1
|
Li J, Zhang G, Zheng J, Hu J, Li Y. A case report of neuronal intranuclear inclusion disease and literature review. BMC Neurol 2024; 24:488. [PMID: 39707256 DOI: 10.1186/s12883-024-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease with a characteristic pathological feature of eosinophilic hyaluronan inclusions in the nervous system and internal organs. The identification of GGC-repeat expansions in the Notch 2 N-terminal like C (NOTCH2NLC) gene facilitates the accurate diagnosis of NIID. Due to its rareness and high clinical heterogeneity, the diagnosis of NIID is often delayed or missed. Here, we report a case of NIID mimicking autoimmune encephalitis. A 55-year-old Chinese man presented with fever, headache, recurrent seizures, and weakness in the upper and lower left limbs. Brain MRI revealed diffuse T2/ FLAIR-hyperintense lesions in the bilateral basal ganglia, corpus callosum, and periventricular white matter, with swelling of the right temporal, frontal, and parietal cortices accompanied by meningeal enhancement. Abnormally high signal lesions were observed in the corticomedullary junction in diffusion-weighted imaging (DWI). The infectious or autoimmune disease screening of central nervous system using CSF was normal. The test of GGC-repeat expansion in the NOTCH2NLC gene by capillary electrophoresis indicated GGC repeats (48 and 110 GGC repeats), which supported the diagnosis of NIID. After treatment with glucocorticoid, the clinical symptoms of this patient improved significantly. In the literature, 12 cases of NIID presenting with encephalitis-like attacks were identified, most of which were recurrent, accompanied by progressive symptoms such as dementia, Parkinsonism symptoms, migraine, or dysuria. In this case, there was a single encephalitis-like episode without other progressive symptoms. In patients with encephalitis-like symptoms, NIID should be considered, especially when no other evidence of infection is found, as demonstrated in this case. In addition, long-term monitoring of disease progression is also very important.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Guogao Zhang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jianrong Zheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| | - Yunong Li
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
2
|
Liu Z, Bian X, Li L, Liu L, Feng C, Wang Y, Ni J, Li S, Lu D, Li Y, Ma C, Yu T, Xiao X, Xue N, Wang Y, Zhang C, Ma X, Gao X, Fan X, Liu X, Fan G. SENP1-Mediated HSP90ab1 DeSUMOylation in Cardiomyocytes Prevents Myocardial Fibrosis by Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400741. [PMID: 38992961 PMCID: PMC11425837 DOI: 10.1002/advs.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Myocardial infarction (MI) triggers a poor ventricular remodeling response, but the underlying mechanisms remain unclear. Here, the authors show that sentrin-specific protease 1 (SENP1) is downregulated in post-MI mice and in patients with severe heart failure. By generating cardiomyocyte-specific SENP1 knockout and overexpression mice to assess cardiac function and ventricular remodeling responses under physiological and pathological conditions. Increased cardiac fibrosis in the cardiomyocyte-specific SENP1 deletion mice, associated with increased fibronectin (Fn) expression and secretion in cardiomyocytes, promotes fibroblast activation in response to myocardial injury. Mechanistically, SENP1 deletion in mouse cardiomyocytes increases heat shock protein 90 alpha family class B member 1 (HSP90ab1) SUMOylation with (STAT3) activation and Fn secretion after ventricular remodeling initiated. Overexpression of SENP1 or mutation of the HSP90ab1 Lys72 ameliorates adverse ventricular remodeling and dysfunction after MI. Taken together, this study identifies SENP1 as a positive regulator of cardiac repair and a potential drug target for the treatment of MI. Inhibition of HSP90ab1 SUMOylation stabilizes STAT3 to inhibit the adverse ventricular remodeling response.
Collapse
Affiliation(s)
- Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Lan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Chao Feng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Ying Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Sheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Dading Lu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Tian Yu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiaolin Xiao
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Yuxiang Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Chunyan Zhang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiaofang Ma
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
3
|
Kurihara M, Mano T, Eto F, Yao I, Sato K, Ohtomo G, Bannai T, Shibata S, Ishiura H, Ikemura M, Matsubara T, Morishima M, Saito Y, Murayama S, Toda T, Setou M, Iwata A. Proteomic profile of nuclei containing p62-positive inclusions in a patient with neuronal intranuclear inclusion disease. Neurobiol Dis 2023; 177:105989. [PMID: 36621630 DOI: 10.1016/j.nbd.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the neurons, glial cells, and other somatic cells. Although CGG repeat expansions in NOTCH2NLC have been identified in most East Asian patients with NIID, the pathophysiology of NIID remains unclear. Ubiquitin- and p62-positive intranuclear inclusions are the pathological hallmark of NIID. Targeted immunostaining studies have identified several other proteins present in these inclusions. However, the global molecular changes within nuclei with these inclusions remained unclear. Herein, we analyzed the proteomic profile of nuclei with p62-positive inclusions in a NIID patient with CGG repeat expansion in NOTCH2NLC to discover candidate proteins involved in the NIID pathophysiology. We used fluorescence-activated cell sorting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify each protein identified in the nuclei with p62-positive inclusions. The distribution of increased proteins was confirmed via immunofluorescence in autopsy brain samples from three patients with genetically confirmed NIID. Overall, 526 proteins were identified, of which 243 were consistently quantified using MS. A 1.4-fold increase was consistently observed for 20 proteins in nuclei with p62-positive inclusions compared to those without. Fifteen proteins identified with medium or high confidence in the LC-MS/MS analysis were further evaluated. Gene ontology enrichment analysis showed enrichment of several terms, including poly(A) RNA binding, nucleosomal DNA binding, and protein binding. Immunofluorescence studies confirmed that the fluorescent intensities of increased RNA-binding proteins identified by proteomic analysis, namely hnRNP A2/B1, hnRNP A3, and hnRNP C1/C2, were higher in the nuclei with p62-positive inclusions than in those without, which were not confined to the intranuclear inclusions. We identified several increased proteins in nuclei with p62-positive inclusions. Although larger studies are needed to validate our results, these proteomic data may form the basis for understanding the pathophysiology of NIID.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neuropathology, Graduate School of Medicine, The University of Tokyo. Tokyo, Japan
