1
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
3
|
van Hameren G, Aboghazleh R, Parker E, Dreier JP, Kaufer D, Friedman A. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 2024; 20:408-425. [PMID: 38886512 DOI: 10.1038/s41582-024-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.
Collapse
Affiliation(s)
- Gerben van Hameren
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ellen Parker
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Cell Biology, Cognitive and Brain Sciences, Zelman Inter-Disciplinary Center of Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Berve K, Michel J, Tietz S, Blatti C, Ivan D, Enzmann G, Lyck R, Deutsch U, Locatelli G, Engelhardt B. Junctional adhesion molecule-A deficient mice are protected from severe experimental autoimmune encephalomyelitis. Eur J Immunol 2024; 54:e2350761. [PMID: 38566526 DOI: 10.1002/eji.202350761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.
Collapse
Affiliation(s)
- Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julia Michel
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
5
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
6
|
Varden Gjerde K, Bartz-Johannessen C, Steen VM, Andreassen OA, Steen NE, Ueland T, Lekva T, Rettenbacher M, Joa I, Reitan SK, Johnsen E, Kroken RA. Cellular adhesion molecules in drug-naïve and previously medicated patients with schizophrenia-spectrum disorders. Schizophr Res 2024; 267:223-229. [PMID: 38574562 DOI: 10.1016/j.schres.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Endothelial inflammation may be involved in the pathogenesis of schizophrenia, and cellular adhesion molecules (CAMs) on endothelial cells may facilitate leukocyte binding and transendothelial migration of cells and inflammatory factors. The aim of the present study was to assess levels of soluble cellular adhesion molecules, including intercellular adhesion molecule (ICAM)-1, vascular adhesion molecule (VCAM)-1, mucosal addressin cell adhesion molecule (MADCAM), junctional adhesion molecule (JAM-A) and neural cadherin (N-CAD) in patients with schizophrenia compared to healthy controls. METHODS The study population consists of 138 patients with schizophrenia-spectrum disorder, of whom 54 were drug-naïve, compared to 317 general population controls. The potential confounders age, gender, smoking and body mass index (BMI) were adjusted for in linear regression models. RESULTS The total patient group showed significantly higher levels of ICAM-1 (p < 0.001) and VCAM-1 (p < 0.001) compared to controls. Previously medicated patients showed higher ICAM-1 levels compared to drug-naïve patients (p = 0.042) and controls (p < 0.001), and elevated VCAM-1 levels compared to controls (p < 0.001). Drug-naive patients had elevated levels of VCAM-1 (p = 0.031) compared to controls. CONCLUSIONS In our study, patients with schizophrenia - including the drug-naïve - have higher levels of soluble CAMs compared to healthy controls. These findings suggest activation of the endothelial system as in inflammation.
Collapse
Affiliation(s)
- Kristian Varden Gjerde
- NKS Olaviken Gerontopsychiatric Hospital, Erdal, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | | | - Vidar Martin Steen
- NORMENT Centre of Excellence, Department of Clinical Science (K2), University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre of Excellence, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre of Excellence, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Medicine, Thrombosis Research Center, UiT - The Arctic University of Norway, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Maria Rettenbacher
- Medical University of Innsbruck; Department of Psychiatry, Psychotherapy and Psychosomatics, Innsbruck, Austria
| | - Inge Joa
- TIPS Center for Clinical Research in Psychosis, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Department of Public Health, Faculty of Health Science, University of Stavanger, Stavanger, Norway
| | - Solveig Klæbo Reitan
- St. Olav University Hospital, Nidelv community mental health centre, Trondheim, Norway; Norwegian University of Science and Technology, Department of Mental Health, Trondheim, Norway
| | - Erik Johnsen
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Rune Andreas Kroken
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Xie P, Kancherla K, Chandramohan S, Braidy N, Chan EKW, Xu YH, Chan DKY. Involvement of single nucleotide polymorphisms of junction adhesion molecule with small vessel vascular dementia. Aging Med (Milton) 2023; 6:347-352. [PMID: 38239713 PMCID: PMC10792332 DOI: 10.1002/agm2.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Objectives It is now recognized that blood brain barrier (BBB) leakage occurs in cerebral small vascular disease (CSVD) and plays a significant role in the pathophysiology of vascular dementia. We hypothesized that genetic polymorphisms of junctional adhesion molecule-A (JAM-A) (which may result in compromised structure of tight junction proteins that form the BBB) in combination with cerebrovascular risk factors hypertension, lipid disorders, and type 2 diabetes may result in BBB leakage and increase the individual's risk of CSVD-related dementia. Methods In this case-control study, 97 controls with a mean Mini-Mental State Exam (MMSE) score of 29 and 38 CSVD-related vascular dementia participants (mean MMSE score of 19) were recruited. Bloods were collected for the analysis of two common single nucleotide polymorphisms (SNPs) of the JAM-A genotypes rs790056 and rs2481084 using real-time polymerase chain reaction (PCR) assay. Medical history of hypertension, hyperlipidemia, and diabetes was collected for all participants. Results Polymorphisms of genotype JAM-A SNP rs790056 showed statistically significant result when the subgroup with hyperlipidemia was analyzed (OR = 3.130, p = 0.042 for TC + CC genotypes with hyperlipidaemia vs controls). Similar result was found with diabetes (OR = 4.670, p = 0.031 for TC + CC genotypes vs controls). No significant result was found with hypertension. Borderline results of statistical significance were found for JAM-A SNP rs2481084 with hyperlipidemia (OR = 3.210, p = 0.054 for TC + CC genotypes vs controls) and with diabetes (OR = 3.620, p = 0.069 for TC + CC genotypes vs controls) but not for hypertension. The borderline results might have been due to lack of statistical power because of small sample size. Conclusions These results lend further support that cerebrovascular risk factors interact with genetic polymorphisms of BBB proteins to increase the risk of vascular dementia.
Collapse
Affiliation(s)
- Peter Xie
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kiran Kancherla
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Nady Braidy
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Ying Hua Xu
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Department of Aged Care and RehabilitationBankstown HospitalBankstownNew South WalesAustralia
| | - Daniel K. Y. Chan
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Ingham InstituteLiverpoolNew South WalesAustralia
- Department of Aged Care and RehabilitationBankstown HospitalBankstownNew South WalesAustralia
| |
Collapse
|
9
|
Cao C, Zhang L, Sorensen MD, Reifenberger G, Kristensen BW, McIntyre TM, Lin F. D-2-hydroxyglutarate regulates human brain vascular endothelial cell proliferation and barrier function. J Neuropathol Exp Neurol 2023; 82:921-933. [PMID: 37740942 PMCID: PMC10588003 DOI: 10.1093/jnen/nlad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.
