1
|
Wu J, Mao M, Yang J, Li K, Deng P, Zhong J, Wu X, Cheng Y. Development of an 18F-labeled azobenzothiazole tracer for α-synuclein aggregates in the brain. Org Biomol Chem 2024; 22:4550-4558. [PMID: 38768281 DOI: 10.1039/d4ob00492b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nuclear imaging of aggregated α-synuclein pathology is an urgent clinical need for Parkinson's disease, yet promising tracers for brain α-synuclein aggregates are still rare. In this work, a class of compact benzothiazole derivatives was synthesized and evaluated for α-synuclein aggregates. Among them, azobenzothiazoles exhibited specific and selective detection of α-synuclein aggregates under physiological conditions. Fluoro-pegylated azobenzothiazole NN-F further demonstrated high-affinity binding to α-synuclein aggregates and efficient 18F-radiolabeling via nucleophilic displacement of a tosyl precursor. [18F]NN-F was stable in plasma in vitro and showed efficient brain uptake with little defluorination in vivo.
Collapse
Affiliation(s)
- Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Meiting Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jie Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pengxin Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
3
|
Wang Q, Zhong J, Li K, Wu J, Wang X, Jiang S, Dai J, Cheng Y. Compact Luminol Chemiluminophores for In Vivo Detection and Imaging of β-Sheet Protein Aggregates. Anal Chem 2023; 95:1065-1073. [PMID: 36542087 DOI: 10.1021/acs.analchem.2c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein aggregation has been found in a wide range of neurodegenerative protein-misfolding diseases. The demand for in vivo technologies to identify protein aggregation is at the leading edge for the pathogenic study, diagnostic development, and therapeutic intervention of these devastating disorders. Herein, we report a series of luminol analogues to construct a facile chemiluminescence (CL)-based approach for in vivo detection and imaging of β-sheet protein aggregates. The synthesized compounds exhibited a distinct chemiluminescent response with long emission wavelengths toward reactive oxygen species under physiological conditions and displayed signal amplification in the presence of β-sheet protein aggregates, including α-synuclein, β-amyloid, and tau. Among them, CyLumi-3 was further evaluated as a chemiluminescent probe in preclinical models. By intravenous administration into the model mice via the tail vein, in vivo CL imaging noninvasively detected the specific CL of the probe targeting the α-synuclein aggregates in the brains of living mice. Based on its structural characteristics, CyLumi-3 can readily interact with α-synuclein aggregates with significantly enhanced fluorescence and can identify α-synuclein aggregates in vivo via distinctive CL amplification, which could pave the way for a more comprehensive understanding of protein aggregation in preclinical studies and would provide new hints for developing small-molecule chemiluminophores for protein aggregates.
Collapse
Affiliation(s)
- Qinyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shen Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Chu W, Hall J, Gurrala A, Becsey A, Raman S, Okun MS, Flores CT, Giasson BI, Vaillancourt DE, Vedam-Mai V. Evaluation of an Adoptive Cellular Therapy-Based Vaccine in a Transgenic Mouse Model of α-synucleinopathy. ACS Chem Neurosci 2022; 14:235-245. [PMID: 36571847 PMCID: PMC9853504 DOI: 10.1021/acschemneuro.2c00539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated α-synuclein, a major constituent of Lewy bodies plays a crucial role in the pathogenesis of α-synucleinopathies (SPs) such as Parkinson's disease (PD). PD is affected by the innate and adaptive arms of the immune system, and recently both active and passive immunotherapies targeted against α-synuclein are being trialed as potential novel treatment strategies. Specifically, dendritic cell-based vaccines have shown to be an effective treatment for SPs in animal models. Here, we report on the development of adoptive cellular therapy (ACT) for SP and demonstrate that adoptive transfer of pre-activated T-cells generated from immunized mice can improve survival and behavior, reduce brain microstructural impairment via magnetic resonance imaging (MRI), and decrease α-synuclein pathology burden in a peripherally induced preclinical SP model (M83) when administered prior to disease onset. This study provides preclinical evidence for ACT as a potential immunotherapy for LBD, PD and other related SPs, and future work will provide necessary understanding of the mechanisms of its action.
Collapse
Affiliation(s)
- Winston
T. Chu
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida32611, United States,Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Jesse Hall
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Anjela Gurrala
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Alexander Becsey
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Shreya Raman
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States
| | - Michael S. Okun
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States
| | - Catherine T. Flores
- Department
of Neurosurgery, University of Florida, Gainesville, Florida32611, United States
| | - Benoit I. Giasson
- Department
of Neuroscience, University of Florida, Gainesville, Florida32611, United States
| | - David E. Vaillancourt
- Department
of Applied Physiology and Kinesiology, University
of Florida, Gainesville, Florida32611, United States
| | - Vinata Vedam-Mai
- Department
of Neurology, University of Florida, Gainesville, Florida32611, United States,Norman
Fixel
Institute for Neurological Diseases, Gainesville, Florida32608, United States,. Phone: (352) 273-5557. Fax:(352) 273-5575
| |
Collapse
|
5
|
Hmila I, Sudhakaran IP, Ghanem SS, Vaikath NN, Poggiolini I, Abdesselem H, El-Agnaf OMA. Inhibition of α-Synuclein Seeding-Dependent Aggregation by ssDNA Aptamers Specific to C-Terminally Truncated α-Synuclein Fibrils. ACS Chem Neurosci 2022; 13:3330-3341. [PMID: 36348612 DOI: 10.1021/acschemneuro.2c00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.
Collapse
Affiliation(s)
- Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Ilaria Poggiolini
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
6
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. NPJ Parkinsons Dis 2022; 8:93. [PMID: 35869066 PMCID: PMC9307631 DOI: 10.1038/s41531-022-00357-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also called synucleinopathies. Therefore, there is an urgent need to discover and validate early diagnostic and prognostic markers that reflect disease pathophysiology, progression, severity, and potential differences in disease mechanisms between PD and other NDDs. The close association between aSyn and the development of pathology in synucleinopathies, along with the identification of aSyn species in biological fluids, has led to increasing interest in aSyn species as potential biomarkers for early diagnosis of PD and differentiate it from other synucleinopathies. In this review, we (1) provide an overview of the progress toward mapping the distribution of aSyn species in the brain, peripheral tissues, and biological fluids; (2) present comparative and critical analysis of previous studies that measured total aSyn as well as other species such as modified and aggregated forms of aSyn in different biological fluids; and (3) highlight conceptual and technical gaps and challenges that could hinder the development and validation of reliable aSyn biomarkers; and (4) outline a series of recommendations to address these challenges. Finally, we propose a combined biomarker approach based on integrating biochemical, aggregation and structure features of aSyn, in addition to other biomarkers of neurodegeneration. We believe that capturing the diversity of aSyn species is essential to develop robust assays and diagnostics for early detection, patient stratification, monitoring of disease progression, and differentiation between synucleinopathies. This could transform clinical trial design and implementation, accelerate the development of new therapies, and improve clinical decisions and treatment strategies.
Collapse
|
8
|
Lloyd GM, Dhillon JKS, Gorion KMM, Riffe C, Fromholt SE, Xia Y, Giasson BI, Borchelt DR. Collusion of α-Synuclein and Aβ aggravating co-morbidities in a novel prion-type mouse model. Mol Neurodegener 2021; 16:63. [PMID: 34503546 PMCID: PMC8427941 DOI: 10.1186/s13024-021-00486-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The misfolding of host-encoded proteins into pathological prion conformations is a defining characteristic of many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Lewy body dementia. A current area of intense study is the way in which the pathological deposition of these proteins might influence each other, as various combinations of co-pathology between prion-capable proteins are associated with exacerbation of disease. A spectrum of pathological, genetic and biochemical evidence provides credence to the notion that amyloid β (Aβ) accumulation can induce and promote α-synuclein pathology, driving neurodegeneration. METHODS To assess the interplay between α-synuclein and Aβ on protein aggregation kinetics, we crossed mice expressing human α-synuclein (M20) with APPswe/PS1dE9 transgenic mice (L85) to generate M20/L85 mice. We then injected α-synuclein preformed fibrils (PFFs) unilaterally into the hippocampus of 6-month-old mice, harvesting 2 or 4 months later. RESULTS Immunohistochemical analysis of M20/L85 mice revealed that pre-existing Aβ plaques exacerbate the spread and deposition of induced α-synuclein pathology. This process was associated with increased neuroinflammation. Unexpectedly, the injection of α-synuclein PFFs in L85 mice enhanced the deposition of Aβ; whereas the level of Aβ deposition in M20/L85 bigenic mice, injected with α-synuclein PFFs, did not differ from that of mice injected with PBS. CONCLUSIONS These studies reveal novel and unexpected interplays between α-synuclein pathology, Aβ and neuroinflammation in mice that recapitulate the pathology of Alzheimer's disease and Lewy body dementia.