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Bannai
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Shibata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
4
|
Liu Y, Li H, Liu X, Wang B, Yang H, Wan B, Sun M, Xu X. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:934725. [PMID: 36177481 PMCID: PMC9513122 DOI: 10.3389/fnagi.2022.934725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the high clinical heterogeneity of neuronal intranuclear inclusion disease (NIID), it is easy to misdiagnose this condition and is considered to be a rare progressive neurodegenerative disease. More evidence demonstrates that NIID involves not only the central nervous system but also multiple systems of the body and shows a variety of symptoms, which makes a clinical diagnosis of NIID more difficult. This review summarizes the clinical symptoms in different systems and demonstrates that NIID is a multiple-system intranuclear inclusion disease. In addition, the core triad symptoms in the central nervous system, such as dementia, parkinsonism, and psychiatric symptoms, are proposed as an important clue for the clinical diagnosis of NIID. Recent studies have demonstrated that expanded GGC repeats in the 5′-untranslated region of the NOTCH2NLC gene are the cause of NIID. The genetic advances and possible underlying mechanisms of NIID (expanded GGC repeat-induced DNA damage, RNA toxicity, and polyglycine-NOTCH2NLC protein toxicity) are briefly summarized in this review. Interestingly, inflammatory cell infiltration and inflammation were observed in the affected tissues of patients with NIID. As a downstream pathological process of NIID, inflammation could be a therapeutic target for NIID.
Collapse
Affiliation(s)
- Yueqi Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xuan Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
- Bo Wan,
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Miao Sun,
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xingshun Xu,
| |
Collapse
|
5
|
Zhang GJ, Wu D, Zhu YX, Ni HF, Zhang ZJ. Clinicopathological features of neuronal intranuclear inclusion disease diagnosed by skin biopsy. Neurol Sci 2022; 43:1809-1815. [PMID: 34386886 DOI: 10.1007/s10072-021-05526-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023]
Abstract
STUDY OBJECTIVES Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder, with complex and diverse of clinical manifestations characterized by eosinophilic hyaline inclusions in neurons and somatic cells. Due to the improvement in diagnostic methods, NIID is being increasingly diagnosed. METHODS Herein, we reported three NIID cases, which were diagnosed by skin biopsy and FMR1 gene, after DWI showed the characteristic corticomedullary junction hyperintensity. Then we reviewed all the published cases of NIID in PubMed, which were diagnosed by the same method. RESULTS We discussed 15 NIID cases, including three cases diagnosed by us. The average age was 63.4 ± 14.0 years. The average time from onset of symptom to diagnosis was 5.4 ± 7.9 years. Nine cases had dementia or cognitive impairment. Three cases presented with encephalitis. Three cases showed bladder dysfunction and two cases only presented with dizziness and headache. Two cases showed acute neurological deficit mimicking stroke. All cases were diagnosed by skin biopsy, after DWI showed abnormal corticomedullary junction hyperintensity. Ten cases showed inclusions in sweat gland cells, and seven cases in adipocytes, sweat gland cells, and fibroblasts. EMG was performed in five cases, four of whom had abnormal results, showing simultaneous involvement of motor and sensory nerves. CONCLUSIONS The results indicated that inclusions were more easily detected in sweat gland cells in skin biopsy. The early stage of NIID could only characterized by autonomic nerve function involvement. Combined autonomic nerve dysfunction might be another relatively common manifestation in NIID.
Collapse
Affiliation(s)
- Gao-Jia Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, 87 Dingjia Qiao, Nanjing, 210009, Jiangsu, China
| | - Di Wu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, 87 Dingjia Qiao, Nanjing, 210009, Jiangsu, China.
| | - Yi-Xin Zhu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, 87 Dingjia Qiao, Nanjing, 210009, Jiangsu, China
| | - Hai-Feng Ni
- Electron Microscope Center, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, 87 Dingjia Qiao, Nanjing, 210009, Jiangsu, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Ning K, Duffy BA, Franklin M, Matloff W, Zhao L, Arzouni N, Sun F, Toga AW. Improving brain age estimates with deep learning leads to identification of novel genetic factors associated with brain aging. Neurobiol Aging 2021; 105:199-204. [PMID: 34098431 PMCID: PMC9004720 DOI: 10.1016/j.neurobiolaging.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022]
Abstract
To study genetic factors associated with brain aging, we first need to quantify brain aging. Statistical models have been created for estimating the apparent age of the brain, or predicted brain age (PBA), using imaging data. Recent studies have refined these models to obtain a more accurate PBA, but research has yet to demonstrate the scientific value of doing so. Here, we show that a more accurate PBA leads to better characterization of genetic factors associated with brain aging. We trained a convolutional neural network (CNN) model on 16,998 UK Biobank subjects to derive PBA, then conducted a genome-wide association study on the PBA, in which we identified single nucleotide polymorphisms from four independent loci significantly associated with brain aging, three of which were novel. By comparing association results based on the CNN-derived PBA to those based on a linear regression-derived PBA, we concluded that a more accurate PBA enables the discovery of novel genetic associations. Our results may be valuable for identifying other lifestyle factors associated with brain aging.