Collapse
Affiliation(s)
- Chun Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mia D Sorensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas M McIntyre
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Naumenko Y, Yuryshinetz I, Zabenko Y, Pivneva T. Mild traumatic brain injury as a pathological process. Heliyon 2023; 9:e18342. [PMID: 37519712 PMCID: PMC10372741 DOI: 10.1016/j.heliyon.2023.e18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries. Many literature sources have confirmed that mechanically induced brain injury initiates ionic, metabolic, inflammatory, and neurovascular changes in the CNS, which can lead to acute, subacute, and chronic neurological consequences. Despite the global nature of the disease, its high heterogeneity, lack of a unified classification system, rapid fluctuation of epidemiological trends, and variability of long-term consequences significantly complicate research and the development of new therapeutic strategies. In this review paper, we systematize current knowledge of biomechanical and molecular mechanisms of mild TBI and provide general information on the classification and epidemiology of this complex disorder.
Collapse
Affiliation(s)
- Yana Naumenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Irada Yuryshinetz
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Yelyzaveta Zabenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
12
|
Harding IC, O'Hare NR, Vigliotti M, Caraballo A, Lee CI, Millican K, Herman IM, Ebong EE. Developing a transwell millifluidic device for studying blood-brain barrier endothelium. LAB ON A CHIP 2022; 22:4603-4620. [PMID: 36326069 PMCID: PMC11416711 DOI: 10.1039/d2lc00657j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Blood-brain barrier (BBB) endothelial cell (EC) function depends on flow conditions and on supportive cells, like pericytes and astrocytes, which have been shown to be both beneficial and detrimental for brain EC function. Most studies investigating BBB EC function lack physiological relevance, using sub-physiological shear stress magnitudes and/or omitting pericytes and astrocytes. In this study, we developed a millifluidic device compatible with standard transwell inserts to investigate BBB function. In contrast to standard polydimethylsiloxane (PDMS) microfluidic devices, this model allows for easy, reproducible shear stress exposure without common limitations of PDMS devices such as inadequate nutrient diffusion and air bubble formation. In no-flow conditions, we first used the device to examine the impact of primary human pericytes and astrocytes on human brain microvascular EC (HBMEC) barrier integrity. Astrocytes, pericytes, and a 1-to-1 ratio of both cell types increased HBMEC barrier integrity via reduced 3 and 40 kDa fluorescent dextran permeability and increased claudin-5 expression. There were differing levels of low 3 kDa permeability in HBMEC-pericyte, HBMEC-astrocyte, and HBMEC-astrocyte-pericyte co-cultures, while levels of low 40 kDa permeability were consistent across co-cultures. The 3 kDa findings suggest that pericytes provide more barrier support to the BBB model compared to astrocytes, although both supportive cell types are permeability reducers. Incorporation of 24-hour 12 dynes per cm2 flow significantly reduced dextran permeability in HBMEC monolayers, but not in the tri-culture model. These results indicate that tri-culture may exert more pronounced impact on overall BBB permeability than flow exposure. In both cases, monolayer and tri-culture, flow exposure interestingly reduced HBMEC expression of both claudin-5 and occludin. ZO-1 expression, and localization at cell-cell junctions increased in the tri-culture but exhibited no apparent change in the HBMEC monolayer. Under flow conditions, we also observed HBMEC alignment in the tri-culture but not in HBMEC monolayers, indicating supportive cells and flow are both essential to observe brain EC alignment in vitro. Collectively, these results support the necessity of physiologically relevant, multicellular BBB models when investigating BBB EC function. Consideration of the roles of shear stress and supportive cells within the BBB is critical for elucidating the physiology of the neurovascular unit.
Collapse
Affiliation(s)
- Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nicholas R O'Hare
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Mark Vigliotti
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Alex Caraballo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Claire I Lee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ira M Herman
- Department of Developmental, Molecular, and Chemical Biology, Tufts School of Graduate Biomedical Sciences, Boston, MA, USA
- Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Wang J, Chen X. Junctional Adhesion Molecules: Potential Proteins in Atherosclerosis. Front Cardiovasc Med 2022; 9:888818. [PMID: 35872908 PMCID: PMC9302484 DOI: 10.3389/fcvm.2022.888818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-related processes such as endothelial barrier maintenance, leucocytes transendothelial migration, and angiogenesis. To combine and further broaden related results, this review concluded the recent progress in the roles of JAMs and predicted future studies of JAMs in the development of atherosclerosis.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoping Chen,
| |
Collapse
|
14
|
Hernandez L, Ward LJ, Arefin S, Ebert T, Laucyte-Cibulskiene A, Heimbürger O, Barany P, Wennberg L, Stenvinkel P, Kublickiene K. Blood-brain barrier and gut barrier dysfunction in chronic kidney disease with a focus on circulating biomarkers and tight junction proteins. Sci Rep 2022; 12:4414. [PMID: 35292710 PMCID: PMC8924178 DOI: 10.1038/s41598-022-08387-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Kidney failure and associated uraemia have implications for the cardiovascular system, brain, and blood–brain barrier (BBB). We aim to examine BBB disruption, by assessing brain-derived neurotropic factor (BDNF), neuron-specific enolase (NSE) levels, and gut-blood barrier (GBB) disruption by trimethylamine N-oxide (TMAO), in chronic kidney disease (CKD) patients. Additionally, endothelial tight-junction protein expressions and modulation via TMAO were assessed. Serum from chronic kidney disease (CKD) female and male haemodialysis (HD) patients, and controls, were used to measure BDNF and NSE by enzyme-linked immunosorbent assays, and TMAO by mass spectrometry. Immunofluorescent staining of subcutaneous fat biopsies from kidney transplant recipients, and controls, were used to measure microvascular expression of tight-junction proteins (claudin-5, occludin, JAM-1), and control microvasculature for TMAO effects. HD patients versus controls, had significantly lower and higher serum levels of BDNF and NSE, respectively. In CKD biopsies versus controls, reduced expression of claudin-5, occludin, and JAM-1 were observed. Incubation with TMAO significantly decreased expression of all tight-junction proteins in the microvasculature. Uraemia affects BBB and GBB resulting in altered levels of circulating NSE, BDNF and TMAO, respectively, and it also reduces expression of tight-junction proteins that confer BBB maintenance. TMAO serves as a potential candidate to alter BBB integrity in CKD.
