1
|
Sun Y, Bai G, Yang K, Feng Y, Sun H, Xian L, Gao H. Multi-target neuroprotection by dl-PHPB in APP/PS1 mice: a proteomic analysis. Front Pharmacol 2025; 16:1554168. [PMID: 40343003 PMCID: PMC12058804 DOI: 10.3389/fphar.2025.1554168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Dl-PHPB [potassium 2-(1-hydroxypentyl) benzoate] demonstrates robust neuroprotective effects in preclinical models of Alzheimer's disease (AD), significantly ameliorating cognitive deficits and pathological hallmarks. However, the underlying mechanism remains largely unclear. The current study primarily focused on elucidating dl-PHPB's neuroprotective mechanisms and identifying potential targets in preclinical AD models. Methods Comparative proteomic analyses were performed on APP/PS1 mice orally administered either dl-PHPB (30 mg/kg) or vehicle daily for 3 months, alongside vehicle-treated wild-type (WT) non-transgenic littermates as controls. Total proteins were separated using two dimensional difference gel electrophoresis, and differentially expressed protein spots were identified via LC-MS/MS. Results and discussion Our results revealed 11 altered proteins in the cortex and 10 in the hippocampus between the WT and APP/PS1 groups treated with vehicle. Following dl-PHPB treatment, 12 differentially expressed proteins were identified in the cortex and 9 in the hippocampus of APP/PS1 mice. These proteins are primarily involved in energy metabolism, neuronal structure, protein trafficking, inflammatory and oxidative responses, and amyloid β (Aβ) and Tau processes, among which several proteins were validated as potential therapeutic targets. Notably, the expression levels of cofilin-2 and VDAC1 in APP/PS1 mice were restored to near-normal levels by the treatment with dl-PHPB, memantine, or donepezil, and further clinical validation is required to establish their utility as AD biomarkers for therapeutic efficacy.
Collapse
Affiliation(s)
- Yingni Sun
- School of Life Sciences, Ludong University, Yantai, China
- Department of Pharmacology, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Handian Pharmaceutical Co., Ltd., Beijing, China
| | - Guoliang Bai
- National Center for Pediatric Cancer Surveillance, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Yong Feng
- Department of Medical Research, Qingdao Huangdao District People’s Hospital, Qingdao, China
| | - Hongmei Sun
- Department of Medical Research, Qingdao Huangdao District People’s Hospital, Qingdao, China
| | - Li Xian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
2
|
Eggers B, Steinbach S, Aldea IG, Keers S, Molina M, Grinberg LT, Heinsen H, Paraizo Leite RE, Attems J, May C, Marcus K. The Aging Substantia Nigra is Characterized by ROS Accumulation Potentially Resulting in Increased Neuroinflammation and Cytoskeletal Remodeling. Adv Biol (Weinh) 2025; 9:e2400814. [PMID: 40071644 PMCID: PMC12001008 DOI: 10.1002/adbi.202400814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Indexed: 04/17/2025]
Abstract
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease. To gain a comprehensive overview three study groups are utilized: young individuals (mean age: 28.7 years), middle-aged (mean age: 62.3 years), and elderly individuals (mean age: 83.9 years). Using the proteomic approach, crucial features of physiological aging are able to be identified. These include heightened oxidative stress, enhanced lysosomal degradation, autophagy, remodeling of the cytoskeleton, changes in the structure of the mitochondria, alterations in vesicle transportation, and synaptic plasticity.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Simone Steinbach
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
| | - Isabel Gil Aldea
- Navarrabiomed BiobankHospital Universitario de NavarraPamplonaNavarra31008Spain
| | - Sharon Keers
- Institute of Neuroscience and Newcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mariana Molina
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Lea T. Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCA94158USA
| | - Helmut Heinsen
- Institute of Forensic MedicineUniversity of WuerzburgVersbacher Str. 397078WuerzburgGermany
| | - Renata E. Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group‐LIM22University of São Paulo Medical SchoolSão PauloCEP 01246 903Brazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloNE1 7RUBrazil
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityEdwardson building, Campus for Ageing and VitalityNewcastle‐upon‐TyneNE4 5PLUK
| | - Caroline May
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| | - Katrin Marcus
- Medizinisches Proteom‐CenterMedical FacultyRuhr‐University Bochum44801BochumGermany
- Medical Proteome AnalysisCenter for Protein Diagnostics (PRODI)Ruhr‐University Bochum44801BochumGermany
| |
Collapse
|
3
|
Rhind SG, Shiu MY, Vartanian O, Allen S, Palmer M, Ramirez J, Gao F, Scott CJM, Homes MF, Gray G, Black SE, Saary J. Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sci 2024; 14:1296. [PMID: 39766495 PMCID: PMC11674576 DOI: 10.3390/brainsci14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND/OBJECTIVES Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration. METHODS This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls. Plasma samples were analyzed for biomarkers of glial activation (GFAP), axonal damage (NF-L, pNF-H), oxidative stress (PRDX-6), and neurodegeneration (T-tau), along with S100b, NSE, and UCHL-1. The biomarker concentrations were quantified using multiplexed immunoassays. RESULTS The aviators exhibited significantly elevated levels of GFAP, NF-L, PRDX-6, and T-tau compared to the CAF controls (p < 0.001), indicating increased glial activation, axonal injury, and oxidative stress. Trends toward higher levels of S100b, NSE, and UCHL-1 were observed but were not statistically significant. The elevated biomarker levels suggest cumulative brain damage, raising concerns about potential long-term neurological impairments. CONCLUSIONS Military aviators are at increased risk for neurobiological injury, including glial and axonal damage, oxidative stress, and early neurodegeneration. These findings emphasize the importance of proactive monitoring and further research to understand the long-term impacts of high-altitude flight on brain health and to develop strategies for mitigating cognitive decline and neurodegenerative risks in this population.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
| | - Oshin Vartanian
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Shamus Allen
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Miriam Palmer
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Joel Ramirez
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Graduate Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Fuqiang Gao
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Christopher J. M. Scott
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Meissa F. Homes
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Gary Gray
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Sandra E. Black
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joan Saary
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, ON M5T 0A1, Canada
| |
Collapse
|
4
|
Zhang R, Ohshima M, Brodin D, Wang Y, Morancé A, Schultzberg M, Chen G, Johansson J. Intravenous chaperone treatment of late-stage Alzheimer´s disease (AD) mouse model affects amyloid plaque load, reactive gliosis and AD-related genes. Transl Psychiatry 2024; 14:453. [PMID: 39448576 PMCID: PMC11502864 DOI: 10.1038/s41398-024-03161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Treatment strategies that are efficient against established Alzheimer's disease (AD) are needed. BRICHOS is a molecular chaperone domain that prevents amyloid fibril formation and associated cellular toxicity. In this study, we treated an AD mouse model seven months after pathology onset, using intravenous administration of recombinant human (rh) Bri2 BRICHOS R221E. Two injections of rh Bri2 BRICHOS R221E per week for three months in AD mice reduced amyloid β (Aβ) burden, and mitigated astro- and microgliosis, as determined by glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba1) immunohistochemistry. Sequencing of RNA from cortical microglia cells showed that BRICHOS treatment normalized the expression of identified plaque-induced genes in mice and humans, including clusterin and GFAP. Rh Bri2 BRICHOS R221E passed the blood-brain barrier (BBB) in age-matched wild-type mice as efficiently as in the AD mice, but then had no effect on measures of AD-like pathology, and mainly affected the expression of genes that affect cellular shape and movement. These results indicate a potential of rh Bri2 BRICHOS against advanced AD and underscore the ability of BRICHOS to target amyloid-induced pathology.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Makiko Ohshima
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
| | - David Brodin
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Yu Wang
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Antonin Morancé
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
- Department of Neuroscience, University of Mons (UMONS), Mons, Belgium
| | - Marianne Schultzberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden.