Collapse
Affiliation(s)
- Kaida Ning
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Ben A Duffy
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Will Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Nibal Arzouni
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Fengzhu Sun
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Hammoudi V, Beerens B, Jonker MJ, Helderman TA, Vlachakis G, Giesbers M, Kwaaitaal M, van den Burg HA. The protein modifier SUMO is critical for integrity of the Arabidopsis shoot apex at warm ambient temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab262. [PMID: 34106243 DOI: 10.1093/jxb/erab262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 06/12/2023]
Abstract
SUMO is a protein modification whose conjugate levels peak during acute heat stress. We find that SUMO is also critical for plant longevity when Arabidopsis experiences a prolonged non-damaging period of only 28 degrees Celsius. Remarkably, this thermo-lethality at 28 degrees was not seen with any other mutant of the SUMO pathway tested. Autoimmunity due to low SUMO1/2 expression levels was not causal for this thermo-lethality. The role of SUMO for thermo-resilience was also distinct from its requirement for thermomorphogenesis - a growth response triggered by the same warm temperature, as only the latter response was dependent on the SUMO ligase SIZ1 as well. Thermo-resilience at 28 degrees Celsius and (acquired) thermotolerance (a response that allows plants to recover and acclimate to brief extreme temperatures) both depend on the HEAT SHOCK TRANSCRIPTION FACTOR A1 (HSFA1). Acquired thermotolerance was, however, normal in the sumo1/2 knockdown mutant. Thus, SUMO-dependent thermo-resilience is potentially controlled in a different way than the protein damage pathway that underpins thermotolerance. Close inspection of shoot apices revealed that the cell patterning and tissue integrity of the shoot apex of the SUMO1/2 knockdown mutant was lost at 28, but not 22 degrees Celsius. We thus describe a novel SUMO-dependent phenotype.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Tieme A Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University, The Netherlands
| | - Mark Kwaaitaal
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
8
|
Xu K, Li Y, Allen EG, Jin P. Therapeutic Development for CGG Repeat Expansion-Associated Neurodegeneration. Front Cell Neurosci 2021; 15:655568. [PMID: 34054431 PMCID: PMC8149615 DOI: 10.3389/fncel.2021.655568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding repeat expansions, such as CGG, GGC, CUG, CCUG, and GGGGCC, have been shown to be involved in many human diseases, particularly neurological disorders. Of the diverse pathogenic mechanisms proposed in these neurodegenerative diseases, dysregulated RNA metabolism has emerged as an important contributor. Expanded repeat RNAs that form particular structures aggregate to form RNA foci, sequestering various RNA binding proteins and consequently altering RNA splicing, transport, and other downstream biological processes. One of these repeat expansion-associated diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), is caused by a CGG repeat expansion in the 5'UTR region of the fragile X mental retardation 1 (FMR1) gene. Moreover, recent studies have revealed abnormal GGC repeat expansion within the 5'UTR region of the NOTCH2NLC gene in both essential tremor (ET) and neuronal intranuclear inclusion disease (NIID). These CGG repeat expansion-associated diseases share genetic, pathological, and clinical features. Identification of the similarities at the molecular level could lead to a better understanding of the disease mechanisms as well as developing novel therapeutic strategies. Here, we highlight our current understanding of the molecular pathogenesis of CGG repeat expansion-associated diseases and discuss potential therapeutic interventions for these neurological disorders.
Collapse
Affiliation(s)
- Keqin Xu
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Pischedda F, Cirnaru MD, Ponzoni L, Sandre M, Biosa A, Carrion MP, Marin O, Morari M, Pan L, Greggio E, Bandopadhyay R, Sala M, Piccoli G. LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation. Brain 2021; 144:1509-1525. [PMID: 33876242 DOI: 10.1093/brain/awab073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson's disease cases and leads to late-onset Parkinson's disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from patients with Parkinson's disease carrying the G2019S variant, and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Of note, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S bacterial artificial chromosome (BAC) mice. We suggest that LRRK2 G2019S pathological phosphorylation impacts on NSF biochemical properties, thus causing the formation of cytotoxic protein inclusions.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Trento, Italy.,Dulbecco Telethon Institute, Rome, Italy
| | | | | | - Michele Sandre
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Alice Biosa
- Department of Biology, University of Padova, Padova, Italy
| | - Maria Perez Carrion
- CIBIO, Università degli Studi di Trento, Trento, Italy.,Unidad Asociada Neurodeath, Faculty of Medicine, University of Castilla-La Mancha, 02008, Albacete, Spain
| | - Oriano Marin
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Michele Morari
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Shanghai, China
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | | | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Trento, Italy.,Dulbecco Telethon Institute, Rome, Italy
| |
Collapse
|
10
|
Hofer E, Roshchupkin GV, Adams HHH, Knol MJ, Lin H, Li S, Zare H, Ahmad S, Armstrong NJ, Satizabal CL, Bernard M, Bis JC, Gillespie NA, Luciano M, Mishra A, Scholz M, Teumer A, Xia R, Jian X, Mosley TH, Saba Y, Pirpamer L, Seiler S, Becker JT, Carmichael O, Rotter JI, Psaty BM, Lopez OL, Amin N, van der Lee SJ, Yang Q, Himali JJ, Maillard P, Beiser AS, DeCarli C, Karama S, Lewis L, Harris M, Bastin ME, Deary IJ, Veronica Witte A, Beyer F, Loeffler M, Mather KA, Schofield PR, Thalamuthu A, Kwok JB, Wright MJ, Ames D, Trollor J, Jiang J, Brodaty H, Wen W, Vernooij MW, Hofman A, Uitterlinden AG, Niessen WJ, Wittfeld K, Bülow R, Völker U, Pausova Z, Bruce Pike G, Maingault S, Crivello F, Tzourio C, Amouyel P, Mazoyer B, Neale MC, Franz CE, Lyons MJ, Panizzon MS, Andreassen OA, Dale AM, Logue M, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Stein JL, Thompson PM, Medland SE, Sachdev PS, Kremen WS, Wardlaw JM, Villringer A, van Duijn CM, Grabe HJ, Longstreth WT, Fornage M, Paus T, Debette S, Ikram MA, Schmidt H, Schmidt R, Seshadri S. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat Commun 2020; 11:4796. [PMID: 32963231 PMCID: PMC7508833 DOI: 10.1038/s41467-020-18367-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
Collapse
Affiliation(s)
- Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michelle Luciano
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Aniket Mishra
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rui Xia
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xueqiu Jian
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yasaman Saba
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stephan Seiler
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jayandra J Himali
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Sherif Karama
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Lindsay Lewis
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Mat Harris
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John B Kwok
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Brain and Mind Centre - The University of Sydney, Camperdown, NSW, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Parkvill, VIC, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, VIC, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinial Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sophie Maingault