Collapse
Affiliation(s)
- Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Jess-Karan S Dhillon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Kimberly-Marie M Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Cara Riffe
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Susan E Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, BMS J499, J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, BMS J499, J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Ferreira N, Gram H, Sorrentino ZA, Gregersen E, Schmidt SI, Reimer L, Betzer C, Perez-Gozalbo C, Beltoja M, Nagaraj M, Wang J, Nowak JS, Dong M, Willén K, Cholak E, Bjerregaard-Andersen K, Mendez N, Rabadia P, Shahnawaz M, Soto C, Otzen DE, Akbey Ü, Meyer M, Giasson BI, Romero-Ramos M, Jensen PH. Multiple system atrophy-associated oligodendroglial protein p25α stimulates formation of novel α-synuclein strain with enhanced neurodegenerative potential. Acta Neuropathol 2021; 142:87-115. [PMID: 33978813 PMCID: PMC8217051 DOI: 10.1007/s00401-021-02316-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.
Collapse
|
10
|
Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJC, Osterberg VR, Brockway NL, Pizano S, Glover G, Weissman TA, Unni VK. In vivo aggregation of presynaptic alpha-synuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis 2021; 152:105291. [PMID: 33556542 PMCID: PMC10405908 DOI: 10.1016/j.nbd.2021.105291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals. We show that human α-synuclein tagged with GFP can be expressed in zebrafish neurons, localizing normally to presynaptic terminals and undergoing phosphorylation at serine-129, as in mammalian neurons. The visual advantages of the zebrafish system allow for dynamic in vivo imaging to study α-synuclein, including the use of fluorescence recovery after photobleaching (FRAP) techniques to probe protein mobility. These experiments reveal three distinct terminal pools of α-synuclein with varying mobility, likely representing different subpopulations of aggregated and non-aggregated protein. Human α-synuclein is phosphorylated by an endogenous zebrafish Polo-like kinase activity, and there is a heterogeneous population of neurons containing either very little or extensive phosphorylation throughout the axonal arbor. Both pharmacological and genetic manipulations of serine-129 show that phosphorylation of α-synuclein at this site does not significantly affect its mobility. This suggests that serine-129 phosphorylation alone does not promote α-synuclein aggregation. Together our results show that human α-synuclein can be expressed and measured quantitatively in zebrafish, and that disease-relevant post-translational modifications occur within neurons. The zebrafish model provides a powerful in vivo system for measuring and manipulating α-synuclein function and aggregation, and for developing new treatments for neurodegenerative disease.
Collapse
Affiliation(s)
- Leah J Weston
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Zoe T Cook
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Mehtab K Sal
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | | | - Valerie R Osterberg
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Saheli Pizano
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Greta Glover
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
11
|
Roshanbin S, Aniszewska A, Gumucio A, Masliah E, Erlandsson A, Bergström J, Ingelsson M, Ekmark-Lewén S. Age-related increase of alpha-synuclein oligomers is associated with motor disturbances in L61 transgenic mice. Neurobiol Aging 2021; 101:207-220. [PMID: 33639338 PMCID: PMC9648497 DOI: 10.1016/j.neurobiolaging.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
The pathogenesis of Parkinson’s disease involves fibrillization and deposition of alpha-synuclein (α-syn) into Lewy bodies. Accumulating evidence suggests that α-syn oligomers are particularly neurotoxic. Transgenic (tg) mice overexpressing wild-type human α-syn under the Thy-1 promoter (L61) reproduce many Parkinson’s disease features, but the pathogenetic relevance of α-syn oligomers in this mouse model has not been studied in detail. Here, we report an age progressive increase of α-syn oligomers in the brain of L61 tg mice. Interestingly, more profound motor symptoms were observed in animals with higher levels of membrane-bound oligomers. As this tg model is X-linked, we also performed subset analyses, indicating that both sexes display a similar age-related increase in α-syn oligomers. However, compared with females, males featured increased brain levels of oligomers from an earlier age, in addition to a more severe behavioral phenotype with hyperactivity and thigmotaxis in the open field test. Taken together, our data indicate that α-syn oligomers are central to the development of brain pathology and behavioral deficits in the L61 tg α-syn mouse model.
Collapse
Affiliation(s)
- Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Agata Aniszewska
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Astrid Gumucio
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sara Ekmark-Lewén
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Snca-GFP Knock-In Mice Reflect Patterns of Endogenous Expression and Pathological Seeding. eNeuro 2020; 7:ENEURO.0007-20.2020. [PMID: 32788297 PMCID: PMC7470929 DOI: 10.1523/eneuro.0007-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (aSyn) participates in synaptic vesicle trafficking and synaptic transmission but its misfolding is also strongly implicated in Parkinson’s disease (PD) and other neurodegenerative synucleinopathies in which misfolded aSyn accumulates in different regions of the central and peripheral nervous systems. Although increased aSyn expression levels or altered aggregation propensities likely underlie familial PD with SNCA amplification or mutations, the majority of synucleinopathies arise sporadically, indicating that disease can develop under normal levels of wild-type (wt) aSyn. We report here the development and characterization of a mouse line expressing an aSyn-green fluorescence protein (GFP) fusion protein under the control of native Snca regulatory elements. Regional and subcellular localization of the aSyn-GFP fusion protein in brains and peripheral tissues of knock-in (KI) mice are indistinguishable from that of wt littermates. Importantly, similar to wt aSyn, aSyn-GFP disperses from synaptic vesicles on membrane depolarization, indicating that the tag does not alter normal aSyn dynamics at synapses. In addition, intracerebral injection of aSyn pre-formed fibrils into KI mice induced the formation of aSyn-GFP inclusions with a distribution pattern similar to that observed in wt mice, albeit with attenuated kinetics because of the GFP-tag. We anticipate that this new mouse model will facilitate in vitro and in vivo studies requiring in situ detection of endogenous aSyn, thereby providing new insights into aSyn function in health and disease.
Collapse
|
13
|
Fayyad M, Erskine D, Majbour NK, Vaikath NN, Ghanem SS, Sudhakaran IP, Abdesselem H, Lamprokostopoulou A, Vekrellis K, Morris CM, Attems J, El-Agnaf OMA. Investigating the presence of doubly phosphorylated α-synuclein at tyrosine 125 and serine 129 in idiopathic Lewy body diseases. Brain Pathol 2020; 30:831-843. [PMID: 32324926 PMCID: PMC7384146 DOI: 10.1111/bpa.12845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Aggregation of the protein α‐synuclein (α‐syn) into insoluble intracellular assemblies termed Lewy bodies (LBs) is thought to be a critical pathogenic event in LB diseases such as Parkinson’s disease and dementia with LBs. In LB diseases, the majority of α‐syn is phosphorylated at serine 129 (pS129), suggesting that this is an important disease‐related post‐translational modification (PTM). However, PTMs do not typically occur in isolation and phosphorylation at the proximal tyrosine 125 (pY125) residue has received considerable attention and has been inconsistently reported to be present in LBs. Furthermore, the proximity of Y125 to S129 means that some pS129 antibodies may have epitopes that include Y125, in which case phosphorylation of Y125 will impede recognition of α‐syn. This would potentially lead to underestimating LB pathology burdens if pY125 occurs alongside pS129. To address the apparent controversy in the literature regarding the detection of pY125, we investigated its presence in the LB pathology. We generated pS129 antibodies whose epitope includes or does not include Y125 and compared the extent of α‐syn pathology recognized in mouse models of α‐synucleinopathies, human brain tissue lysates and fixed post‐mortem brain tissues. Our study demonstrated no difference in α‐syn pathology recognized between pS129 antibodies, irrespective of whether Y125 was part of the epitope or not. Furthermore, evaluation with pY125 antibodies whose epitope does not include S129 demonstrated no labeling of LB pathology. This study reconciles disparate results in the literature and demonstrates pY125 is not a key component of LB pathology in murine models or human tissues in idiopathic LB diseases.
Collapse
Affiliation(s)
- Muneera Fayyad
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari Abdesselem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | | | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Christopher M Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Omar M A El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar.,Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
O'Donovan SM, Crowley EK, Brown JRM, O'Sullivan O, O'Leary OF, Timmons S, Nolan YM, Clarke DJ, Hyland NP, Joyce SA, Sullivan AM, O'Neill C. Nigral overexpression of α-synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil 2020; 32:e13726. [PMID: 31576631 DOI: 10.1111/nmo.13726] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.
Collapse
Affiliation(s)
- Sarah M O'Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Erin K Crowley
- Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Suzanne Timmons
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Centre of Gerontology and Rehabilitation, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cora O'Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Uemura N, Uemura MT, Lo A, Bassil F, Zhang B, Luk KC, Lee VMY, Takahashi R, Trojanowski JQ. Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. J Neuropathol Exp Neurol 2019; 78:877-890. [PMID: 31504665 PMCID: PMC6934438 DOI: 10.1093/jnen/nlz070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are composed of Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Alpha-synuclein (α-Syn) forms aggregates mainly in neurons in PD and DLB, while oligodendroglial α-Syn aggregates are characteristic of MSA. Recent studies have demonstrated that injections of synthetic α-Syn preformed fibrils (PFFs) into the brains of wild-type (WT) animals induce intraneuronal α-Syn aggregates and the subsequent interneuronal transmission of α-Syn aggregates. However, injections of α-Syn PFFs or even brain lysates of patients with MSA have not been reported to induce oligodendroglial α-Syn aggregates, raising questions about the pathogenesis of oligodendroglial α-Syn aggregates in MSA. Here, we report that WT mice injected with mouse α-Syn (m-α-Syn) PFFs develop neuronal α-Syn pathology after short postinjection (PI) intervals on the scale of weeks, while oligodendroglial α-Syn pathology emerges after longer PI intervals of several months. Abundant oligodendroglial α-Syn pathology in white matter at later time points is reminiscent of MSA. Furthermore, comparison between young and aged mice injected with m-α-Syn PFFs revealed that PI intervals rather than aging correlate with oligodendroglial α-Syn aggregation. These results provide novel insights into the pathological mechanisms of oligodendroglial α-Syn aggregation in MSA.
