing, but for DNA/RNA and protein degradation, the temperature and amount of energy introduced by microwave irradiation of the sample, cannot explain the degradation of the biomolecules to the extent that was being observed. Thus, an investigation into the microwave generation of reactive oxygen species, in particular singlet oxygen, hydroxyl radicals, and superoxide anion radicals, was undertaken. Herein, we probe one aspect, the generation of reactive oxygen species (ROS), which is thought to contribute to a non-thermal mechanism behind biomolecule fragmentation with the Lyse-It technology. By utilizing off/on (Photoinduced electron transfer) PET fluorescent-based probes highly specific for reactive oxygen species, it was found that as oxygen concentration in the sample and/or microwave irradiation power increases, more reactive oxygen species are generated and ultimately, more oxidation and biomolecule fragmentation occurs within the microwave cavity.
Collapse
Affiliation(s)
- Tonya M. Santaus
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Ken Greenberg
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Prabhdeep Suri
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Donoghue MA, Xu X, Bernlohr DA, Arriaga EA. Capillary electrophoretic analysis of hydroxyl radicals produced by respiring mitochondria. Anal Bioanal Chem 2013; 405:6053-60. [PMID: 23665638 DOI: 10.1007/s00216-013-7022-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
Here, we report the use of a capillary electrophoretic method with laser-induced fluorescence detection to evaluate hydroxyl radicals produced by respiring mitochondria. The probe, hydroxyphenylfluorescein (HPF), is separated from the product, fluorescein, in under 5 min with zeptomole and attomole limits of detection for fluorescein and HPF, respectively. Purification of the probe with a C-18 SPE column is necessary to reduce the fluorescein impurity in the probe stock solution from 0.4% to less than 0.001%. HPF was responsive to hydroxyl radicals produced by isolated mitochondria from L6 cells, and this signal was blunted when DMSO was added to scavenge hydroxyl radicals and when carbonyl cyanide m-chlorophenylhydrazone was added to depolarize the mitochondria. The method was used to compare hydroxyl radical levels in mitochondria isolated from brown adipose tissue of lean and obese mice. Mitochondria from obese mice produced significantly more hydroxyl radicals than those from lean mice.
Collapse
Affiliation(s)
- Margaret A Donoghue
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|