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Christophe Tzourio
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- Pole de santé publique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Philippe Amouyel
- Centre Hospitalier Universitaire de Bordeaux, France; Inserm U1167, Lille, France
- Department of Epidemiology and Public Health, Pasteur Institute of Lille, Lille, France
- Department of Public Health, Lille University Hospital, Lille, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mark Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA
- Department of Psychiatry and Department of Medicine-Biomedical Genetics Section, Boston University School of Medicine, Boston, MA, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jodie N Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Joanna M Wardlaw
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hans J Grabe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, F-33000, Bordeaux, France
| | - M Arfan Ikram
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Abstract
Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disease that had been diagnosed by autopsy until recently, but the number of cases has increased since skin biopsy was reported to be useful in 2011. In 2019, the genetical cause of NIID was identified as the extension of the GGC repeat sequence on the NOTCH2NLC gene, and genetic diagnosis became possible. In NIID, there are two groups: a group onset with cognitive dysfunction, and with leukoencephalopathy on head MRI and a high intensity signal at the corticomedurally junction on DWI, and a group with limb weakness. It is necessary to include NIID in the differential diagnosis of leukoencephalopathy and neuropathy, and it is necessary to combine skin biopsy and genetic testing to accurately diagnose of NIID and promote pathological elucidation.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neurology, National Hospital Organization Suzuka National Hospital
| |
Collapse
|
12
|
Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, Salerno WJ, Lancour D, Ma Y, Renton AE, Marcora E, Farrell JJ, Zhao Y, Qu L, Ahmad S, Amin N, Amouyel P, Beecham GW, Below JE, Campion D, Cantwell L, Charbonnier C, Chung J, Crane PK, Cruchaga C, Cupples LA, Dartigues JF, Debette S, Deleuze JF, Fulton L, Gabriel SB, Genin E, Gibbs RA, Goate A, Grenier-Boley B, Gupta N, Haines JL, Havulinna AS, Helisalmi S, Hiltunen M, Howrigan DP, Ikram MA, Kaprio J, Konrad J, Kuzma A, Lander ES, Lathrop M, Lehtimäki T, Lin H, Mattila K, Mayeux R, Muzny DM, Nasser W, Neale B, Nho K, Nicolas G, Patel D, Pericak-Vance MA, Perola M, Psaty BM, Quenez O, Rajabli F, Redon R, Reitz C, Remes AM, Salomaa V, Sarnowski C, Schmidt H, Schmidt M, Schmidt R, Soininen H, Thornton TA, Tosto G, Tzourio C, van der Lee SJ, van Duijn CM, Valladares O, Vardarajan B, Wang LS, Wang W, Wijsman E, Wilson RK, Witten D, Worley KC, Zhang X, Bellenguez C, Lambert JC, Kurki MI, Palotie A, Daly M, Boerwinkle E, Lunetta KL, Destefano AL, Dupuis J, Martin ER, Schellenberg GD, Seshadri S, Naj AC, Fornage M, Farrer LA. Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Mol Psychiatry 2020; 25:1859-1875. [PMID: 30108311 PMCID: PMC6375806 DOI: 10.1038/s41380-018-0112-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with β-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.
Collapse
Affiliation(s)
- Joshua C Bis
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
| | - Xueqiu Jian
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yuning Chen
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William S Bush
- Case Western Reserve University, Cleveland Heights, OH, USA
| | - William J Salerno
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Lancour
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Alan E Renton
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Yi Zhao
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Liming Qu
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shahzad Ahmad
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - Najaf Amin
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Philippe Amouyel
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jennifer E Below
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Centre Hospitalier du Rouvray, Sotteville-lès-, Rouen, France
| | - Laura Cantwell
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Paul K Crane
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - L Adrienne Cupples
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
- Department of Neurology and Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Memory Clinic, F-33000, Bordeaux, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut François Jacob, Direction de le Recherche Fondamentale, CEA, Evry, France
| | - Lucinda Fulton
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alison Goate
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Grenier-Boley
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Daniel P Howrigan
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - M Arfan Ikram
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jan Konrad
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Amanda Kuzma
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Honghuang Lin
- Department of Medicine (Computational Biomedicine), Boston University School of Medicine, Boston, MA, USA
| | - Kari Mattila
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Waleed Nasser
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Neale
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kwangsik Nho
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Devanshi Patel
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Bruce M Psaty
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard Redon
- Inserm, CNRS, Univ. Nantes, CHU Nantes, l'institut du thorax, Nantes, France
| | | | - Anne M Remes
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
- Unit of Clinical Neuroscience, Neurology, University of Oulu and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chloe Sarnowski
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Helena Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Michael Schmidt
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | | | | | - Otto Valladares
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Li-San Wang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Weixin Wang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ellen Wijsman
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Daniela Witten
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoling Zhang
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Celine Bellenguez
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Jean-Charles Lambert
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathryn L Lunetta
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anita L Destefano
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Josée Dupuis
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Sudha Seshadri
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam C Naj
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lindsay A Farrer
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Aiba Y, Sakakibara R, Lee FC, Tateno F. Urodynamic Assessment of Neuronal Intranuclear Inclusion Disease. Eur Neurol 2020; 83:312-316. [PMID: 32645705 DOI: 10.1159/000508746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a disease that causes leukoencephalopathy (dementia) and peripheral neuropathy (variable manifestation including bladder dysfunction). This is the first urodynamic report to show that bladder dysfunction in NIID is a combination of detrusor overactivity, decreased bladder sensation, large post-void residual, and neurogenic changes in the sphincter electromyogram. This report will help managing bladder dysfunction in NIID.