| | - Gefei Chen
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Jan Johansson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
5
|
Lysikova T, Tomascova A, Kovalska M, Lehotsky J, Leskova Majdova K, Kaplan P, Tatarkova Z. Dynamics in Redox-Active Molecules Following Ischemic Preconditioning in the Brain. Neurol Int 2024; 16:533-550. [PMID: 38804479 PMCID: PMC11130914 DOI: 10.3390/neurolint16030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
It is well known that the brain is quite vulnerable to oxidative stress, initiating neuronal loss after ischemia-reperfusion (IR) injury. A potent protective mechanism is ischemic preconditioning (IPC), where proteins are among the primary targets. This study explores redox-active proteins' role in preserving energy supply. Adult rats were divided into the control, IR, and IPC groups. Protein profiling was conducted to identify modified proteins and then verified through activity assays, immunoblot, and immunohistochemical analyses. IPC protected cortex mitochondria, as evidenced by a 2.26-fold increase in superoxide dismutase (SOD) activity. Additionally, stable core subunits of respiratory chain complexes ensured sufficient energy production, supported by a 16.6% increase in ATP synthase activity. In hippocampal cells, IPC led to the downregulation of energy-related dehydrogenases, while a significantly higher level of peroxiredoxin 6 (PRX6) was observed. Notably, IPC significantly enhanced glutathione reductase activity to provide sufficient glutathione to maintain PRX6 function. Astrocytes may mobilize PRX6 to protect neurons during initial ischemic events, by decreased PRX6 positivity in astrocytes, accompanied by an increase in neurons following both IR injury and IPC. Maintained redox signaling via astrocyte-neuron communication triggers IPC's protective state. The partnership among PRX6, SOD, and glutathione reductase appears essential in safeguarding and stabilizing the hippocampus.
Collapse
Affiliation(s)
- Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Anna Tomascova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| |
Collapse
|
6
|
Xue M, Huang X, Zhu T, Zhang L, Yang H, Shen Y, Feng L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants (Basel) 2024; 13:449. [PMID: 38671897 PMCID: PMC11047492 DOI: 10.3390/antiox13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.
Collapse
Affiliation(s)
- Min Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
| | - Xiaojie Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Tong Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Hao Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Peng L, Ji Y, Li Y, You Y, Zhou Y. PRDX6-iPLA2 aggravates neuroinflammation after ischemic stroke via regulating astrocytes-induced M1 microglia. Cell Commun Signal 2024; 22:76. [PMID: 38287382 PMCID: PMC10823689 DOI: 10.1186/s12964-024-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The crosstalk between astrocytes and microglia plays a pivotal role in neuroinflammation following ischemic stroke, and phenotypic distribution of these cells can change with the progression of ischemic stroke. Peroxiredoxin (PRDX) 6 phospholipase A2 (iPLA2) activity is involved in the generation of reactive oxygen species(ROS), with ROS driving the activation of microglia and astrocytes; however, its exact function remains unexplored. MJ33, PRDX6D140A mutation was used to block PRDX6-iPLA2 activity in vitro and vivo after ischemic stroke. PRDX6T177A mutation was used to block the phosphorylation of PRDX6 in CTX-TNA2 cell lines. NAC, GSK2795039, Mdivi-1, U0126, and SB202190 were used to block the activity of ROS, NOX2, mitochondrial fission, ERK, and P38, respectively, in CTX-TNA2 cells. In ischemic stroke, PRDX6 is mainly expressed in astrocytes and PRDX6-iPLA2 is involved in the activation of astrocytes and microglia. In co-culture system, Asp140 mutation in PRDX6 of CTX-TNA2 inhibited the polarization of microglia, reduced the production of ROS, suppressed NOX2 activation, and inhibited the Drp1-dependent mitochondrial fission following OGD/R. These effects were further strengthened by the inhibition of ROS production. In subsequent experiments, U0126 and SB202190 inhibited the phosphorylation of PRDX6 at Thr177 and reduced PRDX6-iPLA2 activity. These results suggest that PRDX6-iPLA2 plays an important role in the astrocyte-induced generation of ROS and activation of microglia, which are regulated by the activation of Nox2 and Drp1-dependent mitochondrial fission pathways. Additionally, PRDX6-iPLA2 activity is regulated by MAPKs via the phosphorylation of PRDX6 at Thr177 in astrocytes.
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Gonzalez‐Rodriguez M, Villar‐Conde S, Astillero‐Lopez V, Villanueva‐Anguita P, Ubeda‐Banon I, Flores‐Cuadrado A, Martinez‐Marcos A, Saiz‐Sanchez D. Human amygdala involvement in Alzheimer's disease revealed by stereological and dia-PASEF analysis. Brain Pathol 2023; 33:e13180. [PMID: 37331354 PMCID: PMC10467039 DOI: 10.1111/bpa.13180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-β (Aβ) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.
Collapse
Affiliation(s)
- Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Patricia Villanueva‐Anguita
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| |
Collapse
|
9
|
Parfenyuk SB, Glushkova OV, Sharapov MG, Khrenov MO, Lunin SM, Kuzekova AA, Mubarakshina EK, Novoselova TV, Cherenkov DA, Novoselova EG. Protective Effects of Peroxiredoxin 6 in Pro-Inflammatory Response Model Using Raw 264.7 Macrophages. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1156-1164. [PMID: 37758314 DOI: 10.1134/s0006297923080096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 10/03/2023]
Abstract
The aim of the work was to study effects of peroxiredoxin 6 (PRDX6), a recombinant antioxidant protein, on the level of pro-inflammatory responses of RAW 264.7 macrophages to endotoxin exposure. Addition of LPS to the RAW 264.7 cell culture medium expectedly increased production of TNF-α, and addition of PRDX6 led to a significant (15-20%) decrease in its production. The level of production of another pro-inflammatory cytokine, IL-1β, which was significantly activated by endotoxin, was completely normalized under the PRDX6 action. Moreover, addition of PRDX6 reduced production of reactive oxygen species (ROS) induced by endotoxin and also prevented overexpression of the iNos gene in the RAW 264.7 cells. The results showed that PRDX6 had a suppressive effect on the expression of Nrf-2 gene and production of the transcription factor NRF-2 during the first 6 h of cell cultivation. Addition of endotoxin caused activation of the NF-κB and SAPK/JNK signaling cascades, while in the presence of PRDX6, activity of these signaling cascades decreases. It is known that the pro-inflammatory response of cells caused by exposure to bacterial LPS leads to activation of apoptosis and elimination of the damaged cells. Our studies confirm this, since exposure to LPS led to activation of the expression of P53 gene, a marker of apoptosis. Peroxiredoxin 6 added within the first hours of the development of acute pro-inflammatory response suppressed the P53 gene expression, indicating protective effect of PRDX6 that reduced apoptosis in the RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Svetlana B Parfenyuk
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maksim O Khrenov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna A Kuzekova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elvira K Mubarakshina
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitrii A Cherenkov
- Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Kim JH, Afridi R, Lee WH, Suk K. Analyzing the glial proteome in Alzheimer's disease. Expert Rev Proteomics 2023; 20:197-209. [PMID: 37724426 DOI: 10.1080/14789450.2023.2260955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets. AREA COVERED In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them. EXPERT OPINION Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Semikasev E, Ahlemeyer B, Acker T, Schänzer A, Baumgart-Vogt E. Rise and fall of peroxisomes during Alzheimer´s disease: a pilot study in human brains. Acta Neuropathol Commun 2023; 11:80. [PMID: 37170361 PMCID: PMC10176950 DOI: 10.1186/s40478-023-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.