Collapse
Affiliation(s)
- Norihito Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Maiko T Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Angela Lo
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fares Bassil
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bin Zhang
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelvin C Luk
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Virginia M -Y Lee
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - John Q Trojanowski
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Maki RA, Holzer M, Motamedchaboki K, Malle E, Masliah E, Marsche G, Reynolds WF. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson's disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic Biol Med 2019; 141:115-140. [PMID: 31175983 PMCID: PMC6774439 DOI: 10.1016/j.freeradbiomed.2019.05.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
α-Synuclein (αSyn) is central to the neuropathology of Parkinson's disease (PD) due to its propensity for misfolding and aggregation into neurotoxic oligomers. Nitration/oxidation of αSyn leads to dityrosine crosslinking and aggregation. Myeloperoxidase (MPO) is an oxidant-generating enzyme implicated in neurodegenerative diseases. In the present work we have examined the impact of MPO in PD through analysis of postmortem PD brain and in a novel animal model in which we crossed a transgenic mouse expressing the human MPO (hMPO) gene to a mouse expressing human αSyn-A53T mutant (A53T) (hMPO-A53T). Surprisingly, our results show that in PD substantia nigra, the hMPO gene is expressed in neurons containing aggregates of nitrated αSyn as well as MPO-generated HOCl-modified epitopes. In our hMPO-A53T mouse model, we also saw hMPO expression in neurons but not mouse MPO. In the mouse model, hMPO was expressed in neurons colocalizing with nitrated αSyn, carbamylated lysine, nitrotyrosine, as well as HOCl-modified epitopes/proteins. RNAscope in situ hybridization confirmed hMPO mRNA expression in neurons. Interestingly, the hMPO protein expressed in hMPO-A53T brain is primarily the precursor proMPO, which enters the secretory pathway potentially resulting in interneuronal transmission of MPO and oxidative species. Importantly, the hMPO-A53T mouse model, when compared to the A53T model, exhibited significant exacerbation of motor impairment on rotating rods, balance beams, and wire hang tests. Further, hMPO expression in the A53T model resulted in earlier onset of end stage paralysis. Interestingly, there was a high concentration of αSyn aggregates in the stratum lacunosum moleculare of hippocampal CA2 region, which has been associated in humans with accumulation of αSyn pathology and neural atrophy in dementia with Lewy bodies. This accumulation of αSyn aggregates in CA2 was associated with markers of endoplasmic reticulum (ER) stress and the unfolded protein response with expression of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), MPO, and cleaved caspase-3. Together these findings suggest that MPO plays an important role in nitrative and oxidative damage that contributes to αSyn pathology in synucleinopathies.
Collapse
Affiliation(s)
- Richard A Maki
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Khatereh Motamedchaboki
- Tumor Initiation & Maintenance Program and NCI Cancer Centre Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA; Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Wanda F Reynolds
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Vaikath NN, Hmila I, Gupta V, Erskine D, Ingelsson M, El-Agnaf OMA. Antibodies against alpha-synuclein: tools and therapies. J Neurochem 2019; 150:612-625. [PMID: 31055836 DOI: 10.1111/jnc.14713] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023]
Abstract
Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Daniel Erskine
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
18
|
Musgrove RE, Helwig M, Bae EJ, Aboutalebi H, Lee SJ, Ulusoy A, Di Monte DA. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 2019; 129:3738-3753. [PMID: 31194700 DOI: 10.1172/jci127330] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Specific neuronal populations display high vulnerability to pathological processes in Parkinson's disease (PD). The dorsal motor nucleus of the vagus nerve (DMnX) is a primary site of pathological α-synuclein deposition and may play a key role in the spreading of α-synuclein lesions within and outside the CNS. Using in vivo models, we show that cholinergic neurons forming this nucleus are particularly susceptible to oxidative challenges and accumulation of reactive oxidative species (ROS). Targeted α-synuclein overexpression within these neurons triggered an oxidative stress that became significantly more pronounced after exposure to the ROS-generating agent paraquat. A more severe oxidative stress resulted in enhanced production of oxidatively modified forms of α-synuclein, increased α-synuclein aggregation into oligomeric species and marked degeneration of DMnX neurons. Enhanced oxidative stress also affected neuron-to-neuron protein transfer, causing an increased spreading of α-synuclein from the DMnX toward more rostral brain regions. In vitro experiments confirmed a greater propensity of α-synuclein to pass from cell to cell under pro-oxidant conditions, and identified nitrated α-synuclein forms as highly transferable protein species. These findings substantiate the relevance of oxidative injury in PD pathogenetic processes, establish a relationship between oxidative stress and vulnerability to α-synuclein pathology and define a new mechanism, enhanced cell-to-cell α-synuclein transmission, by which oxidative stress could promote PD development and progression.
Collapse
Affiliation(s)
- Ruth E Musgrove
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Helwig
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eun-Jin Bae
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Helia Aboutalebi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
19
|
Mason DM, Wang Y, Bhatia TN, Miner KM, Trbojevic SA, Stolz JF, Luk KC, Leak RK. The center of olfactory bulb-seeded α-synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathol 2019; 29:741-770. [PMID: 30854742 DOI: 10.1111/bpa.12718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
At early disease stages, Lewy body disorders are characterized by limbic vs. brainstem α-synucleinopathy, but most preclinical studies have focused solely on the nigrostriatal pathway. Furthermore, male gender and advanced age are two major risk factors for this family of conditions, but their influence on the topographical extents of α-synucleinopathy and the degree of cell loss are uncertain. To fill these gaps, we infused α-synuclein fibrils in the olfactory bulb/anterior olfactory nucleus complex-one of the earliest and most frequently affected brain regions in Lewy body disorders-in 3-month-old female and male mice and in 11-month-old male mice. After 6 months, we observed that α-synucleinopathy did not expand significantly beyond the limbic connectome in the 9-month-old male and female mice or in the 17-month-old male mice. However, the 9-month-old male mice had developed greater α-synucleinopathy, smell impairment and cell loss than age-matched females. By 10.5 months post-infusion, fibril treatment hastened mortality in the 21.5-month-old males, but the inclusions remained centered in the limbic system in the survivors. Although fibril infusions reduced the number of cells expressing tyrosine hydroxylase in the substantia nigra of young males at 6 months post-infusion, this was not attributable to true cell death. Furthermore, mesencephalic α-synucleinopathy, if present, was centered in mesolimbic circuits (ventral tegmental area/accumbens) rather than within strict boundaries of the nigral pars compacta, which were defined here by tyrosine hydroxylase immunolabel. Nonprimate models cannot be expected to faithfully recapitulate human Lewy body disorders, but our murine model seems reasonably suited to (i) capture some aspects of Stage IIb of Lewy body disorders, which displays a heavier limbic than brainstem component compared to incipient Parkinson's disease; and (ii) leverage sex differences and the acceleration of mortality following induction of olfactory α-synucleinopathy.
Collapse
Affiliation(s)
- Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Yaqin Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara A Trbojevic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| |
Collapse
|
20
|
Weihofen A, Liu Y, Arndt JW, Huy C, Quan C, Smith BA, Baeriswyl JL, Cavegn N, Senn L, Su L, Marsh G, Auluck PK, Montrasio F, Nitsch RM, Hirst WD, Cedarbaum JM, Pepinsky RB, Grimm J, Weinreb PH. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models. Neurobiol Dis 2019; 124:276-288. [DOI: 10.1016/j.nbd.2018.10.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
|
21
|
Gil-Tommee C, Vidal-Martinez G, Annette Reyes C, Vargas-Medrano J, Herrera GV, Martin SM, Chaparro SA, Perez RG. Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp Neurol 2019; 311:265-273. [PMID: 30393144 PMCID: PMC6319267 DOI: 10.1016/j.expneurol.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/14/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Carolina Gil-Tommee
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - C Annette Reyes
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Gloria V Herrera
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Silver M Martin
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Stephanie A Chaparro
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA..
| |
Collapse
|
22
|
Sorrentino ZA, Vijayaraghavan N, Gorion KM, Riffe CJ, Strang KH, Caldwell J, Giasson BI. Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. J Biol Chem 2018; 293:18914-18932. [PMID: 30327435 DOI: 10.1074/jbc.ra118.005603] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Niran Vijayaraghavan
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kimberly-Marie Gorion
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Cara J Riffe
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kevin H Strang
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Jason Caldwell
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Benoit I Giasson
- From the Department of Neuroscience, .,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
23
|
Ugras S, Daniels MJ, Fazelinia H, Gould NS, Yocum AK, Luk KC, Luna E, Ding H, McKennan C, Seeholzer S, Martinez D, Evans P, Brown D, Duda JE, Ischiropoulos H. Induction of the Immunoproteasome Subunit Lmp7 Links Proteostasis and Immunity in α-Synuclein Aggregation Disorders. EBioMedicine 2018; 31:307-319. [PMID: 29759483 PMCID: PMC6014061 DOI: 10.1016/j.ebiom.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders.