Collapse
Affiliation(s)
- Yosuke Aiba
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Ryuji Sakakibara
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan,
| | - Fang-Ching Lee
- Urology, Sakura Medical Center, Toho University, Sakura, Japan
| | - Fuyuki Tateno
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| |
Collapse
|
14
|
Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 2019; 101:103416. [PMID: 31654699 DOI: 10.1016/j.mcn.2019.103416] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The accumulation of intracytoplasmic inclusion bodies (Lewy bodies) composed of aggregates of the alpha-synuclein (α-syn) protein is the principal pathological characteristic of Parkinson's disease (PD) and may lead to degeneration of dopaminergic neurons. To date there is no medication that can promote the efficient clearance of these pathological aggregates. In this study, the effect on α-syn aggregate clearance of ginkgolic acid (GA), a natural compound extracted from Ginkgo biloba leaves that inhibits SUMOylation amongst other pathways, was assessed in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Depolarization of SH-SY5Y neuroblastoma cells and rat primary cortical neurons with KCl was used to induce α-syn aggregate formation. Cells pre-treated with either GA or the related compound, anacardic acid, revealed a significant decrease in intracytoplasmic aggregates immunopositive for α-syn and SUMO-1. An increased frequency of autophagosomes was also detected with both compounds. GA post-treatment 24 h after depolarization also significantly diminished α-syn aggregate bearing cells, indicating the clearance of pre-formed aggregates. Autophagy inhibitors blocked GA-dependent clearance of α-syn aggregates, but not increased autophagosome frequency. Western analysis revealed that the reduction in α-syn aggregate frequency obtained with GA pre-treatment was accompanied by little change in the abundance of SUMO conjugates. The current findings show that GA can promote autophagy-dependent clearance of α-syn aggregates and may have potential in disease modifying therapy.
Collapse
|
15
|
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol Commun 2019; 7:143. [PMID: 31481131 PMCID: PMC6720097 DOI: 10.1186/s40478-019-0796-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Anthony W Herren
- Genome Center, University of California Davis, Davis, California, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Jamie Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Bridget McLaughlin
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California Davis Health, Sacramento, California, USA
| | - Isaac N Pessah
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA.
- MIND Institute, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
16
|
Ma Y, Jun GR, Zhang X, Chung J, Naj AC, Chen Y, Bellenguez C, Hamilton-Nelson K, Martin ER, Kunkle BW, Bis JC, Debette S, DeStefano AL, Fornage M, Nicolas G, van Duijn C, Bennett DA, De Jager PL, Mayeux R, Haines JL, Pericak-Vance MA, Seshadri S, Lambert JC, Schellenberg GD, Lunetta KL, Farrer LA. Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by APOE Genotype. JAMA Neurol 2019; 76:1099-1108. [PMID: 31180460 PMCID: PMC6563544 DOI: 10.1001/jamaneurol.2019.1456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Previous genome-wide association studies of common variants identified associations for Alzheimer disease (AD) loci evident only among individuals with particular APOE alleles. OBJECTIVE To identify APOE genotype-dependent associations with infrequent and rare variants using whole-exome sequencing. DESIGN, SETTING, AND PARTICIPANTS The discovery stage included 10 441 non-Hispanic white participants in the Alzheimer Disease Sequencing Project. Replication was sought in 2 independent, whole-exome sequencing data sets (1766 patients with AD, 2906 without AD [controls]) and a chip-based genotype imputation data set (8728 patients with AD, 9808 controls). Bioinformatics and functional analyses were conducted using clinical, cognitive, neuropathologic, whole-exome sequencing, and gene expression data obtained from a longitudinal cohort sample including 402 patients with AD and 647 controls. Data were analyzed between March 2017 and September 2018. MAIN OUTCOMES AND MEASURES Score, Firth, and sequence kernel association tests were used to test the association of AD risk with individual variants and genes in subgroups of APOE ε4 carriers and noncarriers. Results with P ≤ 1 × 10-5 were further evaluated in the replication data sets and combined by meta-analysis. RESULTS Among 3145 patients with AD and 4213 controls lacking ε4 (mean [SD] age, 83.4 [7.6] years; 4363 [59.3.%] women), novel genome-wide significant associations were obtained in the discovery sample with rs536940594 in AC099552 (odds ratio [OR], 88.0; 95% CI, 9.08-852.0; P = 2.22 × 10-7) and rs138412600 in GPAA1 (OR, 1.78; 95% CI, 1.44-2.2; meta-P = 7.81 × 10-8). GPAA1 was also associated with expression in the brain of GPAA1 (β = -0.08; P = .03) and its repressive transcription factor, FOXG1 (β = 0.13; P = .003), and global cognition function (β = -0.53; P = .009). Significant gene-wide associations (threshold P ≤ 6.35 × 10-7) were observed for OR8G5 (P = 4.67 × 10-7), IGHV3-7 (P = 9.75 × 10-16), and SLC24A3 (P = 2.67 × 10-12) in 2377 patients with AD and 706 controls with ε4 (mean [SD] age, 75.2 [9.6] years; 1668 [54.1%] women). CONCLUSIONS AND RELEVANCE The study identified multiple possible novel associations for AD with individual and aggregated rare variants in groups of individuals with and without APOE ε4 alleles that reinforce known and suggest additional pathways leading to AD.