Collapse
Affiliation(s)
- Eugen Semikasev
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany
- Department of Neurosurgery, University Hospital of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
12
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Astillero-Lopez V, Gonzalez-Rodriguez M, Villar-Conde S, Flores-Cuadrado A, Martinez-Marcos A, Ubeda-Banon I, Saiz-Sanchez D. Neurodegeneration and astrogliosis in the entorhinal cortex in Alzheimer's disease: Stereological layer-specific assessment and proteomic analysis. Alzheimers Dement 2022; 18:2468-2480. [PMID: 35142030 DOI: 10.1002/alz.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The entorhinal cortex is among the earliest areas involved in Alzheimer's disease. Volume reduction and neural loss in this area have been widely reported. Human entorhinal cortex atrophy is, in part, due to neural loss, but microglial and/or astroglial involvement in the different layers remains unclear. Additionally, -omic approaches in the human entorhinal cortex are scarce. METHODS Herein, stereological layer-specific and proteomic analyses were carried out in the human brain. RESULTS Neurodegeneration, microglial reduction, and astrogliosis have been demonstrated, and proteomic data have revealed relationships with up- (S100A6, PPP1R1B, BAG3, and PRDX6) and downregulated (GSK3B, SYN1, DLG4, and RAB3A) proteins. Namely, clusters of these proteins were related to synaptic, neuroinflammatory, and oxidative stress processes. DISCUSSION Differential layer involvement among neural and glial populations determined by proteinopathies and identified proteins related to neurodegeneration and astrogliosis could explain how the cortical circuitry facilitates pathological spreading within the medial temporal lobe.
Collapse
Affiliation(s)
- Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isabel Ubeda-Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
14
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|
16
|
Soliman AS, Umstead A, Grabinski T, Kanaan NM, Lee A, Ryan J, Lamp J, Vega IE. EFhd2 brain interactome reveals its association with different cellular and molecular processes. J Neurochem 2021; 159:992-1007. [PMID: 34543436 PMCID: PMC9552186 DOI: 10.1111/jnc.15517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
EFhd2 is a conserved calcium-binding protein that is highly expressed in the central nervous system. We have shown that EFhd2 interacts with tau protein, a key pathological hallmark in Alzheimer's disease and related dementias. However, EFhd2's physiological and pathological functions in the brain are still poorly understood. To gain insights into its physiological function, we identified proteins that co-immunoprecipitated with EFhd2 from mouse forebrain and hindbrain, using tandem mass spectrometry (MS). In addition, quantitative mass spectrometry was used to detect protein abundance changes due to the deletion of the Efhd2 gene in mouse forebrain and hindbrain regions. Our data show that mouse EFhd2 is associated with cytoskeleton components, vesicle trafficking modulators, cellular stress response-regulating proteins, and metabolic proteins. Moreover, proteins associated with the cytoskeleton, vesicular transport, calcium signaling, stress response, and metabolic pathways showed differential abundance in Efhd2(-/-) mice. This study presents, for the first time, an EFhd2 brain interactome that it is associated with different cellular and molecular processes. These findings will help prioritize further studies to investigate the mechanisms by which EFhd2 modulates these processes in physiological and pathological conditions of the nervous system.
Collapse
Affiliation(s)
- Ahlam S Soliman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrew Umstead
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA
| | - Andy Lee
- NeuroInitiatives LLC, Jacksonville, Florida, USA
| | - John Ryan
- NeuroInitiatives LLC, Jacksonville, Florida, USA
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA
| | - Irving E Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Mechanisms Underlying the Protective Effect of the Peroxiredoxin-6 Are Mediated via the Protection of Astrocytes during Ischemia/Reoxygenation. Int J Mol Sci 2021; 22:ijms22168805. [PMID: 34445509 PMCID: PMC8396200 DOI: 10.3390/ijms22168805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-like conditions reflect almost the entire spectrum of events that occur during cerebral ischemia, including the induction of oxidative stress, Ca2+ overload, glutamate excitotoxicity, and activation of necrosis and apoptosis in brain cells. Mechanisms for the protective effects of the antioxidant enzyme peroxiredoxin-6 (Prx-6) on hippocampal cells during oxygen-glucose deprivation/reoxygenation (OGD/R) were investigated. Using the methods of fluorescence microscopy, inhibitory analysis, vitality tests and PCR, it was shown that 24-h incubation of mixed hippocampal cell cultures with Prx-6 does not affect the generation of a reversible phase of a OGD-induced rise in Ca2+ ions in cytosol ([Ca2+]i), but inhibits a global increase in [Ca2+]i in astrocytes completely and in neurons by 70%. In addition, after 40 min of OGD, cell necrosis is suppressed, especially in the astrocyte population. This effect is associated with the complex action of Prx-6 on neuroglial networks. As an antioxidant, Prx-6 has a more pronounced and astrocyte-directed effect, compared to the exogenous antioxidant vitamin E (Vit E). Prx-6 inhibits ROS production in mitochondria by increasing the antioxidant capacity of cells and altering the expression of genes encoding redox status proteins. Due to the close bond between [Ca2+]i and intracellular ROS, this effect of Prx-6 is one of its protective mechanisms. Moreover, Prx-6 effectively suppresses not only necrosis, but also apoptosis during OGD and reoxygenation. Incubation with Prx-6 leads to activation of the basic expression of genes encoding protective kinases—PI3K, CaMKII, PKC, anti-apoptotic proteins—Stat3 and Bcl-2, while inhibiting the expression of signaling kinases and factors involved in apoptosis activation—Ikk, Src, NF-κb, Caspase-3, p53, Fas, etc. This effect on the basic expression of the genome leads to the cell preconditions, which is expressed in the inhibition of caspase-3 during OGD/reoxygenation. A significant effect of Prx-6 is directed on suppression of the level of pro-inflammatory cytokine IL-1β and factor TNFα, as well as genes encoding NMDA- and kainate receptor subunits, which was established for the first time for this antioxidant enzyme. The protective effect of Prx-6 is due to its antioxidant properties, since mutant Prx-6 (mutPrx-6, Prx6-C47S) leads to polar opposite effects, contributing to oxidative stress, activation of apoptosis and cell death through receptor action on TLR4.
Collapse
|
18
|
Role of Nrf2 in Synaptic Plasticity and Memory in Alzheimer's Disease. Cells 2021; 10:cells10081884. [PMID: 34440653 PMCID: PMC8391447 DOI: 10.3390/cells10081884] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that reduces oxidative stress. When reactive oxygen species (ROS) or reactive nitrogen species (RNS) are detected, Nrf2 translocates from the cytoplasm into the nucleus and binds to the antioxidant response element (ARE), which regulates the expression of antioxidant and anti-inflammatory genes. Nrf2 impairments are observed in the majority of neurodegenerative disorders, including Alzheimer’s disease (AD). The classic hallmarks of AD include β-amyloid (Aβ) plaques, and neurofibrillary tangles (NFTs). Oxidative stress is observed early in AD and is a novel therapeutic target for the treatment of AD. The nuclear translocation of Nrf2 is impaired in AD compared to controls. Increased oxidative stress is associated with impaired memory and synaptic plasticity. The administration of Nrf2 activators reverses memory and synaptic plasticity impairments in rodent models of AD. Therefore, Nrf2 activators are a potential novel therapeutic for neurodegenerative disorders including AD.
Collapse
|
19
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
20
|
Specificity of Human Sulfiredoxin for Reductant and Peroxiredoxin Oligomeric State. Antioxidants (Basel) 2021; 10:antiox10060946. [PMID: 34208049 PMCID: PMC8230665 DOI: 10.3390/antiox10060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.