Collapse
Affiliation(s)
- Scott Ugras
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malcolm J Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Neal S Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | | | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esteban Luna
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Ding
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Chris McKennan
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Department of Statistics, University of Chicago, 60637, USA
| | - Steven Seeholzer
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Dan Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Brown
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, USA
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Harry Ischiropoulos
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Localized Induction of Wild-Type and Mutant Alpha-Synuclein Aggregation Reveals Propagation along Neuroanatomical Tracts. J Virol 2018; 92:JVI.00586-18. [PMID: 29976670 DOI: 10.1128/jvi.00586-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/21/2018] [Indexed: 11/20/2022] Open
Abstract
Misfolded alpha-synuclein (αS) may exhibit a number of characteristics similar to those of the prion protein, including the apparent ability to spread along neuroanatomical connections. The demonstration for this mechanism of spread is largely based on the intracerebral injections of preaggregated αS seeds in mice, in which it cannot be excluded that diffuse, surgical perturbations and hematogenous spread also contribute to the propagation of pathology. For this reason, we have utilized the sciatic nerve as a route of injection to force the inoculum into the lumbar spinal cord and induce a localized site for the onset of αS inclusion pathology. Our results demonstrate that mouse αS fibrils (fibs) injected unilaterally in the sciatic nerve are efficient in inducing pathology and the onset of paralytic symptoms in both the M83 and M20 lines of αS transgenic mice. In addition, a spatiotemporal study of these injections revealed a predictable spread of pathology to brain regions whose axons synapse directly on ventral motor neurons in the spinal cord, strongly supporting axonal transport as a mechanism of spread of the αS inducing, or seeding, factor. We also revealed a relatively decreased efficiency for human αS fibs containing the E46K mutation to induce disease via this injection paradigm, supportive of recent studies demonstrating a diminished ability of this mutant αS to undergo aggregate induction. These results further demonstrate prion-like properties for αS by the ability for a progression and spread of αS inclusion pathology along neuroanatomical connections.IMPORTANCE The accumulation of alpha-synuclein (αS) inclusions is a hallmark feature of Parkinson's disease (PD) and PD-related diseases. Recently, a number of studies have demonstrated similarities between the prion protein and αS, including its ability to spread along neuroanatomical tracts throughout the central nervous system (CNS). However, there are caveats in each of these studies in which the injection routes used had the potential to result in a widespread dissemination of the αS-containing inocula, making it difficult to precisely define the mechanisms of spread. In this study, we assessed the spread of pathology following a localized induction of αS inclusions in the lumbar spinal cord following a unilateral injection in the sciatic nerve. Using this paradigm, we demonstrated the ability for αS inclusion spread and/or induction along neuroanatomical tracts within the CNS of two αS-overexpressing mouse models.
Collapse
|
25
|
Rutherford NJ, Dhillon JKS, Riffe CJ, Howard JK, Brooks M, Giasson BI. Comparison of the in vivo induction and transmission of α-synuclein pathology by mutant α-synuclein fibril seeds in transgenic mice. Hum Mol Genet 2018; 26:4906-4915. [PMID: 29036344 DOI: 10.1093/hmg/ddx371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease (PD) is one of many neurodegenerative diseases termed synucleinopathies, neuropathologically defined by inclusions containing aggregated α-synuclein (αS). αS gene (SNCA) mutations can directly cause autosomal dominant PD. In vitro studies demonstrated that SNCA missense mutations may either enhance or diminish αS aggregation but cross-seeding of mutant and wild-type αS proteins appear to reduce aggregation efficiency. Here, we extended these studies by assessing the effects of seeded αS aggregation in αS transgenic mice through intracerebral or peripheral injection of various mutant αS fibrils. We observed modestly decreased time to paralysis in mice transgenic for human A53T αS (line M83) intramuscularly injected with H50Q, G51D or A53E αS fibrils relative to wild-type αS fibrils. Conversely, E46K αS fibril seeding was significantly delayed and less efficient in the same experimental paradigm. However, the amount and distribution of αS inclusions in the central nervous system were similar for all αS fibril muscle injected mice that developed paralysis. Mice transgenic for human αS (line M20) injected in the hippocampus with wild-type, H50Q, G51D or A53E αS fibrils displayed induction of αS inclusion pathology that increased and spread over time. By comparison, induction of αS aggregation following the intrahippocampal injection of E46K αS fibrils in M20 mice was much less efficient. These findings show that H50Q, G51D or A53E can efficiently cross-seed and induce αS pathology in vivo. In contrast, E46K αS fibrils are intrinsically inefficient at seeding αS inclusion pathology. Consistent with previous in vitro studies, E46K αS polymers are likely distinct aggregated conformers that may represent a unique prion-like strain of αS.
Collapse
Affiliation(s)
- Nicola J Rutherford
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Jess-Karan S Dhillon
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Jasie K Howard
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Mieu Brooks
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Molecular and Biological Compatibility with Host Alpha-Synuclein Influences Fibril Pathogenicity. Cell Rep 2018; 16:3373-3387. [PMID: 27653697 DOI: 10.1016/j.celrep.2016.08.053] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/17/2016] [Accepted: 08/16/2016] [Indexed: 02/03/2023] Open
Abstract
The accumulation and propagation of misfolded α-synuclein (α-Syn) is a central feature of Parkinson's disease and other synucleinopathies. Molecular compatibility between a fibrillar seed and its native protein state is a major determinant of amyloid self-replication. We show that cross-seeded aggregation of human (Hu) and mouse (Ms) α-Syn is bidirectionally restricted. Although fibrils formed by Hu-Ms-α-Syn chimeric mutants can overcome this inhibition in cell-free systems, sequence homology poorly predicts their efficiency in inducing α-Syn pathology in primary neurons or after intracerebral injection into wild-type mice. Chimeric α-Syn fibrils demonstrate enhanced or reduced pathogenicities compared with wild-type Hu- or Ms-α-Syn fibrils. Furthermore, α-Syn mutants induced to polymerize by fibrillar seeds inherit the functional properties of their template, suggesting that transferable pathogenic and non-pathogenic states likely influence the initial engagement between exogenous α-Syn seeds and endogenous neuronal α-Syn. Thus, transmission of synucleinopathies is regulated by biological processes in addition to molecular compatibility.
Collapse
|
27
|
Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, Toker NJ, Jeon S, Fredriksen K, Mazzulli JR. Reversible Conformational Conversion of α-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 2017; 97:92-107.e10. [PMID: 29290548 DOI: 10.1016/j.neuron.2017.12.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
α-Synuclein (α-syn) aggregation is a key event in Parkinson's disease (PD). Mutations in glycosphingolipid (GSL)-degrading glucocerebrosidase are risk factors for PD, indicating that disrupted GSL clearance plays a key role in α-syn aggregation. However, the mechanisms of GSL-induced aggregation are not completely understood. We document the presence of physiological α-syn conformers in human midbrain dopamine neurons and tested their contribution to the aggregation process. Pathological α-syn assembly mainly occurred through the conversion of high molecular weight (HMW) physiological α-syn conformers into compact, assembly-state intermediates by glucosylceramide (GluCer), without apparent disassembly into free monomers. This process was reversible in vitro through GluCer depletion. Reducing GSLs in PD patient neurons with and without GBA1 mutations diminished pathology and restored physiological α-syn conformers that associated with synapses. Our work indicates that GSLs control the toxic conversion of physiological α-syn conformers in a reversible manner that is amenable to therapeutic intervention by GSL reducing agents.
Collapse
Affiliation(s)
- Friederike Zunke
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexandra C Moise
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nandkishore R Belur
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eilrayna Gelyana
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Iva Stojkovska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haris Dzaferbegovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicholas J Toker
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sohee Jeon
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Tayebi N, Parisiadou L, Berhe B, Gonzalez AN, Serra-Vinardell J, Tamargo RJ, Maniwang E, Sorrentino Z, Fujiwara H, Grey RJ, Hassan S, Blech-Hermoni YN, Chen C, McGlinchey R, Makariou-Pikis C, Brooks M, Ginns EI, Ory DS, Giasson BI, Sidransky E. Glucocerebrosidase haploinsufficiency in A53T α-synuclein mice impacts disease onset and course. Mol Genet Metab 2017; 122:198-208. [PMID: 29173981 PMCID: PMC6007972 DOI: 10.1016/j.ymgme.2017.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Mutations in GBA1 encountered in Gaucher disease are a leading risk factor for Parkinson disease and associated Lewy body disorders. Many GBA1 mutation carriers, especially those with severe or null GBA1 alleles, have earlier and more progressive parkinsonism. To model the effect of partial glucocerebrosidase deficiency on neurological progression in vivo, mice with a human A53T α-synuclein (SNCAA53T) transgene were crossed with heterozygous null gba mice (gba+/-). Survival analysis of 84 mice showed that in gba+/-//SNCAA53T hemizygotes and homozygotes, the symptom onset was significantly earlier than in gba+/+//SNCAA53T mice (p-values 0.023-0.0030), with exacerbated disease progression (p-value <0.0001). Over-expression of SNCAA53T had no effect on glucocerebrosidase levels or activity. Immunoblotting demonstrated that gba haploinsufficiency did not lead to increased levels of either monomeric SNCA or insoluble high molecular weight SNCA in this model. Immunohistochemical analyses demonstrated that the abundance and distribution of SNCA pathology was also unaltered by gba haploinsufficiency. Thus, while the underlying mechanism is not clear, this model shows that gba deficiency impacts the age of onset and disease duration in aged SNCAA53T mice, providing a valuable resource to identify modifiers, pathways and possible moonlighting roles of glucocerebrosidase in Parkinson pathogenesis.