Collapse
Affiliation(s)
- Leah Hernandez
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Thomas Ebert
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Agne Laucyte-Cibulskiene
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden.,Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Olof Heimbürger
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Peter Barany
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Renal Medicine, Karolinska Institutet, 14186, Stockholm, Sweden.
| |
Collapse
|
15
|
Vasudeva P, Kumar A, Yadav S, Kumar N, Chaudhry N, Prasad V, Nagendra Rao S, Yadav P, Patel S. Neurological safety and efficacy of darifenacin and mirabegron for the treatment of overactive bladder in patients with history of cerebrovascular accident: A prospective study. Neurourol Urodyn 2021; 40:2041-2047. [PMID: 34516666 DOI: 10.1002/nau.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the neurological safety and clinical efficacy of darifenacin and mirabegron in patients with a history of cerebrovascular accident (CVA) who had overactive bladder (OAB) symptoms. METHODS This prospective randomized study, approved by the institute's ethics committee, was carried out at a tertiary care center from December 2018 to June 2020. Treatment naïve adult patients with a past history of CVA with stable neurological status for atleast past 3 months with symptoms of OAB for 3 or more months were included. Eligible patients received either darifenacin or mirabegron for a period of 3 months and various parameters on the 3-day International Consultation on Incontinence Questionnaire (ICIQ) bladder diary, the Montreal Cognitive Assessment-Basic score (MoCA-B), and the adverse events at 3 months posttreatment were compared to that at the baseline. RESULTS A total of 60 patients were included, 30 in each arm. After 3 months of treatment with darifenacin or mirabegron, the majority of the ICIQ bladder diary parameters improved and there was no deterioration in the cognitive function as noted on the MoCA-B score in either of the arms. On intergroup comparison, the mean change in bladder diary parameters and the MoCA-B scores was similar between the two groups. CONCLUSION Darifenacin and mirabegron, in the short term, do not adversely affect the cognitive function in patients with a history of CVA with OAB symptoms. Both are safe and effective treatment options in patients with OAB post-CVA.
Collapse
Affiliation(s)
- Pawan Vasudeva
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Amitabh Kumar
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Siddharth Yadav
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Niraj Kumar
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Neera Chaudhry
- Department of Neurology, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Vishnu Prasad
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Swatantra Nagendra Rao
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Prashant Yadav
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samarth Patel
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
16
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Ashby JW, Mack JJ. Endothelial Control of Cerebral Blood Flow. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1906-1916. [PMID: 33713686 DOI: 10.1016/j.ajpath.2021.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Since constant perfusion of blood throughout the brain is critical for neuronal health, the regulation of cerebral blood flow is complex and highly controlled. This regulation is controlled, in part, by the cerebral endothelium. In this review, multiple modes of endothelium-derived blood flow regulation is discussed, including chemical control of vascular tone, heterotypic and homotypic cell-cell interactions, second messenger signaling, and cellular response to physical forces and inflammatory mediators. Because cerebral small vessel disease is often associated with endothelial dysfunction and a compromised blood-brain barrier, understanding the endothelial factors that regulate vessel function to maintain cerebral blood flow and prevent vascular permeability may provide insights into disease prevention and treatment.
Collapse
Affiliation(s)
- Julianne W Ashby
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California
| | - Julia J Mack
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
18
|
Ge X, Tang P, Rong Y, Jiang D, Lu X, Ji C, Wang J, Huang C, Duan A, Liu Y, Chen X, Chen X, Xu Z, Wang F, Wang Z, Li X, Zhao W, Fan J, Liu W, Yin G, Cai W. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol 2021; 41:101932. [PMID: 33714739 PMCID: PMC7967037 DOI: 10.1016/j.redox.2021.101932] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Pathologically, blood-spinal-cord-barrier (BSCB) disruption after spinal cord injury (SCI) leads to infiltration of numerous peripheral macrophages into injured areas and accumulation around newborn vessels. Among the leaked macrophages, M1-polarized macrophages are dominant and play a crucial role throughout the whole SCI process. The aim of our study was to investigate the effects of M1-polarized bone marrow-derived macrophages (M1-BMDMs) on vascular endothelial cells and their underlying mechanism. Microvascular endothelial cell line bEnd.3 cells were treated with conditioned medium or exosomes derived from M1-BMDMs, followed by evaluations of endothelial-to-mesenchymal transition (EndoMT) and mitochondrial function. After administration, we found conditioned medium or exosomes from M1-BMDMs significantly promoted EndoMT of vascular endothelial cells in vitro and in vivo, which aggravated BSCB disruption after SCI. In addition, significant dysfunction of mitochondria and accumulation of reactive oxygen species (ROS) were also detected. Furthermore, bioinformatics analysis demonstrated that miR-155 is upregulated in both M1-polarized macrophages and microglia. Experimentally, exosomal transfer of miR-155 participated in M1-BMDMs-induced EndoMT and mitochondrial ROS generation in bEnd.3 cells, and subsequently activated the NF-κB signaling pathway by targeting downstream suppressor of cytokine signaling 6 (SOCS6), and suppressing SOCS6-mediated p65 ubiquitination and degradation. Finally, a series of rescue assay further verified that exosomal miR155/SOCS6/p65 axis regulated the EndoMT process and mitochondrial function in vascular endothelial cells. In summary, our work revealed a potential mechanism describing the communications between macrophages and vascular endothelial cells after SCI which could benefit for future research and aid in the development of potential therapies for SCI.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Lu
- Department of Orthopedics, Dongtai Hospital Affiliated to Nantong University, Yancheng, 224200, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chenyu Huang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China
| | - Xinglin Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xichen Chen
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhiyang Xu
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Wang
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zibin Wang
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiaoyan Li
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wene Zhao
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
19
|
Kaya M, Ahishali B. Basic physiology of the blood-brain barrier in health and disease: a brief overview. Tissue Barriers 2021; 9:1840913. [PMID: 33190576 PMCID: PMC7849738 DOI: 10.1080/21688370.2020.1840913] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), a dynamic interface between blood and brain constituted mainly by endothelial cells of brain microvessels, robustly restricts the entry of potentially harmful blood-sourced substances and cells into the brain, however, many therapeutically active agents concurrently cannot gain access into the brain at effective doses in the presence of an intact barrier. On the other hand, breakdown of BBB integrity may involve in the pathogenesis of various neurodegenerative diseases. Besides, certain diseases/disorders such as Alzheimer's disease, hypertension, and epilepsy are associated with varying degrees of BBB disruption. In this review, we aim to highlight the current knowledge on the cellular and molecular composition of the BBB with special emphasis on the major transport pathways across the barrier type endothelial cells. We further provide a discussion on the innovative brain drug delivery strategies in which the obstacle formed by BBB interferes with effective pharmacological treatment of neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Mehmet Kaya
- Koç University School of Medicine Department of Physiology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Bulent Ahishali
- Koç University School of Medicine Department of Histology and Embryology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
20
|
Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics 2020; 12:pharmaceutics12121236. [PMID: 33352631 PMCID: PMC7767277 DOI: 10.3390/pharmaceutics12121236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.