Collapse
|
21
|
Liao J, Zhang Y, Chen X, Zhang J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol Neurobiol 2021; 58:4348-4364. [PMID: 34013449 DOI: 10.1007/s12035-021-02427-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxins (PRDXs) family, has multiple functions of glutathione peroxidase (Gpx) activity, acidic calcium-independent phospholipase (aiPLA2) activity, and lysophosphatidylcholine acyl transferase (LPCAT) activity. It has been documented to be involved in redox homeostasis, phospholipid turnover, glycolipid metabolism, and cellular signaling. Here, we reviewed the characteristics of the available Prdx6 genetic mouse models and the research progresses made with regard to PRDX6 in neuropsychiatric disorders, including neurodegenerative diseases, brain aging, stroke, neurotrauma, gliomas, major depressive disorder, drug addiction, post-traumatic stress disorder, and schizophrenia. The present review highlights the important roles of PRDX6 in neuropsychiatric disorders and may provide novel insights for the development of effective pharmacological treatments and genetic therapies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Yusi Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
22
|
Clark C, Dayon L, Masoodi M, Bowman GL, Popp J. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease. Alzheimers Res Ther 2021; 13:71. [PMID: 33794997 PMCID: PMC8015070 DOI: 10.1186/s13195-021-00814-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple pathophysiological processes have been described in Alzheimer's disease (AD). Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and disease progression remain poorly understood. We hypothesize that specific molecular patterns indicating both known and yet unidentified pathway alterations are associated with distinct aspects of AD pathology. METHODS We performed multi-level cerebrospinal fluid (CSF) omics in a well-characterized cohort of older adults with normal cognition, mild cognitive impairment, and mild dementia. Proteomics, metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were analyzed at single-omic level with correlation and regression approaches. Multi-omics factor analysis was used to integrate all biological levels. Identified analytes were used to construct best predictive models of the presence of AD pathology and of cognitive decline with multifactorial regression analysis. Pathway enrichment analysis identified pathway alterations in AD. RESULTS Multi-omics integration identified five major dimensions of heterogeneity explaining the variance within the cohort and differentially associated with AD. Further analysis exposed multiple interactions between single 'omics modalities and distinct multi-omics molecular signatures differentially related to amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed overrepresentation of the hemostasis, immune response, and extracellular matrix signaling pathways in association with AD. Finally, combinations of four molecules improved prediction of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline (protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1). CONCLUSIONS Applying an integrative multi-omics approach we report novel molecular and pathways alterations associated with AD pathology. These findings are relevant for the development of personalized diagnosis and treatment approaches in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Gene L. Bowman
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Department of Neurology, NIA-Layton Aging and Alzheimer’s Disease Center, Oregon Health & Science University, Portland, USA
| | - Julius Popp
- Old Age Psychiatry, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Centre for Gerontopsychiatric Medicine, Minervastrasse 145, P.O. Box 341, 8032 Zürich, Switzerland
| |
Collapse
|
23
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
24
|
Phasuk S, Pairojana T, Suresh P, Yang CH, Roytrakul S, Huang SP, Chen CC, Pakaprot N, Chompoopong S, Nudmamud-Thanoi S, Liu IY. Enhanced contextual fear memory in peroxiredoxin 6 knockout mice is associated with hyperactivation of MAPK signaling pathway. Mol Brain 2021; 14:42. [PMID: 33632301 PMCID: PMC7908735 DOI: 10.1186/s13041-021-00754-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fear dysregulation is one of the symptoms found in post-traumatic stress disorder (PTSD) patients. The functional abnormality of the hippocampus is known to be implicated in the development of such pathology. Peroxiredoxin 6 (PRDX6) belongs to the peroxiredoxin family. This antioxidant enzyme is expressed throughout the brain, including the hippocampus. Recent evidence reveals that PRDX6 plays an important role in redox regulation and the modulation of several signaling molecules involved in fear regulation. Thus, we hypothesized that PRDX6 plays a role in the regulation of fear memory. We subjected a systemic Prdx6 knockout (Prdx6-/-) mice to trace fear conditioning and observed enhanced fear response after training. Intraventricular injection of lentivirus-carried mouse Prdx6 into the 3rd ventricle reduced the enhanced fear response in these knockout mice. Proteomic analysis followed by validation of western blot analysis revealed that several proteins in the MAPK pathway, such as NTRK2, AKT, and phospho-ERK1/2, cPLA2 were significantly upregulated in the hippocampus of Prdx6-/- mice during the retrieval stage of contextual fear memory. The distribution of PRDX6 found in the astrocytes was also observed throughout the hippocampus. This study identifies PRDX6 as a participant in the regulation of fear response. It suggests that PRDX6 and related molecules may have important implications for understanding fear-dysregulation associated disorders like PTSD.
Collapse
Affiliation(s)
- Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
25
|
Szeliga M. Peroxiredoxins in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1203. [PMID: 33265993 PMCID: PMC7761365 DOI: 10.3390/antiox9121203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Substantial evidence indicates that oxidative/nitrosative stress contributes to the neurodegenerative diseases. Peroxiredoxins (PRDXs) are one of the enzymatic antioxidant mechanisms neutralizing reactive oxygen/nitrogen species. Since mammalian PRDXs were identified 30 years ago, their significance was long overshadowed by the other well-studied ROS/RNS defense systems. An increasing number of studies suggests that these enzymes may be involved in the neurodegenerative process. This article reviews the current knowledge on the expression and putative roles of PRDXs in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies, multiple sclerosis, amyotrophic lateral sclerosis and Huntington's disease.
Collapse
Affiliation(s)
- Monika Szeliga
- Mossakowski Medical Research Centre, Department of Neurotoxicology, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Abu Bakar ZH, Damanhuri HA, Makpol S, Wan Kamaruddin WMA, Abdul Sani NF, Amir Hamzah AIZ, Nor Aripin KN, Mohd Rani MD, Noh NA, Razali R, Mazlan M, Abdul Hamid H, Mohamad M, Wan Ngah WZ. Effect of Age on the Protein Profile of Healthy Malay Adults and its Association with Cognitive Function Competency. J Alzheimers Dis 2020; 70:S43-S62. [PMID: 30594926 PMCID: PMC6706781 DOI: 10.3233/jad-180511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Many studies on biochemical and psychological variables have aimed to elucidate the association between aging and cognitive function. Demographic differences and protein expression have been reported to play a role in determining the cognitive capability of a population. Objective: This study aimed to determine the effect of age on the protein profile of Malay individuals and its association with cognitive competency. Methods: A total of 160 individuals were recruited and grouped accordingly. Cognitive competency of each subject was assessed with several neuropsychological tests. Plasma samples were collected and analyzed with Q Exactive HF Orbitrap. Proteins were identified and quantitated with MaxQuant and further analyzed with Perseus to determine differentially expressed proteins. PANTHER, Reactome, and STRING were applied for bioinformatics output. Results: Our data showed that the Malay individuals are vulnerable to the deterioration of cognitive function with aging, and most of the proteins were differentially expressed in concordance. Several physiological components and pathways were shown to be involved, giving a hint of a promising interpretation on the induction of aging toward the state of the Malays’ cognitive function. Nevertheless, some proteins have shown a considerable interaction with the generated protein network, which provides a direction of focus for further investigation. Conclusion: This study demonstrated notable changes in the expression of several proteins as age increased. These changes provide a promising platform for understanding the biochemical factors affecting cognitive function in the Malay population. The exhibited network of protein-protein interaction suggests the possibility of implementing regulatory intervention in ameliorating Malay cognitive function.