Collapse
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bahafta Berhe
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | | | | | | | | | - Zachary Sorrentino
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan McGlinchey
- Laboratory of Protein Conformation and Dynamics, NHLBI, NIH, Bethesda, MD. USA
| | - Chrissy Makariou-Pikis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mieu Brooks
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
29
|
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20:1560-1568. [PMID: 28920936 PMCID: PMC5893155 DOI: 10.1038/nn.4641] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Collapse
Affiliation(s)
- Danielle E. Mor
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elpida Tsika
- AC Immune SA, Ecole Polytechnique fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neal S. Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Malcolm J. Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shachee Doshi
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Preetika Gupta
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L. Grossman
- State University of New York Downstate College of Medicine, Brooklyn, New York, USA
| | - Victor X. Tan
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G. Kalb
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - John H. Wolfe
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Dhillon JKS, Riffe C, Moore BD, Ran Y, Chakrabarty P, Golde TE, Giasson BI. A novel panel of α-synuclein antibodies reveal distinctive staining profiles in synucleinopathies. PLoS One 2017; 12:e0184731. [PMID: 28910367 PMCID: PMC5599040 DOI: 10.1371/journal.pone.0184731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Synucleinopathies are a spectrum of neurodegenerative diseases characterized by the intracellular deposition of the protein α-synuclein leading to multiple outcomes, including dementia and Parkinsonism. Recent findings support the notion that across the spectrum of synucleinopathies there exist diverse but specific biochemical modifications and/or structural conformations of α-synuclein, which would give rise to protein strain specific prion-like intercellular transmission, a proposed model that could explain synucleinopathies disease progression. Herein, we characterized a panel of antibodies with epitopes within both the C- and N- termini of α-synuclein. A comprehensive analysis of human pathological tissue and mouse models of synucleinopathy with these antibodies support the notion that α-synuclein exists in distinct modified forms and/or structural variants. Furthermore, these well-characterized and specific tools allow the investigation of biochemical changes associated with α-synuclein inclusion formation. We have identified several antibodies of interest with diverse staining and epitope properties that will prove useful in future investigations of strain specific disease progression and the development of targeted immunotherapeutic approaches to synucleinopathies.
Collapse
Affiliation(s)
- Jess-Karan S. Dhillon
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Cara Riffe
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Brenda D. Moore
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Benoit I. Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
The ER retention protein RER1 promotes alpha-synuclein degradation via the proteasome. PLoS One 2017; 12:e0184262. [PMID: 28877262 PMCID: PMC5587320 DOI: 10.1371/journal.pone.0184262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Abnormal accumulation of α-synuclein (αSyn) has been linked to endoplasmic-reticulum (ER) stress, defective intracellular protein/vesicle trafficking, and cytotoxicity. Targeting factors involved in ER-related protein processing and trafficking may, therefore, be a key to modulating αSyn levels and associated toxicity. Recently retention in endoplasmic reticulum 1 (RER1) has been identified as an important ER retrieval/retention factor for Alzheimer's disease proteins and negatively regulates amyloid-β peptide levels. Here, we hypothesized that RER1 might also play an important role in retention/retrieval of αSyn and mediate levels. We expressed RER1 and a C-terminal mutant RER1Δ25, which lacks the ER retention/retrieval function, in HEK293 and H4 neuroglioma cells. RER1 overexpression significantly decreased levels of both wild type and A30P, A53T, and E46K disease causal mutants of αSyn, whereas the RER1Δ25 mutant had a significantly attenuated effect on αSyn. RER1 effects were specific to αSyn and had little to no effect on either βSyn or the Δ71-82 αSyn mutant, which both lack the NAC domain sequence critical for synuclein fibrillization. Tests with proteasomal and macroautophagy inhibitors further demonstrate that RER1 effects on αSyn are primarily mediated through the ubiquitin-proteasome system. RER1 also appears to interact with the ubiquitin ligase NEDD4. RER1 in human diseased brain tissues co-localizes with αSyn-positive Lewy bodies. Together, these findings provide evidence that RER1 is a novel and potential important mediator of elevated αSyn levels. Further investigation of the mechanism of RER1 and downstream effectors on αSyn may yield novel therapeutic targets for modulation in Parkinson disease and related synucleinopathies.
Collapse
|
32
|
Sorrentino ZA, Brooks MMT, Hudson V, Rutherford NJ, Golde TE, Giasson BI, Chakrabarty P. Intrastriatal injection of α-synuclein can lead to widespread synucleinopathy independent of neuroanatomic connectivity. Mol Neurodegener 2017; 12:40. [PMID: 28552073 PMCID: PMC5447308 DOI: 10.1186/s13024-017-0182-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prionoid transmission of α-synuclein (αSyn) aggregates along neuroanatomically connected projections is posited to underlie disease progression in α-synucleinopathies. Here, we specifically wanted to study whether this prionoid progression occurs via direct inter-neuronal transfer and, if so, would intrastriatal injection of αSyn aggregates lead to nigral degeneration. Methods To test prionoid transmission of αSyn aggregates along the nigro-striatal pathway, we injected amyloidogenic αSyn aggregates into two different regions of the striatum of adult human wild type αSyn transgenic mice (Line M20) or non-transgenic (NTG) mice and aged for 4 months. Results M20 mice injected in internal capsule (IC) or caudate putamen (CPu) regions of the striatum showed florid αSyn inclusion pathology distributed throughout the neuraxis, irrespective of anatomic connectivity. These αSyn inclusions were found in different cell types including neurons, astrocytes and even ependymal cells. On the other hand, intra-striatal injection of αSyn fibrils into NTG mice resulted in sparse αSyn pathology, mostly localized in the striatum and entorhinal cortex. Interestingly, NTG mice injected with preformed human αSyn fibrils showed no induction of αSyn inclusion pathology, suggesting the presence of a species barrier for αSyn fibrillar seeds. Modest levels of nigral dopaminergic (DA) neuronal loss was observed exclusively in substantia nigra (SN) of M20 cohorts injected in the IC, even in the absence of frank αSyn inclusions in DA neurons. None of the NTG mice or CPu-injected M20 mice showed DA neurodegeneration. Interestingly, the pattern and distribution of induced αSyn pathology corresponded with neuroinflammation especially in the SN of M20 cohorts. Hypermorphic reactive astrocytes laden with αSyn inclusions were abundantly present in the brains of M20 mice. Conclusions Overall, our findings show that the pattern and extent of dissemination of αSyn pathology does not necessarily follow expected neuroanatomic connectivity. Further, the presence of intra-astrocytic αSyn pathology implies that glial cells participate in αSyn transmission and possibly have a role in non-cell autonomous disease modification. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0182-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Mieu M T Brooks
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Current address: Department of Neuroscience, Mayo Clinic, Jacksonville, FL, -32224, USA
| | - Vincent Hudson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Nicola J Rutherford
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
33
|
Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils. J Virol 2017; 91:JVI.02095-16. [PMID: 27852849 DOI: 10.1128/jvi.02095-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83+/+) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83+/-) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83+/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. IMPORTANCE The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson's disease (PD) and PD-related diseases. Similar characteristics have been observed between the infectious prion protein and αS, including its ability to spread from the peripheral nervous system and along neuroanatomical tracts within the central nervous system. In this study, we extend our previous results and investigate the efficiency of intravenous (i.v.), intraperitoneal (i.p.), and intramuscular (i.m.) routes of injection of αS fibrils and other protein controls. Our data reveal that injection of αS fibrils via these peripheral routes in αS-overexpressing mice are capable of inducing a robust αS pathology and in some cases cause paralysis. Furthermore, soluble, nonaggregated αS also induced αS pathology, albeit with much less efficiency. These findings further support and extend the idea of αS neuroinvasion from peripheral exposures.