Collapse
|
21
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Raikwar SP, Zaheer SA, Iyer SS, Govindarajan R, Nattanmai Chandrasekaran P, Burton C, James D, Zaheer A. Acute Traumatic Brain Injury-Induced Neuroinflammatory Response and Neurovascular Disorders in the Brain. Neurotox Res 2020; 39:359-368. [PMID: 32955722 PMCID: PMC7502806 DOI: 10.1007/s12640-020-00288-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-β) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-β, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Smita A Zaheer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | | | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
| |
Collapse
|
22
|
Yang C, Yang Y, DeMars KM, Rosenberg GA, Candelario-Jalil E. Genetic Deletion or Pharmacological Inhibition of Cyclooxygenase-2 Reduces Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Front Neurol 2020; 11:887. [PMID: 32973660 PMCID: PMC7468510 DOI: 10.3389/fneur.2020.00887] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX)-2 and matrix metalloproteinase (MMP)-9 are two crucial mediators contributing to blood-brain barrier (BBB) damage during cerebral ischemia. However, it is not known whether MMP-9 activation is involved in COX-2-mediated BBB disruption in ischemic stroke. In this study, we hypothesized that genetic deletion or pharmacological inhibition of COX-2 reduces BBB damage by reducing MMP-9 activity in a mouse model of ischemic stroke. Male COX-2 knockout (COX-2-/-) and wild-type (WT) mice were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Genetic deletion of COX-2 or post-ischemic treatment with CAY10404, a highly selective COX-2 inhibitor, significantly reduced BBB damage and hemorrhagic transformation, as assessed by immunoglobulin G (IgG) extravasation and brain hemoglobin (Hb) levels, respectively. Immunoblotting analysis showed that tight junction proteins (TJPs) zonula occludens (ZO)-1 and occludin as well as junctional adhesion molecule-A (JAM-A) and the basal lamina protein collagen IV were dramatically reduced in the ischemic brain. Stroke-induced loss of these BBB structural proteins was significantly attenuated in COX-2-/- mice. Similarly, stroke-induced loss of ZO-1 and occludin was significantly attenuated by CAY10404 treatment. Ischemia-induced increase in MMP-9 protein levels in the ipsilateral cerebral cortex was significantly reduced in COX-2-/- mice. Stroke induced a dramatic increase in MMP-9 enzymatic activity in the ischemic cortex, which was markedly reduced by COX-2 gene deficiency or pharmacological inhibition with CAY10404. Levels of myeloperoxidase (MPO, an indicator of neutrophil infiltration into the brain parenchyma), neutrophil elastase (NE), and lipocalin-2 (LCN2, also known as neutrophil gelatinase-associated lipocalin), measured by western blot and specific ELISA kits, respectively, were markedly increased in the ischemic brain. Increased levels of markers for neutrophil infiltration were significantly reduced in COX-2-/- mice compared with WT controls following stroke. Altogether, neurovascular protective effects of COX-2 blockade are associated with reduced BBB damage, MMP-9 expression/activity and neutrophil infiltration. Our study shows for the first time that MMP-9 is an important downstream effector contributing to COX-2-mediated neurovascular damage in ischemic stroke. Targeting the COX-2/MMP-9 pathway could represent a promising strategy to reduce neuroinflammatory events in order to preserve the BBB integrity and ameliorate ischemic stroke injury.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yi Yang
- Department of Neurology, Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gary A Rosenberg
- Department of Neurology, Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, Zaheer SA, Iyer SS, Burton C, James D, Zaheer A. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist 2020; 26:402-414. [PMID: 32684080 DOI: 10.1177/1073858420941476] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Asher Khan
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita A Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | | | | | - Asgar Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| |
Collapse
|
24
|
Babak MV, Zalutsky MR, Balyasnikova IV. Heterogeneity and vascular permeability of breast cancer brain metastases. Cancer Lett 2020; 489:174-181. [PMID: 32561415 DOI: 10.1016/j.canlet.2020.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Improvements in the diagnosis and treatment of systemic breast cancer have led to a prolongation in patient survival. Unfortunately, these advances are also associated with an increased incidence of brain metastases (BM), with the result that many patients succumb due to BM treatment failure. Intracranial delivery of many chemotherapeutic agents and other therapeutics is hindered by the presence of an impermeable blood-brain barrier (BBB) designed to protect the brain from harmful substances. The formation of BM compromises the integrity of the BBB, resulting in a highly heterogeneous blood-tumor barrier (BTB) with varying degrees of vascular permeability. Here, we discuss how blood vessels play an important role in the formation of brain micrometastases as well as in the transformation from poorly permeable BM to highly permeable BM. We then review the role of BTB vascular permeability in the diagnostics and the choice of treatment regimens for breast cancer brain metastases (BCBM) and discuss whether the vasculature of primary breast cancers can serve as a biomarker for BM. Specifically, we examine the association between the vascular permeability of BCBM and their accumulation of large molecules such as antibodies, which remains largely unexplored.
Collapse
Affiliation(s)
- Maria V Babak
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, People's Republic of China
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center; 311 Research Drive, Box 3808, Durham, NC, 27710, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, The Feinberg School of Medicine, 303 E. Superior Street, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Shen S, Yang C, Liu X, Zheng J, Liu Y, Liu L, Ma J, Ma T, An P, Lin Y, Cai H, Wang D, Li Z, Zhao L, Xue Y. RBFOX1 Regulates the Permeability of the Blood-Tumor Barrier via the LINC00673/MAFF Pathway. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:138-152. [PMID: 32322670 PMCID: PMC7163051 DOI: 10.1016/j.omto.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
The blood-tumor barrier limits the delivery of therapeutic drugs to brain tumor tissues. Selectively opening the blood-tumor barrier is considered crucial for effective chemotherapy of glioma. RNA-binding proteins have emerged as crucial regulators in various biologic processes. This study found that RNA-binding Fox-1 homolog 1 (RBFOX1) was downregulated in glioma vascular endothelial cells derived from glioma tissues, and in glioma endothelial cells obtained by co-culturing endothelial cells with glioma cells. Overexpression of RBFOX1 impaired the integrity of the blood-tumor barrier and increased its permeability. Additionally, RBFOX1 overexpression decreased the expression of tight junction proteins ZO-1, occludin, and claudin-5. Subsequent analysis of the mechanism indicated that the overexpression of RBFOX1 increased musculoaponeurotic fibrosarcoma protein basic leucine zipper [bZIP] transcription factor F (MAFF) expression by downregulating LINC00673, which stabilized MAFF messenger RNA (mRNA) through Staufen1-mediated mRNA decay. Moreover, MAFF could bind to the promoter region and inhibit the promoter activities of ZO-1, occludin, and claudin-5, which reduced its expression. The combination of RBFOX1 upregulation and LINC00673 downregulation promoted doxorubicin delivery across the blood-tumor barrier, resulting in apoptosis of glioma cells. In conclusion, this study indicated that overexpression of RBFOX1 increased blood-tumor barrier permeability through the LINC00673/MAFF pathway, which might provide a new useful target for future enhancement of blood-tumor barrier permeability.