Collapse
Affiliation(s)
- Zulzikry Hafiz Abu Bakar
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | | | - Nur Fathiah Abdul Sani
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Ahmad Imran Zaydi Amir Hamzah
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Khairun Nain Nor Aripin
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur, Malaysia
| | - Mohd Dzulkhairi Mohd Rani
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur, Malaysia
| | - Rosdinom Razali
- Department of Psychiatry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Faculty of Medicine, Universiti Teknologi Mara, Jalan Hospital, Selangor Darul Ehsan, Malaysia
| | - Hamzaini Abdul Hamid
- Department of Radiology Hospital Chancellor Tuanku Mukhriz, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Mazlyfarina Mohamad
- Department Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Rao CV, Farooqui M, Madhavaram A, Zhang Y, Asch AS, Yamada HY. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell 2020; 19:e13221. [PMID: 32857910 PMCID: PMC7576275 DOI: 10.1111/acel.13221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral amyloid‐β accumulation that begins in middle age is considered the critical triggering event in the pathogenesis of late‐onset Alzheimer's disease (LOAD). However, the molecular mechanism remains elusive. The Shugoshin 1 (Sgo1−/+) mouse model, a model for mitotic cohesinopathy‐genomic instability that is observed in human AD at a higher rate, showed spontaneous accumulation of amyloid‐β in the brain at old age. With the model, novel insights into the molecular mechanism of LOAD development are anticipated. In this study, the initial appearance of cerebral amyloid‐β accumulation was determined as 15‐18 months of age (late middle age) in the Sgo1−/+ model. The amyloid‐β accumulation was associated with unexpected GSK3α/β inactivation, Wnt signaling activation, and ARC/Arg3.1 accumulation, suggesting involvement of both the GSK3‐Arc/Arg3.1 axis and the GSK3‐Wnt axis. As observed in human AD brains, neuroinflammation with IFN‐γ expression occurred with amyloid‐β accumulation and was pronounced in the aged (24‐month‐old) Sgo1−/+ model mice. AD‐relevant protein panels (oxidative stress defense, mitochondrial energy metabolism, and β‐oxidation and peroxisome) analysis indicated (a) early increases in Pdk1 and Phb in middle‐aged Sgo1−/+ brains, and (b) misregulations in 32 proteins among 130 proteins tested in old age. Thus, initial amyloid‐β accumulation in the Sgo1−/+ model is suggested to be triggered by GSK3 inactivation and the resulting Wnt activation and ARC/Arg3.1 accumulation. The model displayed characteristics and affected pathways similar to those of human LOAD including neuroinflammation, demonstrating its potential as a study tool for the LOAD development mechanism and for preclinical AD drug research and development.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Mudassir Farooqui
- Department of Neurology University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | - Avanish Madhavaram
- Biology/Exercise and Sports Science University of North Carolina Chapel Hill North Carolina USA
| | - Yuting Zhang
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Adam S. Asch
- Hematology/Oncology Section Department of Medicine Stephenson Cancer Center University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Hiroshi Y. Yamada
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| |
Collapse
|
28
|
Pankiewicz JE, Diaz JR, Martá-Ariza M, Lizińczyk AM, Franco LA, Sadowski MJ. Peroxiredoxin 6 mediates protective function of astrocytes in Aβ proteostasis. Mol Neurodegener 2020; 15:50. [PMID: 32907613 PMCID: PMC7487614 DOI: 10.1186/s13024-020-00401-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Disruption of β-amyloid (Aβ) homeostasis is the initial culprit in Alzheimer’s disease (AD) pathogenesis. Astrocytes respond to emerging Aβ plaques by altering their phenotype and function, yet molecular mechanisms governing astrocytic response and their precise role in countering Aβ deposition remain ill-defined. Peroxiredoxin (PRDX) 6 is an enzymatic protein with independent glutathione peroxidase (Gpx) and phospholipase A2 (PLA2) activities involved in repair of oxidatively damaged cell membrane lipids and cellular signaling. In the CNS, PRDX6 is uniquely expressed by astrocytes and its exact function remains unexplored. Methods APPswe/PS1dE9 AD transgenic mice were once crossed to mice overexpressing wild-type Prdx6 allele or to Prdx6 knock out mice. Aβ pathology and associated neuritic degeneration were assessed in mice aged 10 months. Laser scanning confocal microscopy was used to characterize Aβ plaque morphology and activation of plaque-associated astrocytes and microglia. Effect of Prdx6 gene dose on plaque seeding was assessed in mice aged six months. Results We show that hemizygous knock in of the overexpressing Prdx6 transgene in APPswe/PS1dE9 AD transgenic mice promotes selective enticement of astrocytes to Aβ plaques and penetration of plaques by astrocytic processes along with increased number and phagocytic activation of periplaque microglia. This effects suppression of nascent plaque seeding and remodeling of mature plaques consequently curtailing brain Aβ load and Aβ-associated neuritic degeneration. Conversely, Prdx6 haplodeficiency attenuates astro- and microglia activation around Aβ plaques promoting Aβ deposition and neuritic degeneration. Conclusions We identify here PRDX6 as an important factor regulating response of astrocytes toward Aβ plaques. Demonstration that phagocytic activation of periplaque microglia vary directly with astrocytic PRDX6 expression level implies previously unappreciated astrocyte-guided microglia effect in Aβ proteostasis. Our showing that upregulation of PRDX6 attenuates Aβ pathology may be of therapeutic relevance for AD.
Collapse
Affiliation(s)
- Joanna E Pankiewicz
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jenny R Diaz
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA
| | - Mitchell Martá-Ariza
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA
| | - Anita M Lizińczyk
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA
| | - Leor A Franco
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA
| | - Martin J Sadowski
- Department of Neurology, New York University Grossman School of Medicine, 550 First Avenue, Science Building, Room 10-07, New York, NY, 10016, USA. .,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA. .,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
29
|
Redox signalling and regulation of the blood-brain barrier. Int J Biochem Cell Biol 2020; 125:105794. [PMID: 32562769 DOI: 10.1016/j.biocel.2020.105794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Neurological disorders are associated with increased oxidative stress. Reactive oxidants damage tissue and promote cell death, but it is apparent that oxidants can have more subtle effects on cell function through the modulation of redox-sensitive signalling pathways. Cells of the blood-brain barrier regulate the brain microenvironment but become dysfunctional during neurological disease. The blood-brain barrier is maintained by many cell types, and is modulated by redox-sensitive pathways, ranging from the cytoskeletal elements responsible for establishing a barrier, to growth factor and cytokine signalling pathways that influence neurovascular cells. During neurological disease, blood-brain barrier cells are exposed to exogenously generated oxidants from immune cells, as well as increasing endogenously oxidant production. These oxidants impair the function of the blood-brain barrier, leading to increased leakage and reduced blood flow. Reducing the impact of oxidants on the function of blood-brain barrier cells may provide new strategies for delaying the progression of neurological disease.
Collapse
|
30
|
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26:769-780. [PMID: 32284590 PMCID: PMC7405761 DOI: 10.1038/s41591-020-0815-6] [Citation(s) in RCA: 619] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.
Collapse
Affiliation(s)
- Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Maotian Zhou
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Beach
- Department of Pathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Arizona State University and University of Arizona, Phoenix, AZ, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center MIRECC, Bronx, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz V, Höger H, Lubec G. Dentate Gyrus Peroxiredoxin 6 Levels Discriminate Aged Unimpaired From Impaired Rats in a Spatial Memory Task. Front Aging Neurosci 2019; 11:198. [PMID: 31417400 PMCID: PMC6684764 DOI: 10.3389/fnagi.2019.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
Similar to humans, the normal aged rat population is not homogeneous in terms of cognitive function. Two distinct subpopulations of aged Sprague-Dawley rats can be identified on the basis of spatial memory performance in the hole-board paradigm. It was the aim of the study to reveal protein changes relevant to aging and spatial memory performance. Aged impaired (AI) and unimpaired (AU) male rats, 22-24 months old were selected from a large cohort of 160 animals; young animals served as control. Enriched synaptosomal fractions from dentate gyrus from behaviorally characterized old animals were used for isobaric tags labeling based quantitative proteomic analysis. As differences in peroxiredoxin 6 (PRDX6) levels were a pronounced finding, PRDX6 levels were also quantified by immunoblotting. AI showed impaired spatial memory abilities while AU performed comparably to young animals. Our study demonstrates substantial quantitative alteration of proteins involved in energy metabolism, inflammation and synaptic plasticity during aging. Moreover, we identified protein changes specifically coupled to memory performance of aged rats. PRDX6 levels clearly differentiated AI from AU and levels in AU were comparable to those of young animals. In addition, it was observed that stochasticity in protein levels increased with age and discriminate between AI and AU groups. Moreover, there was a significantly higher variability of protein levels in AI. PRDX6 is a member of the PRDX family and well-defined as a cystein-1 PRDX that reduces and detoxifies hydroxyperoxides. It is well-known and documented that the aging brain shows increased active oxygen species but so far no study proposed a potential target with antioxidant activity that would discriminate between impaired and unimpaired memory performers. Current data, representing so far the largest proteomics data set in aging dentate gyrus (DG), provide the first evidence for a probable role of PRDX6 in memory performance.