Collapse
|
34
|
Rey NL, George S, Brundin P. Review: Spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol 2016; 42:51-76. [PMID: 26666838 DOI: 10.1111/nan.12299] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
Abstract
Synucleinopathies are characterized by abnormal proteinaceous aggregates, mainly composed of fibrillar α-synuclein (α-syn). It is now believed that α-syn can form small aggregates in a restricted number of cells, that propagate to neighbouring cells and seed aggregation of endogenous α-syn, in a 'prion-like manner'. This process could underlie the stereotypical progression of Lewy bodies described by Braak and colleagues across different stages of Parkinson's disease (PD). This prion-like behaviour of α-syn has been recently investigated in animal models of PD or multiple system atrophy (MSA). These models investigate the cell-to-cell transfer of α-syn seeds, or the induction and spreading of α-syn pathology in transgenic or wild-type rodent brain. In this review, we first outline the involvement of α-syn in Lewy body diseases and MSA, and discuss how 'prion-like' mechanisms can contribute to disease. Thereon, we debate the relevance of animal models used to study prion-like propagation. Finally, we review current main histological methods used to assess α-syn pathology both in animal models and in human samples and their relevance to the disease. Specifically, we discuss using α-syn phosphorylated at serine 129 as a marker of pathology, and the novel methods available that allow for more sensitive detection of early pathology, which has relevance for modelling synucleinopathies.
Collapse
Affiliation(s)
- N L Rey
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - S George
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - P Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| |
Collapse
|
35
|
Brettschneider J, Irwin DJ, Boluda S, Byrne MD, Fang L, Lee EB, Robinson JL, Suh E, Van Deerlin VM, Toledo JB, Grossman M, Hurtig H, Dengler R, Petri S, Lee VMY, Trojanowski JQ. Progression of alpha-synuclein pathology in multiple system atrophy of the cerebellar type. Neuropathol Appl Neurobiol 2016; 43:315-329. [PMID: 27716988 DOI: 10.1111/nan.12362] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
AIMS The aim of this study was to identify early foci of α-synuclein (α-syn pathology) accumulation, subsequent progression and neurodegeneration in multiple system atrophy of the cerebellar type (MSA-C). METHODS We analysed 70-μm-thick sections of 10 cases with MSA-C and 24 normal controls. RESULTS MSA-C cases with the lowest burden of pathology showed α-syn glial cytoplasmic inclusions (GCIs) in the cerebellum as well as in medullary and pontine cerebellar projections. Cerebellar pathology was highly selective and severely involved subcortical white matter, whereas deep white matter and granular layer were only mildly affected and the molecular layer was spared. Loss of Purkinje cells increased with disease duration and was associated with neuronal and axonal abnormalities. Neocortex, basal ganglia and spinal cord became consecutively involved with the increasing burden of α-syn pathology, followed by hippocampus, amygdala, and, finally, the visual cortex. GCIs were associated with myelinated axons, and the severity of GCIs correlated with demyelination. CONCLUSIONS Our findings indicate that cerebellar subcortical white matter and cerebellar brainstem projections are likely the earliest foci of α-syn pathology in MSA-C, followed by involvement of more widespread regions of the central nervous system and neurodegeneration with disease progression.
Collapse
Affiliation(s)
- J Brettschneider
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - D J Irwin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - S Boluda
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M D Byrne
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - L Fang
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - E B Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J L Robinson
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - E Suh
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - V M Van Deerlin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J B Toledo
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M Grossman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - H Hurtig
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R Dengler
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - S Petri
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - V M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Sacino AN, Brooks MM, Chakrabarty P, Saha K, Khoshbouei H, Golde TE, Giasson BI. Proteolysis of α-synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 2016; 140:662-678. [PMID: 27424880 DOI: 10.1111/jnc.13743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Progression of α-synuclein inclusion pathology may occur through cycles of release and uptake of α-synuclein aggregates, which induce additional intracellular α-synuclein inclusion pathology. This process may explain (i) the presence of α-synuclein inclusion pathology in grafted cells in human brains, and (ii) the slowly progressive nature of most human α-synucleinopathies. It also provides a rationale for therapeutic targeting of extracellular aggregates to limit pathology spread. We investigated the cellular mechanisms underlying intraneuronal α-synuclein aggregation following exposure to exogenous preformed α-synuclein amyloid fibrils. Exogenous α-synuclein fibrils efficiently attached to cell membranes and were subsequently internalized and degraded within the endosomal/lysosomal system. However, internalized α-synuclein amyloid fibrils can apparently overwhelm the endosomal/lysosomal machinery leading to the induction of intraneuronal α-synuclein inclusions comprised of endogenous α-synuclein. Furthermore, the efficiency of inclusion formation was relatively low in these studies compared to studies using primary neuronal-glial cultures over-expressing α-synuclein. Our study indicates that under physiologic conditions, endosomal/lysosomal function acts as an endogenous barrier to the induction of α-synuclein inclusion pathology, but when compromised, it may lower the threshold for pathology induction/transmission. Cover Image for this issue: doi: 10.1111/jnc.13787.
Collapse
Affiliation(s)
- Amanda N Sacino
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Mieu M Brooks
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Kaustuv Saha
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Uchihara T, Giasson BI. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:49-73. [PMID: 26446103 PMCID: PMC4698305 DOI: 10.1007/s00401-015-1485-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 12/15/2022]
Abstract
Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents "molecular template". Focal initiation and subsequent spread along anatomically connected structures embody "structural template". To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed "seeds" were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, "focal Lewy body disease" with the specific isolated involvement of autonomic, olfactory or cardiac systems suggests that spread of αS pathology is not always consistent. In many instances, the regional variability of Lewy pathology in human brain cannot be explained by a unified hypothesis such as transsynaptic spread. Thus, the distribution of Lewy pathology in human brain may be better explained by variable combinations of independent focal Lewy pathology to generate "multifocal Lewy body disease" that could be coupled with selective but variable neuroanatomical spread of αS pathology. More flexible models are warranted to take into account the relative propensity to develop Lewy pathology in different Lewy-prone systems, even without interconnections, compatible with the expanding clinicopathological spectra of Lewy-related disorders. These revised models are useful to better understand the mechanisms underlying the variable progression of Lewy body diseases so that diagnostic and therapeutic strategies are improved.
Collapse
Affiliation(s)
- Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKinght Brain Institute, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610-0159, USA.
| |
Collapse
|
38
|
Rutherford NJ, Sacino AN, Brooks M, Ceballos-Diaz C, Ladd TB, Howard JK, Golde TE, Giasson BI. Studies of lipopolysaccharide effects on the induction of α-synuclein pathology by exogenous fibrils in transgenic mice. Mol Neurodegener 2015. [PMID: 26223783 PMCID: PMC4520273 DOI: 10.1186/s13024-015-0029-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder that is pathologically characterized by loss of dopaminergic neurons from the substantia nigra, the presence of aggregated α-synuclein (αS) and evidence of neuroinflammation. Experimental studies have shown that the cerebral injection of recombinant fibrillar αS, especially in αS transgenic mouse models, can induce the formation and spread of αS inclusion pathology. However, studies reporting this phenomenon did not consider the presence of lipopolysaccharide (LPS) in the injected αS, produced in E. coli, as a potential confound. The objectives of this study are to develop a method to remove the LPS contamination and investigate the differences in pathologies induced by αS containing LPS or αS highly purified of LPS. RESULTS AND CONCLUSIONS We were able to remove >99.5% of the LPS contamination from the αS preparations through the addition of a cation exchange step during purification. The αS pathology induced by injection of fibrils produced from αS containing LPS or purified of LPS, showed a similar distribution pattern; however, there was less spread into the cortex of the mice injected with αS containing higher levels of LPS. As previously reported, injection of αS fibrils could induce astrogliosis, and αS inclusions were present within astrocytes in mice injected with fibrils comprised of αS with or without cation exchange purification. Furthermore, we identified the presence of αS pathology in ependymal cells in both groups of mice, which suggests the involvement of a novel mechanism for spread in this model of αS pathology.
Collapse
Affiliation(s)
- Nicola J Rutherford
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Amanda N Sacino
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Mieu Brooks
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Jasie K Howard
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Ceballos-Diaz C, Rosario AM, Park HJ, Chakrabarty P, Sacino A, Cruz PE, Siemienski Z, Lara N, Moran C, Ravelo N, Golde TE, McFarland NR. Viral expression of ALS-linked ubiquilin-2 mutants causes inclusion pathology and behavioral deficits in mice. Mol Neurodegener 2015; 10:25. [PMID: 26152284 PMCID: PMC4495639 DOI: 10.1186/s13024-015-0026-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background UBQLN2 mutations have recently been associated with familial forms of amyotrophic lateral sclerosis (ALS) and ALS-dementia. UBQLN2 encodes for ubiquilin-2, a member of the ubiquitin-like protein family which facilitates delivery of ubiquitinated proteins to the proteasome for degradation. To study the potential role of ubiquilin-2 in ALS, we used recombinant adeno-associated viral (rAAV) vectors to express UBQLN2 and three of the identified ALS-linked mutants (P497H, P497S, and P506T) in primary neuroglial cultures and in developing neonatal mouse brains. Results In primary cultures rAAV2/8-mediated expression of UBQLN2 mutants resulted in inclusion bodies and insoluble aggregates. Intracerebroventricular injection of FVB mice at post-natal day 0 with rAAV2/8 expressing wild type or mutant UBQLN2 resulted in widespread, sustained expression of ubiquilin-2 in brain. In contrast to wild type, mutant UBQLN2 expression induced significant pathology with large neuronal, cytoplasmic inclusions and ubiquilin-2-positive aggregates in surrounding neuropil. Ubiquilin-2 inclusions co-localized with ubiquitin, p62/SQSTM, optineurin, and occasionally TDP-43, but were negative for α-synuclein, neurofilament, tau, and FUS. Mutant UBLQN2 expression also resulted in Thioflavin-S-positive inclusions/aggregates. Mice expressing mutant forms of UBQLN2 variably developed a motor phenotype at 3–4 months, including nonspecific clasping and rotarod deficits. Conclusions These findings demonstrate that UBQLN2 mutants (P497H, P497S, and P506T) induce proteinopathy and cause behavioral deficits, supporting a “toxic” gain-of-function, which may contribute to ALS pathology. These data establish also that our rAAV model can be used to rapidly assess the pathological consequences of various UBQLN2 mutations and provides an agile system to further interrogate the molecular mechanisms of ubiquilins in neurodegeneration.