Collapse
Affiliation(s)
- Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Lini Zhao
- Department of Pharmacology, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
26
|
Yu S, Fu L, Lu J, Wang Z, Fu W. Xiao-Yao-San reduces blood-brain barrier injury induced by chronic stress in vitro and vivo via glucocorticoid receptor-mediated upregulation of Occludin. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112165. [PMID: 31445133 DOI: 10.1016/j.jep.2019.112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Blood-brain barrier (BBB) is a barrier which maintains the material exchange balance of brain microenvironment and could be destroyed by chronic stress (CS). Glucocorticoids (GCs) can mimic the chronic stress induced damage to BBB. GCs induced BBB trauma models in vitro and in vivo to explore the effects of the traditional medicine Xiao-Yao-San (XYS). In this research, we found CS could injure the BBB to change the biochemical index, which could be reversed by XYS in vitro. The abilities of cell proliferation, invasion, and the expression of tight junction related genes (Occludin, Claudin, JAM-1 and ZO-1) were suppressed by CS and the trauma could be reversed by XYS partly. It was showed that GRs interacted with Occludin directly and inhibited Occluding expression. In rats BBB trauma model, the GC content was deceased and BBB permeability was repaired by XYS. The expression of Occludin, Claudin, JAM-1 and ZO-1 were increased in the treatment of XYS. In our research, it shown that XYS affect the content of the GC and GR which interacted with Occludin directly for the first time. In addition, we also found that XYS could reduce BBB injury induced by CS via GR in BBB model in vitro. Therefore, it proves that XYS is a potential BBB repair medicine and may help to elucidate mechanism of brain pathology.
Collapse
Affiliation(s)
- Shaolong Yu
- Department of Urology Surgery, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Lijun Fu
- Department of Anesthesiology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510530, Guangdong, China.
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
27
|
Seo S, Kim H, Sung JH, Choi N, Lee K, Kim HN. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials 2019; 232:119732. [PMID: 31901694 DOI: 10.1016/j.biomaterials.2019.119732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases are emerging as a major issue in an aging society. Although extensive research has focused on the development of CNS drugs, the limited transport of therapeutic agents across the blood-brain barrier (BBB) remains a major challenge. Conventional two-dimensional culture dishes do not recapitulate in vivo physiology and real-time observations of molecular transport are not possible in animal models. Recent advances in engineering techniques have enabled the generation of more physiologically relevant in vitro BBB models, and their applications have expanded from fundamental biological research to practical applications in the pharmaceutical industry. In this article, we provide an overview of recent advances in the development of in vitro BBB models, with a particular focus on the recapitulation of BBB function. The development of biomimetic BBB models is postulated to revolutionize not only fundamental biological studies but also drug screening.
Collapse
Affiliation(s)
- Suyeong Seo
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwieun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kangwon Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The concussion public health burden has increased alongside our knowledge of the pathophysiology of mild traumatic brain injury (mTBI). The purpose of this review is to summarize our current understanding of mTBI pathophysiology and biomechanics and how these underlying principles correlate with clinical manifestations of mTBI. RECENT FINDINGS Changes in post-mTBI glutamate and GABA concentrations seem to be region-specific and time-dependent. Genetic variability may predict recovery and symptom severity while gender differences appear to be associated with the neuroinflammatory response and neuroplasticity. Ongoing biomechanical research has shown a growing body of evidence in support of an "individual-specific threshold" for mTBI that varies based on individual intrinsic factors. The literature demonstrates a well-characterized timeframe for mTBI pathophysiologic changes in animal models while work in this area continues to grow in humans. Current human research shows that these underlying post-mTBI effects are multifactorial and may correlate with symptomatology and recovery. While wearable sensor technology has advanced biomechanical impact research, a definitive concussion threshold remains elusive.
Collapse
Affiliation(s)
- Rafael Romeu-Mejia
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - Joshua T Goldman
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.
- Department of Family Medicine, Division of Sports Medicine, UCLA, Los Angeles, CA, USA.
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA.
- Department of Intercollegiate Athletics, UCLA, Los Angeles, CA, USA.
- Center for Sports Medicine, Orthopedic Institute for Children, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
30
|
Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. FISH & SHELLFISH IMMUNOLOGY 2018; 76:206-215. [PMID: 29477498 DOI: 10.1016/j.fsi.2018.02.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.