Collapse
Affiliation(s)
- Jana Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Daniel Daba Feyissa
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Volker Korz
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
32
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
33
|
Arevalo JA, Vázquez-Medina JP. The Role of Peroxiredoxin 6 in Cell Signaling. Antioxidants (Basel) 2018; 7:antiox7120172. [PMID: 30477202 PMCID: PMC6316032 DOI: 10.3390/antiox7120172] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6, 1-cys peroxiredoxin) is a unique member of the peroxiredoxin family that, in contrast to other mammalian peroxiredoxins, lacks a resolving cysteine and uses glutathione and π glutathione S-transferase to complete its catalytic cycle. Prdx6 is also the only peroxiredoxin capable of reducing phospholipid hydroperoxides through its glutathione peroxidase (Gpx) activity. In addition to its peroxidase activity, Prdx6 expresses acidic calcium-independent phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyl transferase (LPCAT) activities in separate catalytic sites. Prdx6 plays crucial roles in lung phospholipid metabolism, lipid peroxidation repair, and inflammatory signaling. Here, we review how the distinct activities of Prdx6 are regulated during physiological and pathological conditions, in addition to the role of Prdx6 in cellular signaling and disease.
Collapse
Affiliation(s)
- José A Arevalo
- Department of Integrative Biology, University of California, Berkeley, CA, 94705, USA.
| | | |
Collapse
|
34
|
He Y, Xu W, Xiao Y, Pan L, Chen G, Tang Y, Zhou J, Wu J, Zhu W, Zhang S, Cao J. Overexpression of Peroxiredoxin 6 (PRDX6) Promotes the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. J Cancer 2018; 9:3939-3949. [PMID: 30410598 PMCID: PMC6218759 DOI: 10.7150/jca.26041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies. Peroxiredoxin 6 (PRDX6), a member of peroxidase superfamily, has a function of eliminating the reactive oxygen species (ROS), and participates in development of multiple diseases, including tumors. The purpose of this study was to investigate the expression of PRDX6 in normal and cancerous esophageal tissues and to characterize its role in ESCC progression. We found significantly higher expression of PRDX6 in ESCC tissues than in normal esophageal tissues or tumor-adjacent tissues and that the PRDX6 expression level was positively correlated with the proliferation-related markers. In ESCC cells, PRDX6 distribution was more pronounced in the nucleus region. PRDX6 overexpression by an adenovirus significantly promoted cell proliferation, migration and invasion in TE-1 and Eca-109 cells. Conversely, lentivirus-mediated knock-down of PRDX6 expression significantly reduced cell growth, colony formation and metastasis in ESCC cells. PRDX6 modulated the phosphorylation of Akt and Erk1/2, and the expression of MMP2. We also found that PRDX6 and Erk1/2 pathway were mutually regulated in ESCC cells. In addition, PRDX6 overexpression eliminated radiation-induced ROS and decreased consequent cell apoptosis, indicative of a role in radioresistance. Finally, the role of PRDX6 in promoting tumor growth was further confirmed in nude mice with ESCC xenografts. Taken together, we demonstrated that overexpression of PRDX6 promotes the progression of ESCC through Erk1/2, which provides a potential therapeutic target for human ESCC.
Collapse
Affiliation(s)
- Yan He
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Wanglei Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Lu Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou 221002, China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou 213032, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Jinchang Wu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215001, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
36
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu Q, Ni J, Shen L. Selenium positively affects the proteome of 3 × Tg-AD mice cortex by altering the expression of various key proteins: unveiling the mechanistic role of selenium in AD prevention. J Neurosci Res 2018; 96:1798-1815. [DOI: 10.1002/jnr.24309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Na Jin
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| |
Collapse
|
37
|
Li N, Hu P, Xu T, Chen H, Chen X, Hu J, Yang X, Shi L, Luo JH, Xu J. iTRAQ-based Proteomic Analysis of APPSw,Ind Mice Provides Insights into the Early Changes in Alzheimer's Disease. Curr Alzheimer Res 2018; 14:1109-1122. [PMID: 28730955 PMCID: PMC5676024 DOI: 10.2174/1567205014666170719165745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Several proteins have been identified as potential diagnostic biomarkers in imaging, genetic, or proteomic studies in Alzheimer disease (AD) patients and mouse models. However, biomarkers for presymptom diagnosis of AD are still under investigation, as are the presymptom molecular changes in AD pathogenesis. OBJECTIVE In this study, we aim to analyzed the early proteomic changes in APPSw,Ind mice and to conduct further functional studies on interesting proteins. METHODS We used the isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with mass spectrometry to examine the early proteomic changes in hippocampi of APPSw,Ind mice. Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-blotting were performed for further validation. Finally, the functions of interesting proteins β-spectrin and Rab3a in APP trafficking and processing were tested by shRNA knockdown, in N2A cells stably expressing β-amyloid precursor protein (APP). RESULTS The iTRAQ and RT-PCR results revealed the detailed molecular changes in oxidative stress, myelination, astrocyte activation, mTOR signaling and Rab3-dependent APP trafficking in the early stage of AD progression. Knock down of β -spectrin and Rab3a finally led to increased APP fragment production, indicating key roles of β-spectrin and Rab3a in regulating APP processing. CONCLUSION Our study provides the first insights into the proteomic changes that occur in the hippocampus in the early stages of the AD mouse model. In addition to improving the understanding of molecular alterations and functional cascades involved in early AD pathogenesis, our findings raise the possibility of developing potential biomarkers and therapeutic targets for early AD.
Collapse
Affiliation(s)
- Nan Li
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Pinghong Hu
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Tiantian Xu
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Huan Chen
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Xiaoying Chen
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Jianwen Hu
- Shanghai Applied Protein Technology Co., Ltd., Shanghai. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen. China
| | - Lei Shi
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen. China
| | - Jian-Hong Luo
- Center of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058. China
| | - Junyu Xu
- Center of Neuroscience, Zhejiang University, 866 Yuhangtang Road, Hangzhou. China
| |
Collapse
|
38
|
Bhatti S, Ali Shah SA, Ahmed T, Zahid S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem Toxicol 2018; 41:399-407. [DOI: 10.1080/01480545.2018.1459669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sheharbano Bhatti
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery, (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
| | - Touqeer Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
39
|
Fisher AB. The phospholipase A 2 activity of peroxiredoxin 6. J Lipid Res 2018; 59:1132-1147. [PMID: 29716959 DOI: 10.1194/jlr.r082578] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a Ca2+-independent intracellular phospholipase A2 (called aiPLA2) that is localized to cytosol, lysosomes, and lysosomal-related organelles. Activity is minimal at cytosolic pH but is increased significantly with enzyme phosphorylation, at acidic pH, and in the presence of oxidized phospholipid substrate; maximal activity with phosphorylated aiPLA2 is ∼2 µmol/min/mg protein. Prdx6 is a "moonlighting" protein that also expresses glutathione peroxidase and lysophosphatidylcholine acyl transferase activities. The catalytic site for aiPLA2 activity is an S32-H26-D140 triad; S32-H26 is also the phospholipid binding site. Activity is inhibited by a serine "protease" inhibitor (diethyl p-nitrophenyl phosphate), an analog of the PLA2 transition state [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33)], and by two naturally occurring proteins (surfactant protein A and p67phox), but not by bromoenol lactone. aiPLA2 activity has important physiological roles in the turnover (synthesis and degradation) of lung surfactant phospholipids, in the repair of peroxidized cell membranes, and in the activation of NADPH oxidase type 2 (NOX2). The enzyme has been implicated in acute lung injury, carcinogenesis, neurodegenerative diseases, diabetes, male infertility, and sundry other conditions, although its specific roles have not been well defined. Protein mutations and animal models are now available to further investigate the roles of Prdx6-aiPLA2 activity in normal and pathological physiology.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, Philadelphia, PA 19103
| |
Collapse
|
40
|
Guadagno NA, Moriconi C, Licursi V, D'Acunto E, Nisi PS, Carucci N, De Jaco A, Cacci E, Negri R, Lupo G, Miranda E. Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB. Neurobiol Dis 2017; 103:32-44. [PMID: 28363799 PMCID: PMC5439028 DOI: 10.1016/j.nbd.2017.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/10/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023] Open
Abstract
The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intracellular accumulation of neuroserpin polymers, we have generated transgenic neural progenitor cell (NPC) cultures from mouse foetal cerebral cortex, stably expressing the control protein GFP (green fluorescent protein), or human wild type, G392E or delta NS. We have characterised these cell lines in the proliferative state and after differentiation to neurons. Our results show that G392E NS formed polymers that were mostly retained within the ER, while wild type NS was correctly secreted as a monomeric protein into the culture medium. Delta NS was absent at steady state due to its rapid degradation, but it was easily detected upon proteasomal block. Looking at their intracellular distribution, wild type NS was found in partial co-localisation with ER and Golgi markers, while G392E NS was localised within the ER only. Furthermore, polymers of NS were detected by ELISA and immunofluorescence in neurons expressing the mutant but not the wild type protein. We used control GFP and G392E NPCs differentiated to neurons to investigate which cellular pathways were modulated by intracellular polymers by performing RNA sequencing. We identified 747 genes with a significant upregulation (623) or downregulation (124) in G392E NS-expressing cells, and we focused our attention on several genes involved in the defence against oxidative stress that were up-regulated in cells expressing G392E NS (Aldh1b1, Apoe, Gpx1, Gstm1, Prdx6, Scara3, Sod2). Inhibition of intracellular anti-oxidants by specific pharmacological reagents uncovered the damaging effects of NS polymers. Our results support a role for oxidative stress in the cellular toxicity underlying the neurodegenerative dementia FENIB.