Collapse
Affiliation(s)
- Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Awilda M Rosario
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA.,Department of Neurology, College of Medicine, University of Florida, 1149 S Newell Dr, L3-100, PO Box 100236, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Amanda Sacino
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Zoe Siemienski
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Nicolas Lara
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Corey Moran
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Natalia Ravelo
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA.,Department of Neurology, College of Medicine, University of Florida, 1149 S Newell Dr, L3-100, PO Box 100236, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA
| | - Nikolaus R McFarland
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Dr, PO Box 100159, Gainesville, FL, 32610, USA. .,Department of Neurology, College of Medicine, University of Florida, 1149 S Newell Dr, L3-100, PO Box 100236, Gainesville, FL, 32610, USA.
| |
Collapse
|
40
|
Vaikath NN, Majbour NK, Paleologou KE, Ardah MT, van Dam E, van de Berg WDJ, Forrest SL, Parkkinen L, Gai WP, Hattori N, Takanashi M, Lee SJ, Mann DMA, Imai Y, Halliday GM, Li JY, El-Agnaf OMA. Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology. Neurobiol Dis 2015; 79:81-99. [PMID: 25937088 DOI: 10.1016/j.nbd.2015.04.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022] Open
Abstract
α-Synuclein (α-syn), a small protein that has the intrinsic propensity to aggregate, is implicated in several neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are collectively known as synucleinopathies. Genetic, pathological, biochemical, and animal modeling studies provided compelling evidence that α-syn aggregation plays a key role in the pathogenesis of PD and related synucleinopathies. It is therefore of utmost importance to develop reliable tools that can detect the aggregated forms of α-syn. We describe here the generation and characterization of six novel conformation-specific monoclonal antibodies that recognize specifically α-syn aggregates but not the soluble, monomeric form of the protein. The antibodies described herein did not recognize monomers or fibrils generated from other amyloidogenic proteins including β-syn, γ-syn, β-amyloid, tau protein, islet amyloid polypeptide and ABri. Interestingly, the antibodies did not react to overlapping linear peptides spanning the entire sequence of α-syn, confirming further that they only detect α-syn aggregates. In immunohistochemical studies, the new conformation-specific monoclonal antibodies showed underappreciated small micro-aggregates and very thin neurites in PD and DLB cases that were not observed with generic pan antibodies that recognize linear epitope. Furthermore, employing one of our conformation-specific antibodies in a sandwich based ELISA, we observed an increase in levels of α-syn oligomers in brain lysates from DLB compared to Alzheimer's disease and control samples. Therefore, the conformation-specific antibodies portrayed herein represent useful tools for research, biomarkers development, diagnosis and even immunotherapy for PD and related pathologies.
Collapse
Affiliation(s)
- Nishant N Vaikath
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates; Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, BMC A10, Lund University, Lund, Sweden
| | - Nour K Majbour
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Katerina E Paleologou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Esther van Dam
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Shelley L Forrest
- Discipline of Pathology, Charles Perkin Centre, University of Sydney, Sydney, Australia
| | - Laura Parkkinen
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Wei-Ping Gai
- Department of Human Physiology, School of Medicine, Flinders University, Australia
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University Graduate School of Medicine, Japan
| | - Seung-Jae Lee
- Neuroscience Research Institute, Department of Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - David M A Mann
- Clinical and Cognitive Neuroscience Research Group, University of Manchester, Salford Royal Foundation NHS Trust, Salford M6 8HD, UK
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Japan
| | - Glenda M Halliday
- Faculty of Medicine, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, BMC A10, Lund University, Lund, Sweden
| | - Omar M A El-Agnaf
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates; College of Science, Engineering and Technology, HBKU, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
41
|
Brain injection of α-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J Neurosci 2015; 34:12368-78. [PMID: 25209277 DOI: 10.1523/jneurosci.2102-14.2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracerebral injection of amyloidogenic α-synuclein (αS) has been shown to induce αS pathology in the CNS of nontransgenic mice and αS transgenic mice, albeit with varying efficiencies. In this study, using wild-type human αS transgenic mice (line M20), we demonstrate that intracerebral injection of recombinant amyloidogenic or soluble αS induces extensive αS intracellular inclusion pathology that is associated with robust gliosis. Near the injection site, a significant portion of αS inclusions are detected in neurons but also in astrocytes and microglia. Aberrant induction of expression of the intermediate filament protein peripherin, which is associated with CNS neuronal injury, was also observed predominantly near the site of injection. In addition, many pSer129 αS-induced inclusions colocalize with the low-molecular-mass neurofilament subunit (NFL) or peripherin staining. αS inclusion pathology was also induced in brain regions distal from the injection site, predominantly in neurons. Unexpectedly, we also find prominent p62-immunoreactive, αS-, NFL-, and peripherin-negative inclusions. These findings provide evidence that exogenous αS challenge induces αS pathology but also results in the following: (1) a broader disruption of proteostasis; (2) glial activation; and (3) a marker of a neuronal injury response. Such data suggest that induction of αS pathology after exogenous seeding may involve multiple interdependent mechanisms.
Collapse
|
42
|
Fishbein I, Kuo YM, Giasson BI, Nussbaum RL. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation. ACTA ACUST UNITED AC 2014; 137:3235-47. [PMID: 25351739 DOI: 10.1093/brain/awu291] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Ianai Fishbein
- 1 Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yien-Ming Kuo
- 1 Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benoit I Giasson
- 2 Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Robert L Nussbaum
- 1 Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A 2014; 111:10732-7. [PMID: 25002524 DOI: 10.1073/pnas.1321785111] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models. Within 2-3 mo after IM injection in αS homozygous M83 Tg mice and 3-4 mo for hemizygous M83 Tg mice, these animals developed a rapid, synchronized, and predictable induction of widespread CNS αS inclusion pathology, accompanied by astrogliosis, microgliosis, and debilitating motor impairments. In M20 Tg mice, starting at 4 mo after IM injection, we observed αS inclusion pathology in the spinal cord, but motor function remained intact. Transection of the sciatic nerve in the M83 Tg mice significantly delayed the appearance of CNS pathology and motor symptoms, demonstrating the involvement of retrograde transport in inducing αS CNS inclusion pathology. Outside of scrapie-mediated prion disease, to our knowledge, this findiing is the first evidence that an entire neurodegenerative proteinopathy associated with a robust, lethal motor phenotype can be initiated by peripheral inoculation with a pathogenic protein. Furthermore, this facile, synchronized rapid-onset model of α-synucleinopathy will be highly valuable in testing disease-modifying therapies and dissecting the mechanism(s) that drive αS-induced neurodegeneration.
Collapse
|
44
|
Knight AL, Yan X, Hamamichi S, Ajjuri RR, Mazzulli JR, Zhang MW, Daigle JG, Zhang S, Borom AR, Roberts LR, Lee SK, DeLeon SM, Viollet-Djelassi C, Krainc D, O'Donnell JM, Caldwell KA, Caldwell GA. The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson's models. Cell Metab 2014; 20:145-57. [PMID: 24882066 PMCID: PMC4097176 DOI: 10.1016/j.cmet.2014.04.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/16/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023]
Abstract
Neurodegenerative diseases represent an increasing burden in our aging society, yet the underlying metabolic factors influencing onset and progression remain poorly defined. The relationship between impaired IGF-1/insulin-like signaling (IIS) and lifespan extension represents an opportunity to investigate the interface of metabolism with age-associated neurodegeneration. Using data sets of established DAF-2/IIS-signaling components in Caenorhabditis elegans, we conducted systematic RNAi screens in worms to select for daf-2-associated genetic modifiers of α-synuclein misfolding and dopaminergic neurodegeneration, two clinical hallmarks of Parkinson's disease. An outcome of this strategy was the identification of GPI-1/GPI, an enzyme in glucose metabolism, as a daf-2-regulated modifier that acts independent of the downstream cytoprotective transcription factor DAF-16/FOXO to modulate neuroprotection. Subsequent mechanistic analyses using Drosophila and mouse primary neuron cultures further validated the conserved nature of GPI neuroprotection from α-synuclein proteotoxicity. Collectively, these results support glucose metabolism as a conserved functional node at the intersection of proteostasis and neurodegeneration.