Collapse
Affiliation(s)
- Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Clinical Care and Research Center, Division of Neuroimmunology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Gyungah R. Jun
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Adam C. Naj
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Yuning Chen
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Celine Bellenguez
- Universite de Lille, INSERM UMR1167, Institute Pasteur de Lille, Lille, France
| | - Kara Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Eden R. Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Brian W. Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, UMR1219, University Bordeaux, Inserm, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Anita L. DeStefano
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Myriam Fornage
- School of Public Health, University of Texas Health Science Center at Houston, Houston
| | - Gaël Nicolas
- UNIROUEN, Inserm U1245, Normandie University, Rouen, France
- Department of Genetics, Rouen University Hospital, Rouen, France
- Normandy Centre for Genomic and Personalized Medicine, Centre National de Référence pour les Malades Alzheimer Jeunes, Rouen, France
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Clinical Care and Research Center, Division of Neuroimmunology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Jonathan L Haines
- Institute for Computational Biology, Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sudha Seshadri
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio
| | | | | | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| |
Collapse
|
17
|
Gelpi E, Botta-Orfila T, Bodi L, Marti S, Kovacs G, Grau-Rivera O, Lozano M, Sánchez-Valle R, Muñoz E, Valldeoriola F, Pagonabarraga J, Tartaglia GG, Milà M. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain 2019; 140:e51. [PMID: 28899011 DOI: 10.1093/brain/awx156] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laia Bodi
- Department of Genetics, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Stefanie Marti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabor Kovacs
- Institute of Neurology, Medical University of Vienna, Austria
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Neurology Department, Alzheimer's disease and other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Manuel Lozano
- Neurology Department, Hospital Germans Trias I Pujol, Badalona, Spain
| | - Raquel Sánchez-Valle
- Neurology Department, Alzheimer's disease and other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Neurology Department, Movement Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Francesc Valldeoriola
- Neurology Department, Movement Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Gian-Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Montserrat Milà
- Department of Genetics, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Tavolieri MV, Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ. A novel overlapping NLS/NES region within the PH domain of Rho Guanine Nucleotide Exchange Factor (RGNEF) regulates its nuclear-cytoplasmic localization. Eur J Cell Biol 2019; 98:27-35. [PMID: 30482479 DOI: 10.1016/j.ejcb.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022] Open
Abstract
Rho Guanine Nucleotide Exchange Factor (RGNEF) is a 190 kDa protein implicated in both amyotrophic lateral sclerosis (ALS) and cancer. Under normal physiological conditions, RGNEF is predominantly cytoplasmic with moderate levels of nuclear localization. We have identified a 23-amino acid region containing a bipartite nuclear localization signal (NLS) within the Pleckstrin Homology (PH) domain of RGNEF, which when deleted or mutated abolishes the nuclear localization of this protein. Fusion proteins containing only the PH domain demonstrated that this region by itself is able to translocate a 160 kDa protein to the nucleus. Interestingly, we also detected a nuclear export signal (NES) within the linker region of this bipartite NLS which is able to export from the nucleus a fusion protein containing two NLSs. Experiments using Leptomycin-B -an inhibitor of nuclear export- confirmed that this region promotes nuclear export in an exportin-1 dependent manner. This study is the first report demonstrating either of these signals embedded within a PH domain. Notably, this is also the first description of a functional overlapped NLS/NES signal.
Collapse
Affiliation(s)
- Michael V Tavolieri
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Kathryn Volkening
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Molecular Medicine Group, Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Michael J Strong
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Molecular Medicine Group, Robarts Research Institute, Western University, London, Ontario, Canada.
| |
Collapse
|
19
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
20
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
21
|
Abstract
α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders.
Collapse
|
22
|
Preuss KD, Pfreundschuh M, Weigert M, Fadle N, Regitz E, Kubuschok B. Sumoylated HSP90 is a dominantly inherited plasma cell dyscrasias risk factor. J Clin Invest 2014; 125:316-23. [PMID: 25485683 DOI: 10.1172/jci76802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
Posttranslationally modified proteins serve as autoimmunogenic targets in a wide spectrum of autoimmune diseases. Here, we identified a posttranslationally modified paraprotein target (paratargs) in monoclonal gammopathies of undetermined significance (MGUS), multiple myelomas (MM), and Waldenstrom's macroglobulinemias (WM) using protein macroarrays that were sumoylated and screened for reactivity with paraproteins from MGUS, MM, and WM patients. We found that paraproteins from a proportion of European, African-American, and Japanese patients specifically reacted with the sumoylated heat-shock protein 90 β isoform-α (HSP90-SUMO1, where SUMO indicates small ubiquitin-like modifier), while no reactivity with HSP90-SUMO1 was detected in over 800 controls. HSP90-SUMO1 was present in blood cells from all patients with HSP90-SUMO1-binding paraproteins. We determined that the HSP90-SUMO1 carrier state is autosomal-dominantly inherited and caused by the inability of SUMO peptidase sentrin/SUMO-specific protease 2 (SENP2) to desumoylate HSP90-SUMO1. HSP90-SUMO1 was detected in a small percentage of healthy individuals from all backgrounds; however, only MGUS, MM, and WM patients who were HSP90-SUMO1 carriers produced HSP90-SUMO1-specific paraproteins, suggesting that sumoylated HSP90 promotes pathogenesis of these diseases through chronic antigenic stimulation. This study demonstrates that harboring HSP90-SUMO1 identifies healthy individuals at risk for plasma cell dyscrasias and that dominant inheritance of posttranslationally modified autoantigenic paratargs is one of the strongest molecular defined risk factors for MGUS, MM, and WM.
Collapse
|
23
|
Liberman AC, Antunica-Noguerol M, Arzt E. Modulation of the Glucocorticoid Receptor Activity by Post-Translational Modifications. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| |
Collapse
|
24
|
Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors. Mol Cell 2014; 53:317-29. [PMID: 24462205 DOI: 10.1016/j.molcel.2013.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/11/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022]
Abstract
The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.