Collapse
Affiliation(s)
- Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Jieming Zhang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| |
Collapse
|
31
|
Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, Lechleiter JD, Galvan V. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2018; 314:H693-H703. [PMID: 29351469 PMCID: PMC5966773 DOI: 10.1152/ajpheart.00570.2017] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
An intact blood-brain barrier (BBB) limits entry of proinflammatory and neurotoxic blood-derived factors into the brain parenchyma. The BBB is damaged in Alzheimer's disease (AD), which contributes significantly to the progression of AD pathologies and cognitive decline. However, the mechanisms underlying BBB breakdown in AD remain elusive, and no interventions are available for treatment or prevention. We and others recently established that inhibition of the mammalian/mechanistic target of rapamycin (mTOR) pathway with rapamycin yields significant neuroprotective effects, improving cerebrovascular and cognitive function in mouse models of AD. To test whether mTOR inhibition protects the BBB in neurological diseases of aging, we treated hAPP(J20) mice modeling AD and low-density lipoprotein receptor-null (LDLR-/-) mice modeling vascular cognitive impairment with rapamycin. We found that inhibition of mTOR abrogates BBB breakdown in hAPP(J20) and LDLR-/- mice. Experiments using an in vitro BBB model indicated that mTOR attenuation preserves BBB integrity through upregulation of specific tight junction proteins and downregulation of matrix metalloproteinase-9 activity. Together, our data establish mTOR activity as a critical mediator of BBB breakdown in AD and, potentially, vascular cognitive impairment and suggest that rapamycin and/or rapalogs could be used for the restoration of BBB integrity. NEW & NOTEWORTHY This report establishes mammalian/mechanistic target of rapamycin as a critical mediator of blood-brain barrier breakdown in models of Alzheimer's disease and vascular cognitive impairment and suggests that drugs targeting the target of rapamycin pathway could be used for the restoration of blood-brain barrier integrity in disease states.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/enzymology
- Alzheimer Disease/pathology
- Alzheimer Disease/psychology
- Animals
- Behavior, Animal
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/enzymology
- Blood-Brain Barrier/pathology
- Cell Line
- Cognition
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/pathology
- Dementia, Vascular/psychology
- Disease Models, Animal
- Female
- Male
- Matrix Metalloproteinase 9/metabolism
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Kinase Inhibitors/pharmacology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Tight Junction Proteins/metabolism
- Tight Junctions/drug effects
- Tight Junctions/enzymology
- Tight Junctions/pathology
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Angela B Olson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Naomi L Sayre
- Department of Neurosurgery, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - James D Lechleiter
- Department of Cellular and Structural Biology, South Texas Research Facility Neuroscience Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
32
|
Wang Z, Cai XJ, Qin J, Xie FJ, Han N, Lu HY. The role of histamine in opening blood-tumor barrier. Oncotarget 2017; 7:31299-310. [PMID: 27121317 PMCID: PMC5058757 DOI: 10.18632/oncotarget.8896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
Blood-tumor barrier (BTB) reduce the permeability for drugs into tumor tissues. We found that histamine might serve as an essential regulator of BTB function. Further, we aim to determine the role of H2 receptor expression in BTB permeability, and elucidate the underlying mechanisms thereof. Transmission electron microscopy showed that histamine disrupted the integrity of tight junctions (TJ) and increased the number of pinosomes in the cytoplasm. Horseradish peroxidase (HRP) and trans-endothelial resistance detection (TEER) assays revealed that histamine could open BTB and this action was inhibited by cimetidine. Western blot and immunofluorescence assays showed that histamine decreased the expression of tight junction proteins zonula occluden-1(ZO-1), occludin, and claudin-5. Further, quantitative RT-PCR assay showed that the expression of H2 receptor could represent and predicted histamine-induced BTB permeability. In conclusion, histamine opened BTB by down-regulating the TJ-associated proteins. The levels of H2 receptor expression was correlated with the histamine-induced BTB permeability.
Collapse
Affiliation(s)
- Zeng Wang
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China.,Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| | - Xin-Jun Cai
- Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, 310003, P.R. China
| | - Jing Qin
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| | - Fa-Jun Xie
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| | - Na Han
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| | - Hong-Yang Lu
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| |
Collapse
|
33
|
Guo J, Cai H, Zheng J, Liu X, Liu Y, Ma J, Que Z, Gong W, Gao Y, Tao W, Xue Y. Long non-coding RNA NEAT1 regulates permeability of the blood-tumor barrier via miR-181d-5p-mediated expression changes in ZO-1, occludin, and claudin-5. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2240-2254. [DOI: 10.1016/j.bbadis.2017.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 01/01/2023]
|
34
|
Zhang J, Liu H, Du X, Guo Y, Chen X, Wang S, Fang J, Cao P, Zhang B, Liu Z, Zhang W. Increasing of Blood-Brain Tumor Barrier Permeability through Transcellular and Paracellular Pathways by Microbubble-Enhanced Diagnostic Ultrasound in a C6 Glioma Model. Front Neurosci 2017; 11:86. [PMID: 28280455 PMCID: PMC5322268 DOI: 10.3389/fnins.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Most of the anticancer agents cannot be efficiently delivered into the brain tumor because of the existence of blood-brain tumor barrier (BTB). The objective of this study was to explore the effect of microbubble-enhanced diagnostic ultrasound (MEUS) on the BTB permeability and the possible mechanism. Glioma-bearing rats were randomized into three groups as follows: the microbubble-enhanced continued diagnostic ultrasound (MECUS) group; the microbubble-enhanced intermittent diagnostic ultrasound (MEIUS) group and the control group. The gliomas were insonicated through the skull with a diagnostic ultrasound and injected with microbubbles through the tail veins. Evans Blue (EB) and dynamic contrast-enhanced-MRI were used to test changes in the BTB permeability. Confocal laser scanning microscopy was used to observe the deposition of the EB in the tumor tissues. The distribution and expression of junctional adhesion molecule-A (JAM-A) and calcium-activated potassium channels (KCa channels) were detected by a Western blot, qRT-PCR, and immunohistochemical staining. In the MEUS groups, the EB extravasation (11.0 ± 2.2 μg/g in MECUS group and 17.9 ± 2.3 μg/g in MEIUS group) exhibited a significant increase compared with the control group (5.3 ± 0.9 μg/g). The MEIUS group had more EB extravasation than the MECUS group. The Ktrans value of the dynamic contrast-enhanced-MRI in the MEUS groups was higher than that of the control group and correlated strongly with the EB extravasation in the tumor (R2 = 0.97). This showed that the Ktrans value might be a non-invasive method to evaluate the BTB permeability in rat glioma after microbubble-enhanced ultrasound treatment.Western blot, qRT-PCR and immunohistochemical staining revealed that MEUS increased the KCa channels expression and reduced JAM-A expression in glioma. This change was more obvious in the MEIUS group than in the MECUS group. The results demonstrated that MEUS effectively increased the BTB permeability in glioma. The mechanisms might involve the up-regulation of KCa channels expression and affecting the formation of tight junctions in the BTB by a reduction of JAM-A expression. These findings might provide some new guidance for glioma drug therapy.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Heng Liu
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Xuesong Du
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Yu Guo
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Xiao Chen
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Shunan Wang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | | | - Bo Zhang
- Four and the State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Weiguo Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical UniversityChongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing, China