Collapse
Affiliation(s)
- Noemi A Guadagno
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Claudia Moriconi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Valerio Licursi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Institute for Systems Analysis and Computer Science 'Antonio Ruberti', National Research Council, Rome, Italy
| | - Emanuela D'Acunto
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Paola S Nisi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Nicoletta Carucci
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Antonella De Jaco
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Emanuele Cacci
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Rodolfo Negri
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Institute of Biology and Molecular Pathology (IBPM), National Research Council, Rome, Italy
| | - Giuseppe Lupo
- Dpt. of Chemistry, Sapienza University of Rome, Italy.
| | - Elena Miranda
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy.
| |
Collapse
|
41
|
Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease. Acta Neuropathol 2017; 133:933-954. [PMID: 28258398 DOI: 10.1007/s00401-017-1691-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 ± 30 (mean ± SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 × 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
Collapse
|
42
|
Vilhardt F, Haslund‐Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174:1719-1732. [PMID: 26754582 PMCID: PMC5446583 DOI: 10.1111/bph.13426] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022] Open
Abstract
For many years, microglia, the resident CNS macrophages, have been considered only in the context of pathology, but microglia are also glial cells with important physiological functions. Microglia-derived oxidant production by NADPH oxidase (NOX2) is implicated in many CNS disorders. Oxidants do not stand alone, however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defence mechanism, and further, we discuss in the context of protein thiolation of target redox proteins the necessity for tightly localized, timed and confined oxidant production to work in concert with antioxidant proteins to promote redox signalling. NOX2-mediated redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes by regulating major transcriptional programs mediated through NF-κB and Nrf2, major regulators of the inflammatory and antioxidant response respectively. As both antioxidants and NOX-derived oxidants are co-secreted, in some instances redox signalling may extend to neighboring cells through modification of surface or cytosolic target proteins. We consider a role for microglia NOX-derived oxidants in paracrine modification of synaptic function through long term depression and in the communication with the adaptive immune system. There is little doubt that a continued foray into the functions of the antioxidant response in microglia will reveal antioxidant proteins as dynamic players in redox signalling, which in concert with NOX-derived oxidants fulfil important roles in the autocrine or paracrine regulation of essential enzymes or transcriptional programs. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
| | - J Haslund‐Vinding
- Institute of Cellular and Molecular MedicineCopenhagen UniversityCopenhagenDenmark
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - V Jaquet
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
43
|
The Role of Interleukin-18, Oxidative Stress and Metabolic Syndrome in Alzheimer's Disease. J Clin Med 2017; 6:jcm6050055. [PMID: 28531131 PMCID: PMC5447946 DOI: 10.3390/jcm6050055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
The role of interleukins (ILs) and oxidative stress (OS) in precipitating neurodegenerative diseases including sporadic Alzheimer's disease (AD), requires further clarification. In addition to neuropathological hallmarks-extracellular neuritic amyloid-β (Aβ) plaques, neurofibrillary tangles (NFT) containing hyperphosphorylated tau and neuronal loss-chronic inflammation, as well as oxidative and excitotoxic damage, are present in the AD brain. The pathological sequelae and the interaction of these events during the course of AD need further investigation. The brain is particularly sensitive to OS, due to the richness of its peroxidation-sensitive fatty acids, coupled with its high oxygen demand. At the same time, the brain lack robust antioxidant systems. Among the multiple mechanisms and triggers by which OS can accumulate, inflammatory cytokines can sustain oxidative and nitrosative stress, leading eventually to cellular damage. Understanding the consequences of inflammation and OS may clarify the initial events underlying AD, including in interaction with genetic factors. Inflammatory cytokines are potential inducers of aberrant gene expression through transcription factors. Susceptibility disorders for AD, including obesity, type-2 diabetes, cardiovascular diseases and metabolic syndrome have been linked to increases in the proinflammatory cytokine, IL-18, which also regulates multiple AD related proteins. The association of IL-18 with AD and AD-linked medical conditions are reviewed in the article. Such data indicates that an active lifestyle, coupled to a healthy diet can ameliorate inflammation and reduce the risk of sporadic AD.
Collapse
|
44
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol 2017; 6:139-153. [PMID: 28357082 PMCID: PMC5351761 DOI: 10.3892/mco.2017.1129] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22–27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial. Increasing evidence suggests the involvement of PRDXs in carcinogenesis and in the development of drug resistance. Numerous types of cancer cells, in fact, are characterized by an increase in reactive oxygen species (ROS) production, and often exhibit an altered redox environment compared with normal cells. The present review focuses on the complex association between oxidant balance and cancer, and it provides a brief account of the involvement of PRDXs in tumorigenesis and in the development of chemoresistance.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
45
|
Tahir W, Zafar S, Llorens F, Arora AS, Thüne K, Schmitz M, Gotzmann N, Kruse N, Mollenhauer B, Torres JM, Andréoletti O, Ferrer I, Zerr I. Molecular Alterations in the Cerebellum of Sporadic Creutzfeldt-Jakob Disease Subtypes with DJ-1 as a Key Regulator of Oxidative Stress. Mol Neurobiol 2016; 55:517-537. [PMID: 27975168 DOI: 10.1007/s12035-016-0294-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Cerebellar damage and granular and Purkinje cell loss in sporadic Creutzfeldt-Jakob disease (sCJD) highlight a critical involvement of the cerebellum during symptomatic progression of the disease. In this project, global proteomic alterations in the cerebellum of brain from the two most prevalent subtypes (MM1 and VV2) of sCJD were studied. Two-dimensional gel electrophoresis (2DE) coupled mass spectrometric identification revealed 40 proteins in MM1 and 43 proteins in VV2 subtype to be differentially expressed. Of those, 12 proteins showed common differential expression in their expression between two subtypes. Differentially expressed proteins mainly belonged to (i) cell cycle, gene expression and cell death; (ii) cellular stress response/oxidative stress (OS) and (iii) signal transduction and synaptic functions, related molecular functions. We verified 10 differentially expressed proteins at transcriptional and translational level as well. Interestingly, protein deglycase DJ-1 (an antioxidative protein) showed an increase in its messenger RNA (mRNA) expression in both MM1 and VV2 subtypes but protein expression only in VV2 subtype in cerebellum of sCJD patients. Nuclear translocalization of DJ-1 confirmed its expressional alteration due to OS in sCJD. Downstream experiments showed the activation of nuclear factor erythroid-2 related factor 2 (Nrf2)/antioxidative response element (ARE) pathway. DJ-1 protein concentration was significantly increased during the clinical phase in cerebrospinal fluid of sCJD patients and also at presymptomatic and symptomatic stages in cerebellum of humanized PrP transgenic mice inoculated with sCJD (MM1 and VV2) brain. These results suggest the implication of oxidative stress during the pathophysiology of sCJD.