Collapse
Affiliation(s)
- Adam L Knight
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; The Babraham Institute, Cambridge CB22 3AT, UK
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shusei Hamamichi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Rami R Ajjuri
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Joseph R Mazzulli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Mike W Zhang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - J Gavin Daigle
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Siyuan Zhang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Akeem R Borom
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lindsay R Roberts
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - S Kyle Lee
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Susan M DeLeon
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | - Dimitri Krainc
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Janis M O'Donnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
45
|
Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci U S A 2014; 111:9289-94. [PMID: 24927544 DOI: 10.1073/pnas.1403215111] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene can cause late-onset Parkinson disease. Past studies have provided conflicting evidence for the protective effects of LRRK2 knockdown in models of Parkinson disease as well as other disorders. These discrepancies may be caused by uncertainty in the pathobiological mechanisms of LRRK2 action. Previously, we found that LRRK2 knockdown inhibited proinflammatory responses from cultured microglia cells. Here, we report LRRK2 knockout rats as resistant to dopaminergic neurodegeneration elicited by intracranial administration of LPS. Such resistance to dopaminergic neurodegeneration correlated with reduced proinflammatory myeloid cells recruited in the brain. Additionally, adeno-associated virus-mediated transduction of human α-synuclein also resulted in dopaminergic neurodegeneration in wild-type rats. In contrast, LRRK2 knockout animals had no significant loss of neurons and had reduced numbers of activated myeloid cells in the substantia nigra. Although LRRK2 expression in the wild-type rat midbrain remained undetected under nonpathological conditions, LRRK2 became highly expressed in inducible nitric oxide synthase (iNOS)-positive myeloid cells in the substantia nigra in response to α-synuclein overexpression or LPS exposures. Our data suggest that knocking down LRRK2 may protect from overt cell loss by inhibiting the recruitment of chronically activated proinflammatory myeloid cells. These results may provide value in the translation of LRRK2-targeting therapeutics to conditions where neuroinflammation may underlie aspects of neuronal dysfunction and degeneration.
Collapse
|
46
|
Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ, Ceballos-Diaz C, Robertson J, Golde TE, Giasson BI. Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol 2014; 127:645-65. [PMID: 24659240 DOI: 10.1007/s00401-014-1268-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 02/02/2023]
Abstract
In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that, with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS, there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.
Collapse
|
47
|
Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 2014; 75:351-62. [PMID: 24243558 DOI: 10.1002/ana.24066] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/30/2013] [Accepted: 11/12/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mounting evidence suggests that α-synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α-synuclein fibrils can trigger α-synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α-synuclein may apply to PD-linked pathological α-synuclein and occur in species closer to humans. METHODS Nigral LB-enriched fractions containing pathological α-synuclein were purified from postmortem PD brains by sucrose gradient fractionation and subsequently inoculated into the substantia nigra or striatum of wild-type mice and macaque monkeys. Control animals received non-LB fractions containing soluble α-synuclein derived from the same nigral PD tissue. RESULTS In both mice and monkeys, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. No neurodegeneration was observed in animals receiving non-LB fractions from the same patients. In LB-injected animals, exogenous human α-synuclein was quickly internalized within host neurons and triggered the pathological conversion of endogenous α-synuclein. At the onset of LB-induced degeneration, host pathological α-synuclein diffusely accumulated within nigral neurons and anatomically interconnected regions, both anterogradely and retrogradely. LB-induced pathogenic effects required both human α-synuclein present in LB extracts and host expression of α-synuclein. INTERPRETATION α-Synuclein species contained in PD-derived LB are pathogenic and have the capacity to initiate a PD-like pathological process, including intracellular and presynaptic accumulations of pathological α-synuclein in different brain areas and slowly progressive axon-initiated dopaminergic nigrostriatal neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Recasens
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VMY. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 2013; 154:103-17. [PMID: 23827677 DOI: 10.1016/j.cell.2013.05.057] [Citation(s) in RCA: 557] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/18/2013] [Accepted: 05/30/2013] [Indexed: 01/17/2023]
Abstract
Many neurodegenerative diseases are characterized by the accumulation of insoluble protein aggregates, including neurofibrillary tangles comprised of tau in Alzheimer's disease and Lewy bodies composed of α-synuclein in Parkinson's disease. Moreover, different pathological proteins frequently codeposit in disease brains. To test whether aggregated α-synuclein can directly cross-seed tau fibrillization, we administered preformed α-synuclein fibrils assembled from recombinant protein to primary neurons and transgenic mice. Remarkably, we discovered two distinct strains of synthetic α-synuclein fibrils that demonstrated striking differences in the efficiency of cross-seeding tau aggregation, both in neuron cultures and in vivo. Proteinase K digestion revealed conformational differences between the two synthetic α-synuclein strains and also between sarkosyl-insoluble α-synuclein extracted from two subgroups of Parkinson's disease brains. We speculate that distinct strains of pathological α-synuclein likely exist in neurodegenerative disease brains and may underlie the tremendous heterogeneity of synucleinopathies.
Collapse
Affiliation(s)
- Jing L Guo
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sacino AN, Brooks M, McGarvey NH, McKinney AB, Thomas MA, Levites Y, Ran Y, Golde TE, Giasson BI. Induction of CNS α-synuclein pathology by fibrillar and non-amyloidogenic recombinant α-synuclein. Acta Neuropathol Commun 2013; 1:38. [PMID: 24252149 PMCID: PMC3893388 DOI: 10.1186/2051-5960-1-38] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
Background α-Synuclein (αS) is the major component of several types of brain inclusions including Lewy bodies, a hallmark of Parkinson’s disease. Aberrant aggregation of αS also is associated with cellular demise in multiple neurologic disorders collectively referred to as synucleinopathies. Recent studies demonstrate the induction of αS pathology by a single intracerebral injection of exogenous amyloidogenic αS in adult non-transgenic and transgenic mice expressing human αS. To further investigate the mechanism of pathology induction and evaluate an experimental paradigm with potential for higher throughput, we performed similar studies in neonatal mice injected with αS. Results In non-transgenic mice, we observed limited induction of neuronal αS inclusions predominantly 8 months after brain injection of aggregated, amyloidogenic human αS. More robust inclusion pathology was induced in transgenic mice expressing wild-type human αS (line M20), and inclusion pathology was observed at earlier time points. Injection of a non-amyloidogenic (Δ71-82) deletion protein of αS was also able to induce similar pathology in a subset of M20 transgenic mice. M20 transgenic mice injected with amyloidogenic or non-amyloidogenic αS demonstrated a delayed and robust induction of brain neuroinflammation that occurs in mice with or without αS pathological inclusions implicating this mechanism in aggregate formation. Conclusions The finding that a non-amyloidogenic Δ71-82 αS can induce pathology calls into question the simple interpretation that exogenous αS catalyzes aggregation and spread of intracellular αS pathology solely through a nucleation dependent conformational templating mechanism. These results indicate that several mechanisms may act synergistically or independently to promote the spread of αS pathology.
Collapse
|
50
|
Clippinger AK, D’Alton S, Lin WL, Gendron TF, Howard J, Borchelt DR, Cannon A, Carlomagno Y, Chakrabarty P, Cook C, Golde TE, Levites Y, Ranum L, Schultheis PJ, Xu G, Petrucelli L, Sahara N, Dickson DW, Giasson B, Lewis J. Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathol 2013; 126:39-50. [PMID: 23666556 PMCID: PMC3690181 DOI: 10.1007/s00401-013-1123-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been subdivided based on the main pathology found in the brains of affected individuals. When the primary pathology is aggregated, hyperphosphorylated tau, the pathological diagnosis is FTLD-tau. When the primary pathology is cytoplasmic and/or nuclear aggregates of phosphorylated TAR-DNA-binding protein (TDP-43), the pathological diagnosis is FTLD-TDP. Notably, TDP-43 pathology can also occur in conjunction with a number of neurodegenerative disorders; however, unknown environmental and genetic factors may regulate this TDP-43 pathology. Using transgenic mouse models of several diseases of the central nervous system, we explored whether a primary proteinopathy might secondarily drive TDP-43 proteinopathy. We found abnormal, cytoplasmic accumulation of phosphorylated TDP-43 specifically in two tau transgenic models, but TDP-43 pathology was absent in mouse models of Aβ deposition, α-synucleinopathy or Huntington’s disease. Though tau pathology showed considerable overlap with cytoplasmic, phosphorylated TDP-43, tau pathology generally preceded TDP-43 pathology. Biochemical analysis confirmed the presence of TDP-43 abnormalities in the tau mice, which showed increased levels of high molecular weight, soluble TDP-43 and insoluble full-length and ~35 kD TDP-43. These data demonstrate that the neurodegenerative cascade associated with a primary tauopathy in tau transgenic mice can also promote TDP-43 abnormalities. These findings provide the first in vivo models to understand how TDP-43 pathology may arise as a secondary consequence of a primary proteinopathy.
Collapse
Affiliation(s)
- Amy K. Clippinger
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099 USA
| | - Simon D’Alton
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - John Howard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
- SantaFe HealthCare Alzheimer’s Disease Center, Gainesville, FL USA
| | - Ashley Cannon
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - Laura Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Patrick J. Schultheis
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099 USA
| | - Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | | | - Naruhiko Sahara
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | | | - Benoit Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-483, PO Box 100159, Gainesville, FL 32610-0244 USA
| |
Collapse
|