1
|
Salipante PF, Kuei S, Murphy RP, Fagan JA, Sims CM, Weigandt KM, Hudson SD. Rheology and Microstructural Behavior of Semidilute Suspensions of Semiflexible Rods across Five Decades of Shear Rate. Macromolecules 2025; 58:2389-2400. [PMID: 40104265 PMCID: PMC11912536 DOI: 10.1021/acs.macromol.4c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Rod-like particles are efficient rheology modifiers and are commonly found in a variety of biological and industrially relevant suspensions, from biofilaments to worm-like surfactant micelles. These suspensions display strong shear-thinning behavior, and ongoing efforts aim to understand the microstructural changes of these fluids: how they depend upon the properties of the suspended particles and how these changes manifest in the resulting rheology. With suspensions of fd bacteriophage as a model monodisperse rod system, we use capillary microrheometry and flow birefringence to determine rheological behavior across nearly six decades of shear rate up to 6 × 105 s-1, at various semidilute concentrations. A single, and surprisingly large, primary fitting parameter accounting for the characteristic distance of hydrodynamic interactions is consistent with viscosity data up to very high shear rates. These results may prompt other work to understand the mechanics of these interactions.
Collapse
Affiliation(s)
- Paul F. Salipante
- Polymers
and Complex Fluids Group, Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Steve Kuei
- Polymers
and Complex Fluids Group, Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Ryan P. Murphy
- National
Center for Neutron Research, National Institute
of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United
States
| | - Jeffrey A. Fagan
- Polymers
and Complex Fluids Group, Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Christopher M. Sims
- Polymers
and Complex Fluids Group, Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| | - Katie M. Weigandt
- National
Center for Neutron Research, National Institute
of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United
States
| | - Steven D. Hudson
- Polymers
and Complex Fluids Group, Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Yuan G, Salipante PF, Hudson SD, Gillilan RE, Huang Q, Hatch HW, Shen VK, Grishaev AV, Pabit S, Upadhya R, Adhikari S, Panchal J, Blanco MA, Liu Y. Flow Activation Energy of High-Concentration Monoclonal Antibody Solutions and Protein-Protein Interactions Influenced by NaCl and Sucrose. Mol Pharm 2024; 21:4553-4564. [PMID: 39163212 DOI: 10.1021/acs.molpharmaceut.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The solution viscosity and protein-protein interactions (PPIs) as a function of temperature (4-40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose. The flow activation energy (Eη) was extracted from the temperature dependence of solution viscosity using the Arrhenius equation. PPIs were quantified via the protein diffusion interaction parameter (kD) measured by dynamic light scattering, together with the osmotic second virial coefficient and the structure factor obtained through small-angle X-ray scattering. Both viscosity and PPIs were found to vary with the formulation conditions. Adding NaCl introduces an attractive interaction but leads to a significant reduction in the viscosity. However, adding sucrose enhances an overall repulsive effect and leads to a slight decrease in viscosity. Thus, the averaged (attractive or repulsive) PPI information is not a good indicator of viscosity at high protein concentrations for the mAb studied here. Instead, a correlation based on the temperature dependence of viscosity (i.e., Eη) and the temperature sensitivity in PPIs was observed for this specific mAb. When kD is more sensitive to the temperature variation, it corresponds to a larger value of Eη and thus a higher viscosity in concentrated protein solutions. When kD is less sensitive to temperature change, it corresponds to a smaller value of Eη and thus a lower viscosity at high protein concentrations. Rather than the absolute value of PPIs at a given temperature, our results show that the temperature sensitivity of PPIs may be a more useful metric for predicting issues with high viscosity of concentrated solutions. In addition, we also demonstrate that caution is required in choosing a proper protein concentration range to extract kD. In some excipient conditions studied here, the appropriate protein concentration range needs to be less than 4 mg/mL, remarkably lower than the typical concentration range used in the literature.
Collapse
Affiliation(s)
- Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul F Salipante
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Steven D Hudson
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Richard E Gillilan
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High-Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Harold W Hatch
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent K Shen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander V Grishaev
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Suzette Pabit
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rahul Upadhya
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sudeep Adhikari
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jainik Panchal
- Sterile and Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Sarıyer RM, Gill K, Needs SH, Hodge D, Reis NM, Jones CI, Edwards AD. Time- and distance-resolved robotic imaging of fluid flow in vertical microfluidic strips: a new technique for quantitative, multiparameter measurement of global haemostasis. SENSORS & DIAGNOSTICS 2023; 2:1623-1637. [PMID: 38013763 PMCID: PMC10633108 DOI: 10.1039/d3sd00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023]
Abstract
Measuring the complex processes of blood coagulation, haemostasis and thrombosis that are central to cardiovascular health and disease typically requires a choice between high-resolution low-throughput laboratory assays, or simpler less quantitative tests. We propose combining mass-produced microfluidic devices with open-source robotic instrumentation to enable rapid development of affordable and portable, yet high-throughput and performance haematological testing. A time- and distance-resolved fluid flow analysis by Raspberry Pi imaging integrated with controlled sample addition and illumination, enabled simultaneous tracking of capillary rise in 120 individual capillaries (∼160, 200 or 270 μm internal diameter), in 12 parallel disposable devices. We found time-resolved tracking of capillary rise in each individual microcapillary provides quantitative information about fluid properties and most importantly enables quantitation of dynamic changes in these properties following stimulation. Fluid properties were derived from flow kinetics using a pressure balance model validated with glycerol-water mixtures and blood components. Time-resolved imaging revealed fluid properties that were harder to determine from a single endpoint image or equilibrium analysis alone. Surprisingly, instantaneous superficial fluid velocity during capillary rise was found to be largely independent of capillary diameter at initial time points. We tested if blood function could be measured dynamically by stimulating blood with thrombin to trigger activation of global haemostasis. Thrombin stimulation slowed vertical fluid velocity consistent with a dynamic increase in viscosity. The dynamics were concentration-dependent, with highest doses reducing flow velocity faster (within 10 s) than lower doses (10-30 s). This open-source imaging instrumentation expands the capability of affordable microfluidic devices for haematological testing, towards high-throughput multi-parameter blood analysis needed to understand and improve cardiovascular health.
Collapse
Affiliation(s)
- Rüya Meltem Sarıyer
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
| | - Kirandeep Gill
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics and Biodevices (CBio), University of Bath Bath BA2 7AY UK
| | - Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
| | - Daniel Hodge
- Reading School of Biological Sciences, University of Reading Whiteknights Reading UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics and Biodevices (CBio), University of Bath Bath BA2 7AY UK
| | - Chris I Jones
- Reading School of Biological Sciences, University of Reading Whiteknights Reading UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
- School of Electronics and Computer Science, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
4
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|