Collapse
Affiliation(s)
- Waqas Tahir
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany.
| | - Franc Llorens
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Amandeep Singh Arora
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Nadine Gotzmann
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| | - Niels Kruse
- Institute of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Brit Mollenhauer
- Institute of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Juan Maria Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de Algete a El Casar Km. 8,1 S/N, 28130, Valdeolmos, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Isidre Ferrer
- Institute of Neuropathology, Hospitalet de Llobregat, IDIBELL-University Hospital Bellvitge, University of Barcelona, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Ministry of Health, Institute Carlos III, Madrid, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany
| |
Collapse
|
46
|
Wang L, Wu N, Zhao TY, Li J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers 2016; 21:678-685. [PMID: 27328859 DOI: 10.1080/1354750x.2016.1201530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.
Collapse
Affiliation(s)
- Lv Wang
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Wu
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Tai-Yun Zhao
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jin Li
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
47
|
Ma S, Zhang X, Zheng L, Li Z, Zhao X, Lai W, Shen H, Lv J, Yang G, Wang Q, Ji J. Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway. Antioxid Redox Signal 2016; 24:486-501. [PMID: 26560306 DOI: 10.1089/ars.2015.6336] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS PTEN-putative kinase 1 (PINK1)-Parkin-mediated mitophagy is crucial for the clearance of damaged mitochondria. However, the mechanisms underlying PINK1-Parkin-mediated mitophagy are not fully understood. The goal of this study is to identify new regulators and to elucidate the regulatory mechanisms of mitophagy. RESULTS Quantitative mitochondrial proteomic analysis revealed that 63 proteins showed increased levels and 36 proteins showed decreased levels in cells subjected to carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment. Peroxiredoxin 6 (PRDX6 or Prx6), a unique member of the ubiquitous PRDX family, was recruited to depolarized mitochondria. Reactive oxygen species (ROS) generated by CCCP promoted PRDX6 accumulation and PINK1 stabilization in damaged mitochondria and induced mitophagy. In addition, depletion of PRDX6 resulted in the stabilization of PINK1, accumulation of autophagic marker, p62, translocation of Parkin to mitochondria, and lipidation of microtubule-associated protein 1 light chain 3. Furthermore, these events were blocked upon supplementation with antioxidant N-acetyl-l-cysteine or depletion of PINK1. INNOVATION This is the first study to demonstrate that PRDX6 is the only member of the PRDX family that relocates to damaged mitochondria, where it plays a crucial role in the initial stage of mitophagy by controlling ROS homeostasis. CONCLUSION ROS induce the recruitment of PRDX6 to mitochondria, where PRDX6 controls ROS homeostasis in the initial step of PINK1-Parkin-mediated mitophagy. Our study provides new insight into the initial regulatory mechanisms of mitophagy and reveals the protective role of PRDX6 in the clearance of damaged mitochondria.
Collapse
Affiliation(s)
- Shuaipeng Ma
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Xuefei Zhang
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Liangjun Zheng
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Zeyang Li
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Xuyang Zhao
- 2 Institute of System Biomedicine, School of Basic Medical Sciences, Peking University , Beijing, China
| | - Wenjia Lai
- 3 National Center for Nanoscience and Technology , Beijing, China
| | - Hongyan Shen
- 4 Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics , Chinese Academy of Sciences, Beijing, China
| | - Junniao Lv
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Guofeng Yang
- 5 Department of Neurology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Qingsong Wang
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| | - Jianguo Ji
- 1 State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University , Beijing, China
| |
Collapse
|
48
|
Völgyi K, Háden K, Kis V, Gulyássy P, Badics K, Györffy BA, Simor A, Szabó Z, Janáky T, Drahos L, Dobolyi Á, Penke B, Juhász G, Kékesi KA. Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation. Mol Neurobiol 2016; 54:2060-2078. [PMID: 26910821 DOI: 10.1007/s12035-015-9682-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of β-amyloid (Aβ) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aβ progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aβ accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aβ-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aβ accumulation as a prodromal stage of human AD.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary.
| | - Krisztina Háden
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP B Neuroimmunology Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szabó
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Botond Penke
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
49
|
Power JHT, Barnes OL, Chegini F. Lewy Bodies and the Mechanisms of Neuronal Cell Death in Parkinson's Disease and Dementia with Lewy Bodies. Brain Pathol 2016; 27:3-12. [PMID: 26667592 DOI: 10.1111/bpa.12344] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
Neuronal loss in specific brain regions and neurons with intracellular inclusions termed Lewy bodies are the pathologic hallmark in both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Lewy bodies comprise of aggregated intracellular vesicles and proteins and α-synuclein is reported to be a major protein component. Using human brain tissue from control, PD and DLB and light and confocal immunohistochemistry with antibodies to superoxide dismutase 2 as a marker for mitochondria, α-synuclein for Lewy bodies and βIII Tubulin for microtubules we have examined the relationship between Lewy bodies and mitochondrial loss. We have shown microtubule regression and mitochondrial and nuclear degradation in neurons with developing Lewy bodies. In PD, multiple Lewy bodies were often observed with α-synuclein interacting with DNA to cause marked nuclear degradation. In DLB, the mitochondria are drawn into the Lewy body and the mitochondrial integrity is lost. This work suggests that Lewy bodies are cytotoxic. In DLB, we suggest that microtubule regression and mitochondrial loss results in decreased cellular energy and axonal transport that leads to cell death. In PD, α-synuclein aggregations are associated with intact mitochondria but interacts with and causes nuclear degradation which may be the major cause of cell death.
Collapse
Affiliation(s)
- John H T Power
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Olivia L Barnes
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Fariba Chegini
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| |
Collapse
|
50
|
Wu X, Ji P, Zhang L, Bu G, Gu H, Wang X, Xiong Y, Zuo B. The Expression of Porcine Prdx6 Gene Is Up-Regulated by C/EBPβ and CREB. PLoS One 2015; 10:e0144851. [PMID: 26659441 PMCID: PMC4699452 DOI: 10.1371/journal.pone.0144851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxiredoxin6 (Prdx6) is one of the peroxiredoxin (Prdxs) family members that play an important role in maintaining cell homeostasis. Our previous studies demonstrated that Prdx6 was significantly associated with pig meat quality, especially meat tenderness. However, the transcriptional regulation of porcine Prdx6 remains unclear. In this study, we determined the transcription start site (TSS) of porcine Prdx6 gene by 5' rapid-amplification of cDNA ends (5' RACE). Several regulatory elements including CCAAT/enhancer-binding proteinβ (C/EBPβ), Myogenic Differentiation (MyoD), cAMP response element binding protein (CREB), stimulating protein1 (Sp1) and heat shock factor (HSF) binding sites were found by computational analyses together with luciferase reporter system. Overexpression and RNA interference experiments showed that C/EBPβ or CREB could up-regulate the expression of porcine Prdx6 gene at both mRNA and protein level. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assays (ChIP) confirmed that C/EBPβ and CREB could interact with Prdx6 promoter. Immuoprecipitation results also showed that C/EBPβ could interact with Prdx6 in vivo. Taken together, our findings identified C/EBPβ and CREB as the important regulators of porcine Prdx6 gene expression, and offered clues for further investigation of Prdx6 gene function.
Collapse
Affiliation(s)
- Xinyu Wu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Panlong Ji
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Liang Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guowei Bu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hao Gu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaojing Wang
- Department of Basic Veterinary Physiology and Biochemistry Laboratory, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- * E-mail:
| |
Collapse
|