| |
Collapse
|
35
|
|
36
|
Xu SH, Yin MS, Liu B, Chen ML, He GW, Zhou PP, Cui YJ, Yang D, Wu YL. Tetramethylpyrazine-2'-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion. Hum Exp Toxicol 2016; 36:670-680. [PMID: 27387348 DOI: 10.1177/0960327116657401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disruption of blood-brain barrier (BBB) and subsequent oedema are major causes of the pathogenesis in ischaemic stroke with which the current clinical therapy remains unsatisfied. In this study, we examined the therapeutic effect of tetramethylpyrazine-2'-O-sodium ferulate (TSF)-a novel analogue of tetramethylpyrazine in alleviating BBB breakdown and brain oedema after cerebral ischaemia/reperfusion (I/R). Then, we explored the potential mechanism of the protection on BBB disruption in cerebral I/R rat models. Male Sprague-Dawley rats (250-300 g) were subjected to 120 min middle cerebral artery occlusion (MCAO), followed by 48 h reperfusion. TSF (10.8, 18 and 30 mg kg-1) and ozagrel (18 mg kg-1) were administrated by intravenous injection immediately for the first time and then received the same dose every 24 h for 2 days. We found that TSF treatment significantly attenuated the cerebral water content, infarction volume and improved neurological outcomes in MCAO rats compared to I/R models. Moreover, we investigated the effect of TSF on the BBB for that cerebral oedema is closely related to the permeability of the BBB. We found that the permeability of BBB was improved significantly in TSF groups compared to I/R model group by Evans blue leakage testing. Furthermore, the expressions of tight junction (TJ) proteins junction adhesion molecule-1 and occludin significantly decreased, but the protein expression of matrix metalloproteinase-9 (MMP-9) and aquaporin 4 (AQP4) increased after cerebral I/R, all of which were alleviated by TSF treatment. In conclusion, TSF significantly reduced BBB permeability and brain oedema, which were correlated with regulating the expression of TJ proteins, MMP-9 and AQP4. These findings provide a novel approach to the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- S-H Xu
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - M-S Yin
- 2 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,3 Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - B Liu
- 4 Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - M-L Chen
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - G-W He
- 5 Hefei Yigong Medicine Co., Ltd, Hefei, China
| | - P-P Zhou
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Y-J Cui
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - D Yang
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Y-L Wu
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
Choi KH, Kim HS, Park MS, Kim JT, Kim JH, Cho KA, Lee MC, Lee HJ, Cho KH. Regulation of Caveolin-1 Expression Determines Early Brain Edema After Experimental Focal Cerebral Ischemia. Stroke 2016; 47:1336-43. [DOI: 10.1161/strokeaha.116.013205] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 01/20/2023]
Abstract
Background and Purpose—
Most patients with cerebral infarction die of brain edema because of the breakdown of the blood–brain barrier (BBB) in ischemic tissue. Caveolins (a group of proteins) are key modulators of vascular permeability; however, a direct role of caveolin-1 (Cav-1) in the regulation of BBB permeability during ischemic injury has yet to be identified.
Methods—
Cav-1 expression was measured by immunoblotting after photothrombotic ischemia. A direct functional role of Cav-1 in cerebral edema and BBB permeability during cerebral ischemia was investigated by genetic manipulation (gene disruption and re-expression) of Cav-1 protein expression in mice.
Results—
There was a significant correlation between the extent of BBB disruption and the Cav-1 expression. In Cav-1–deficient (Cav-1
−/−
) mice, the extent of BBB disruption after cerebral ischemia was increased compared with wild-type (Cav-1
+/+
) mice, whereas the increase in cerebral edema volume was ameliorated by lentiviral-mediated re-expression of Cav-1. Furthermore, Cav-1
−/−
mice had significantly higher degradation of tight junction proteins and proteolytic activity of matrix metalloproteinase than Cav-1
+/+
mice. Conversely, re-expression of Cav-1 in Cav-1
−/−
mice restored tight junction protein expression and reduced matrix metalloproteinase proteolytic activity.
Conclusions—
These results indicate that Cav-1 is a critical determinant of BBB permeability. Strategies for regulating Cav-1 represent a novel therapeutic approach to controlling BBB disruption and subsequent neurological deterioration during cerebral ischemia.
Collapse
Affiliation(s)
- Kang-Ho Choi
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Hyung-Seok Kim
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Man-Seok Park
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Joon-Tae Kim
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Ja-Hae Kim
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Kyung-Ah Cho
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Min-Cheol Lee
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Hong-Joon Lee
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| | - Ki-Hyun Cho
- From the Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea (K.-H.C.); Departments of Neurology (K.-H.C., M.-S.P., J.-T.K., K.-H.C.), Forensic Medicine (H.-S.K.), Nuclear Medicine (J.-H.K.), Biochemistry and Molecular Biology (K.-A.C.), and Pathology, Chonnam National University Medical School, Gwangju, Korea (M.-C.L.); and Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (H.-J.L.)
| |
Collapse
|
38
|
Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma. Mediators Inflamm 2015; 2015:463950. [PMID: 26556956 PMCID: PMC4628652 DOI: 10.1155/2015/463950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023] Open
Abstract
Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.
Collapse
|
39
|
Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, Li Z, Shang X, Liu Y. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 2015; 6:19759-79. [PMID: 26078353 PMCID: PMC4637319 DOI: 10.18632/oncotarget.4331] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023] Open
Abstract
Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
40
|
Li CH, Shyu MK, Jhan C, Cheng YW, Tsai CH, Liu CW, Lee CC, Chen RM, Kang JJ. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice. Toxicol Sci 2015; 148:192-203. [PMID: 26272951 DOI: 10.1093/toxsci/kfv176] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gold nanoparticles (Au-NPs) are being increasingly used as constituents in cosmetics, biosensors, bioimaging, photothermal therapy, and targeted drug delivery. This elevated exposure to Au-NPs poses systemic risks in humans, particularly risks associated with the biodistribution of Au-NPs and their potent interaction with biological barriers. We treated human umbilical vein endothelial cells with Au-NPs and comprehensively examined the expression levels of tight junction (TJ) proteins such as occludin, claudin-5, junctional adhesion molecules, and zonula occludens-1 (ZO-1), as well as endothelial paracellular permeability and the intracellular signaling required for TJ organization. Moreover, we validated the effects of Au-NPs on the integrity of TJs in mouse brain microvascular endothelial cells in vitro and obtained direct evidence of their influence on blood-brain barrier (BBB) permeability in vivo. Treatment with Au-NPs caused a pronounced reduction of PKCζ-dependent threonine phosphorylation of occludin and ZO-1, which resulted in the instability of endothelial TJs and led to proteasome-mediated degradation of TJ components. This impairment in the assembly of TJs between endothelial cells increased the permeability of the transendothelial paracellular passage and the BBB. Au-NPs increased endothelial paracellular permeability in vitro and elevated BBB permeability in vivo. Future studies must investigate the direct and indirect toxicity caused by Au-NP-induced endothelial TJ opening and thereby address the double-edged-sword effect of Au-NPs.
Collapse
Affiliation(s)
- Ching-Hao Li
- *Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan;
| | - Ming-Kwang Shyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng Jhan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medicine University, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University's Wan-Fang Hospital, Taipei, Taiwan; and Anesthetics Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
41
|
Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol 2015; 37:577-90. [PMID: 26245144 DOI: 10.1007/s00281-015-0516-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022]
Abstract
The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.