Collapse
|
25
|
Luo J, Ashikaga E, Rubin PP, Heimann MJ, Hildick KL, Bishop P, Girach F, Josa-Prado F, Tang LTH, Carmichael RE, Henley JM, Wilkinson KA. Receptor trafficking and the regulation of synaptic plasticity by SUMO. Neuromolecular Med 2013; 15:692-706. [PMID: 23934328 DOI: 10.1007/s12017-013-8253-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/25/2013] [Indexed: 12/18/2022]
Abstract
Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.
Collapse
Affiliation(s)
- Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
27
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
28
|
McElroy JP, Krupp LB, Johnson BA, McCauley JL, Qi Z, Caillier SJ, Gourraud PA, Yu J, Nathanson L, Belman AL, Hauser SL, Waubant E, Hedges DJ, Oksenberg JR. Copy number variation in pediatric multiple sclerosis. Mult Scler 2012; 19:1014-21. [PMID: 23239789 DOI: 10.1177/1352458512469696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pediatric onset multiple sclerosis (MS) accounts for 2-4% of all MS. It is unknown whether the disease shares the same underlying pathophysiology found in adult patients or an extreme early onset phenotype triggered by distinct biological mechanisms. It has been hypothesized that copy number variations (CNVs) may result in extreme early onset diseases because CNVs can have major effects on many genes in large genomic regions. OBJECTIVES AND METHODS The objective of the current research was to identify CNVs, with a specific focus on de novo CNVs, potentially causing early onset MS by competitively hybridizing 30 white non-Hispanic pediatric MS patients with each of their parents via comparative genomic hybridization (CGH) analysis on the Agilent 1M CGH array. RESULTS AND DISCUSSION We identified 10 CNVs not overlapping with any CNV regions currently reported in the Database of Genomic Variants (DGV). Fifty-five putatively de novo CNVs were also identified: all but one common in the DGV. We found the single rare CNV was a private variation harboring the SACS gene. SACS mutations cause autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) disease. Additional clinical review revealed that the patient with the SACS gene CNV shared some features of both MS and ARSACS. CONCLUSIONS This is the first reported study analyzing pediatric MS CNVs. While not yielding causal variation in our initial pediatric dataset, our approach confirmed diagnosis of an ARSACS-like disease in addition to MS in the affected individual, which led to a more complete understanding of the patient's disease course and prognosis.
Collapse
Affiliation(s)
- J P McElroy
- Department of Neurology, University of California at San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases. Neurotox Res 2012; 23:1-21. [DOI: 10.1007/s12640-012-9358-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
30
|
Tatham MH, Matic I, Mann M, Hay RT. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci Signal 2011; 4:rs4. [PMID: 21693764 DOI: 10.1126/scisignal.2001484] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The small ubiquitin-like modifiers (SUMOs) alter the functions of diverse cellular proteins by covalent posttranslational modification and thus influence many cellular functions, including gene transcription, cell cycle, and DNA repair. Although conjugation by ubiquitin and SUMO-2/3 are largely functionally and mechanistically independent from one another, both appear to increase under conditions of proteasome inhibition. To better understand the relationship between SUMO and protein degradation by the proteasome, we performed a quantitative proteomic analysis of SUMO-2 substrates after short- and long-term inhibition of the proteasome with MG132. Comparisons with changes to the SUMO-2 conjugate subproteome in response to heat stress revealed qualitative and quantitative parallels between both conditions; however, in contrast to heat stress, the MG132-triggered increase in SUMO-2 conjugation depended strictly on protein synthesis, implying that the accumulation of newly synthesized, misfolded proteins destined for degradation by the proteasome triggered the SUMO conjugation response. Furthermore, proteasomal inhibition resulted in the accumulation of conjugated forms of all SUMO paralogs in insoluble protein inclusions and in the accumulation on SUMO-2 substrates of lysine-63-linked polyubiquitin chains, which are not thought to serve as signals for proteasome-mediated degradation. Together, these findings suggest multiple, proteasome-independent roles for SUMOs in the cellular response to the accumulation of misfolded proteins.
Collapse
Affiliation(s)
- Michael H Tatham
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
31
|
Abstract
Although stroke is among the most common causes of death and chronic disability worldwide, the proteome of the ischemic human brain remains unknown. Only a few studies have investigated the ischemic brain proteome in rodent stroke models. We performed a proteomic study of the human brain after ischemic stroke using a 2-dimensional differential gel electrophoresis-based proteomic approach. In brain samples from 6 deceased stroke patients and 3 control subjects, there was an average of 1,442 ± 231 protein spots in the gels. Changes of at least 1.5-fold in the relative expression of 132 protein spots between different cerebral areas (infarct core, peri-infarct, and contralateral tissue) were identified (p < 0.05); 39 of these were successfully identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Among the identified protein spots, we validated the results of 10 proteins by Western blot and determined the cellular localization in brain parenchyma for 3 of the identified proteins: dihydropyrimidinase-related protein 2, vesicle-fusing ATPase, and Rho dissociation inhibitor 1. These results contribute to understanding the processes that follow cerebral ischemia; moreover, some of the identified proteins may be therapeutic targets or biologic markers for determining the diagnosis and prognosis of stroke.
Collapse
|
32
|
Lai SC, Jung SM, Grattan-Smith P, Sugo E, Lin YW, Chen RS, Chen CC, Wu-Chou YH, Lang AE, Lu CS. Neuronal intranuclear inclusion disease: two cases of dopa-responsive juvenile parkinsonism with drug-induced dyskinesia. Mov Disord 2010; 25:1274-9. [PMID: 20629123 DOI: 10.1002/mds.22876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are very few conditions that present with dopa-responsive juvenile parkinsonism. We present two such children with neuronal intranuclear inclusion disease (NIID) who had an initial good levodopa response that was soon complicated by disabling dopa-induced dyskinesia. One child was diagnosed by rectal biopsy in life, and the other diagnosis was confirmed at postmortem. In this patient, dopamine transporter imaging showed severely decreased binding of the radiotracer in the striatum on both sides. Bilateral subthalamic deep brain stimulation in this patient produced initial improvement, but this was not sustained. Both patients died within 10 years of symptom onset. As well as levodopa responsiveness with rapid onset of dyskinesia, clues to the diagnosis of NIID in patients presenting with parkinsonism include the presence of gaze-evoked nystagmus, early onset dysarthria and dysphagia and oculogyric crises. Differential diagnosis of clinical symptoms and neuropathological findings are discussed including the approach to rectal biopsy for early diagnosis.
Collapse
Affiliation(s)
- Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
34
|
Woulfe J, Gray DA, Mackenzie IRA. FUS-immunoreactive intranuclear inclusions in neurodegenerative disease. Brain Pathol 2010; 20:589-97. [PMID: 19832837 PMCID: PMC8094734 DOI: 10.1111/j.1750-3639.2009.00337.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/05/2009] [Indexed: 12/12/2022] Open
Abstract
Neuronal intranuclear inclusions (NIIs) are a histopathological hallmark of several neurodegenerative disorders. However, the role played by NIIs in neurodegenerative pathogenesis remains enigmatic. Defining their molecular composition represents an important step in understanding the pathophysiology of these disorders. Recently, a nuclear protein, "fused-in-sarcoma" (FUS) was identified as the pathological protein in two forms of frontotemporal lobar degeneration (FTLD-IF, formerly known as neuronal intermediate filament inclusion disease, and FTLD-UPS, formerly known as atypical FTLD-U), both of which are characterized by the presence of NII. The objective of the present study was to determine the range of neurodegenerative disorders characterized by FUS-positive NIIs. Immunostaining for FUS revealed intense reactivity of NIIs in FTLD-IF and FTLD-UPS as well as in Huntington's disease, spinocerebellar ataxias 1 and 3, and neuronal intranuclear inclusion body disease. In contrast, there was no FUS staining of NIIs in inherited forms of FTLD-TDP caused by GRN and VCP mutations, fragile-X-associated tremor ataxia syndrome, or oculopharyngeal muscular dystrophy. In a cell culture model of Huntington's disease, NIIs were intensely FUS-positive. NII-bearing cells displayed loss of the normal diffuse nuclear pattern of FUS staining. This suggests that sequestration of nuclear FUS by NIIs may interfere with its normal nuclear localization.
Collapse
Affiliation(s)
- John Woulfe
- Cancer Therapeutics Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Analysis of lysozyme in cheese by immunocapture mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:201-6. [DOI: 10.1016/j.jchromb.2009.07.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
36
|
Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 2009; 23:3917-27. [PMID: 19638400 PMCID: PMC2775011 DOI: 10.1096/fj.09-136630] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022]
Abstract
Dynamin-related protein (Drp) 1 is a key regulator of mitochondrial fission and is composed of GTP-binding, Middle, insert B, and C-terminal GTPase effector (GED) domains. Drp1 associates with mitochondrial fission sites and promotes membrane constriction through its intrinsic GTPase activity. The mechanisms that regulate Drp1 activity remain poorly understood but are likely to involve reversible post-translational modifications, such as conjugation of small ubiquitin-like modifier (SUMO) proteins. Through a detailed analysis, we find that Drp1 interacts with the SUMO-conjugating enzyme Ubc9 via multiple regions and demonstrate that Drp1 is a direct target of SUMO modification by all three SUMO isoforms. While Drp1 does not harbor consensus SUMOylation sequences, our analysis identified2 clusters of lysine residues within the B domain that serve as noncanonical conjugation sites. Although initial analysis indicates that mitochondrial recruitment of ectopically expressed Drp1 in response to staurosporine is unaffected by loss of SUMOylation, we find that Drp1 SUMOylation is enhanced in the context of the K38A mutation. This dominant-negative mutant, which is deficient in GTP binding and hydrolysis, does not associate with mitochondria and prevents normal mitochondrial fission. This finding suggests that SUMOylation of Drp1 is linked to its activity cycle and is influenced by Drp1 localization.
Collapse
Affiliation(s)
- Claudia Figueroa-Romero
- University of Michigan, Department of Neurology 5017 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matafora V, D'Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 2009; 8:2243-55. [PMID: 19596686 DOI: 10.1074/mcp.m900079-mcp200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity.
Collapse
Affiliation(s)
- Vittoria Matafora
- Division of Genomics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
38
|
Benedetto A, Au C, Aschner M. Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson’s Disease. Chem Rev 2009; 109:4862-84. [DOI: 10.1021/cr800536y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Benedetto
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Catherine Au
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| |
Collapse
|
39
|
Anderson DB, Wilkinson KA, Henley JM. Protein SUMOylation in neuropathological conditions. DRUG NEWS & PERSPECTIVES 2009; 22:255-65. [PMID: 19609463 PMCID: PMC3309023 DOI: 10.1358/dnp.2009.22.5.1378636] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are approximately 11 kDa proteins that can be covalently conjugated to lysine residues in defined target proteins. The resultant post-translational modification, SUMOylation, is vital for the viability of mammalian cells and regulates, among other things, a range of essential nuclear processes. It has become increasingly apparent in recent years that SUMOylation also serves multiple functions outside the nucleus and that it plays a critical role in the regulation of neuronal integrity and synaptic function. In particular, dysfunction of the SUMOylation pathway has been implicated in the molecular and cellular dysfunction associated with neurodegenerative and psychiatric disorders. Here, we outline current knowledge of the SUMO pathway and discuss the growing evidence for its involvement in multiple neurodegenerative disorders, with a view to highlighting the potential of the SUMO pathway as a putative drug target.
Collapse
Affiliation(s)
- Dina B. Anderson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Kevin A. Wilkinson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Jeremy M. Henley
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| |
Collapse
|