Collapse
Affiliation(s)
- Bieke Broux
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Hasselt University, Biomedical Research Institute and transnationale Universiteit Limburg, School of Life Sciences, Agoralaan, Building C, 3590, Diepenbeek, Belgium
| | - Elizabeth Gowing
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis Street, Room R9.912, Montréal, Québec, Canada, H2X 0A9.
- Department of Neuroscience, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
42
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
43
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
44
|
Lee JH, Wei L, Gu X, Wei Z, Dix TA, Yu SP. Therapeutic effects of pharmacologically induced hypothermia against traumatic brain injury in mice. J Neurotrauma 2014; 31:1417-30. [PMID: 24731132 DOI: 10.1089/neu.2013.3251] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Preclinical and clinical studies have shown therapeutic potential of mild-to-moderate hypothermia for treatments of stroke and traumatic brain injury (TBI). Physical cooling in humans, however, is usually slow, cumbersome, and necessitates sedation that prevents early application in clinical settings and causes several side effects. Our recent study showed that pharmacologically induced hypothermia (PIH) using a novel neurotensin receptor 1 (NTR1) agonist, HPI-201 (also known as ABS-201), is efficient and effective in inducing therapeutic hypothermia and protecting the brain from ischemic and hemorrhagic stroke in mice. The present investigation tested another second-generation NTR1 agonist, HPI-363, for its hypothermic and protective effect against TBI. Adult male mice were subjected to controlled cortical impact (CCI) (velocity=3 m/sec, depth=1.0 mm, contact time=150 msec) to the exposed cortex. Intraperitoneal administration of HPI-363 (0.3 mg/kg) reduced body temperature by 3-5°C within 30-60 min without triggering a shivering defensive reaction. An additional two injections sustained the hypothermic effect in conscious mice for up to 6 h. This PIH treatment was initiated 15, 60, or 120 min after the onset of TBI, and significantly reduced the contusion volume measured 3 days after TBI. HPI-363 attenuated caspase-3 activation, Bax expression, and TUNEL-positive cells in the pericontusion region. In blood-brain barrier assessments, HPI-363 ameliorated extravasation of Evans blue dye and immunoglobulin G, attenuated the MMP-9 expression, and decreased the number of microglia cells in the post-TBI brain. HPI-363 decreased the mRNA expression of tumor necrosis factor-α and interleukin-1β (IL-1β), but increased IL-6 and IL-10 levels. Compared with TBI control mice, HPI-363 treatments improved sensorimotor functional recovery after TBI. These findings suggest that the second generation NTR-1 agonists, such as HPI-363, are efficient hypothermic-inducing compounds that have a strong potential in the management of TBI.
Collapse
Affiliation(s)
- Jin Hwan Lee
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
45
|
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:11-24. [PMID: 24963272 PMCID: PMC4064947 DOI: 10.4137/pmc.s13384] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 01/04/2023]
Abstract
The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches.
Collapse
Affiliation(s)
- John L Mikitsh
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann-Marie Chacko
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res 2014; 355:701-15. [DOI: 10.1007/s00441-014-1820-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/16/2014] [Indexed: 12/27/2022]
|
47
|
Vascular damage: a persisting pathology common to Alzheimer's disease and traumatic brain injury. Med Hypotheses 2013; 81:842-5. [PMID: 24074832 DOI: 10.1016/j.mehy.2013.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/23/2013] [Accepted: 09/08/2013] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are both significant clinical problems characterized by debilitating symptoms with limited available treatments. Interestingly, both neurological diseases are characterized by neurovascular damage. This impaired brain vasculature correlates with the onset of dementia, a symptom associated with hippocampal degeneration seen in both diseases. We posit that vascular damage is a major pathological link between TBI and AD, in that TBI victims are predisposed to AD symptoms due to altered brain vasculature; vice versa, the progression of AD pathology may be accelerated by TBI especially when the brain insult worsens hippocampal degeneration. Our hypothesis is supported by recent data reporting expedited AD pathology in presymptomatic transgenic AD mice subjected to TBI. If our hypothesis is correct, treatments targeted at repairing the vasculature may prove effective at treating both diseases and preventing the evolution of AD symptoms in TBI victims.
Collapse
|
48
|
Affiliation(s)
- Yasuteru Sano
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Ube; Yamaguchi; Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Ube; Yamaguchi; Japan
| |
Collapse
|
49
|
Du F, Su J, Huang R, Liao L, Zhu Z, Wang Y. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1476-1484. [PMID: 23542603 DOI: 10.1016/j.fsi.2013.03.352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV.
Collapse
Affiliation(s)
- Fukuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
50
|
Yan J, Manaenko A, Chen S, Klebe D, Ma Q, Caner B, Fujii M, Zhou C, Zhang JH. Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage. Stroke 2013; 44:1410-7. [PMID: 23539525 DOI: 10.1161/strokeaha.113.678474] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Plasma thrombin concentration is increased after subarachnoid hemorrhage (SAH). However, the role of thrombin receptor (protease-activated receptor-1 [PAR-1]) in endothelial barrier disruption has not been studied. The aims of this study were to investigate the role of PAR-1 in orchestrating vascular permeability and to assess the potential therapeutics of a PAR-1 antagonist, SCH79797, through maintaining vascular integrity. METHODS SCH79797 was injected intraperitoneally into male Sprauge-Dawley rats undergoing SAH by endovascular perforation. Assessment was conducted at 24 hours after SAH for brain water content, Evans blue content, and neurobehavioral testing. To explore the role of PAR-1 activation and the specific mechanism of SCH79797's effect after SAH, Western blot, immunoprecipitation, and immunofluorescence of hippocampus tissue were performed. A p21-activated kinase-1 (PAK1) inhibitor, IPA-3, was used to explore the underlying protective mechanism of SCH79797. RESULTS At 24 hours after SAH, animals treated with SCH79797 demonstrated a reduction in brain water content, Evans blue content, and neurobehavioral deficits. SCH79797 also attenuated PAR-1 expression and maintained the level of vascular endothelial-cadherin, an important component of adherens junctions. Downstream to PAR-1, c-Src-dependent activation of p21-activated kinase-1 led to an increased serine/threonine phosphorylation of vascular endothelial-cadherin; immunoprecipitation results revealed an enhanced binding of phosphorylated vascular endothelial-cadherin with endocytosis orchestrator β-arrestin-2. These pathological states were suppressed after SCH79797 treatment. CONCLUSIONS PAR-1 activation after SAH increases microvascular permeability, at least, partly through a PAR-1-c-Src-p21-activated kinase-1-vascular endothelial-cadherin phosphorylation pathway. Through suppressing PAR-1 activity, SCH79797 plays a protective role in maintaining microvascular integrity after SAH.
Collapse
Affiliation(s)
- Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|