1
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
2
|
Jeknić S, Kudo T, Song JJ, Covert MW. An optimized reporter of the transcription factor hypoxia-inducible factor 1α reveals complex HIF-1α activation dynamics in single cells. J Biol Chem 2023; 299:104599. [PMID: 36907438 PMCID: PMC10124923 DOI: 10.1016/j.jbc.2023.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Immune cells adopt a variety of metabolic states to support their many biological functions, which include fighting pathogens, removing tissue debris, and tissue remodeling. One of the key mediators of these metabolic changes is the transcription factor hypoxia-inducible factor 1α (HIF-1α). Single-cell dynamics have been shown to be an important determinant of cell behavior; however, despite the importance of HIF-1α, little is known about its single-cell dynamics or their effect on metabolism. To address this knowledge gap, here we optimized a HIF-1α fluorescent reporter and applied it to study single-cell dynamics. First, we showed that single cells are likely able to differentiate multiple levels of prolyl hydroxylase inhibition, a marker of metabolic change, via HIF-1α activity. We then applied a physiological stimulus known to trigger metabolic change, interferon-γ, and observed heterogeneous, oscillatory HIF-1α responses in single cells. Finally, we input these dynamics into a mathematical model of HIF-1α-regulated metabolism and discovered a profound difference between cells exhibiting high versus low HIF-1α activation. Specifically, we found cells with high HIF-1α activation are able to meaningfully reduce flux through the tricarboxylic acid cycle and show a notable increase in the NAD+/NADH ratio compared with cells displaying low HIF-1α activation. Altogether, this work demonstrates an optimized reporter for studying HIF-1α in single cells and reveals previously unknown principles of HIF-1α activation.
Collapse
Affiliation(s)
- Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - Joanna J Song
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| |
Collapse
|
3
|
Prezioso C, Pietropaolo V, Moens U, Ciotti M. JC polyomavirus: a short review of its biology, its association with progressive multifocal leukoencephalopathy, and the diagnostic value of different methods to manifest its activity or presence. Expert Rev Mol Diagn 2023; 23:143-157. [PMID: 36786077 DOI: 10.1080/14737159.2023.2179394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. AREAS COVERED The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. EXPERT OPINION The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway Tromsø, Norway
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata Rome, Italy
| |
Collapse
|
4
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
6
|
He J, Yu Y, Li ZM, Liu ZX, Weng SP, Guo CJ, He JG. Hypoxia triggers the outbreak of infectious spleen and kidney necrosis virus disease through viral hypoxia response elements. Virulence 2022; 13:714-726. [PMID: 35465839 PMCID: PMC9045828 DOI: 10.1080/21505594.2022.2065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypoxia frequently occurs in aquatic environments, especially in aquaculture areas. However, research on the relationship between hypoxic aquatic environments with viral diseases outbreak is limited, and its underlying mechanisms remain elusive. Herein, we demonstrated that hypoxia directly triggers the outbreak of infectious spleen and kidney necrosis virus (ISKNV) disease. Hypoxia or activated hypoxia-inducible factor (HIF) pathway could remarkably increase the levels of viral genomic DNA, titers, and gene expression, indicating that ISKNV can response to hypoxia and HIF pathway. To reveal the mechanism of ISKNV respond to HIF pathway, we identified the viral hypoxia response elements (HREs) in ISKNV genome. Fifteen viral HREs were identified, and four related viral genes responded to the HIF pathway, in which the hre-orf077r promoter remarkably responded to the HIF pathway. The level of orf077r mRNA dramatically increased after the infected cells were treated with dimethyloxalylglycine (DMOG) or the infected cells/fish subjected to hypoxic conditions, and overexpressed orf077r could remarkably increase the ISKNV replication. These finding shows that hypoxic aquatic environments induce the expression of viral genes through the viral HREs to promote ISKNV replication, indicating that viral HREs might be important biomarkers for the evaluation of the sensitivity of aquatic animal viral response to hypoxia stress. Furthermore, the frequencies of viral HREs in 43 species aquatic viral genomes from 16 families were predicted and the results indicate that some aquatic animal viruses, such as Picornavirdea, Dicistronviridae, and Herpesviridae, may have a high risk to outbreak when the aquatic environment encounters hypoxic stress.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Xuan Liu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
7
|
Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021; 22:ijms22157954. [PMID: 34360716 PMCID: PMC8347150 DOI: 10.3390/ijms22157954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.
Collapse
|
8
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
López-Rodríguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathog 2019; 15:e1008192. [PMID: 31809522 PMCID: PMC6975554 DOI: 10.1371/journal.ppat.1008192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/22/2020] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Darlah M. López-Rodríguez
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- IV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Enrique A. Mesri
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samita Andreansky
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
He J, Yu Y, Qin XW, Zeng RY, Wang YY, Li ZM, Mi S, Weng SP, Guo CJ, He JG. Identification and functional analysis of the Mandarin fish (Siniperca chuatsi) hypoxia-inducible factor-1α involved in the immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 92:141-150. [PMID: 31176007 DOI: 10.1016/j.fsi.2019.04.298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a popular cultured freshwater fish species due to its high market value in China. With increasing density of breeding, mandarin fish is often cultured under low environmental oxygen concentrations (hypoxia). In this study, the relative expression levels of hypoxia response element (HRE)-luciferase reporter and the HIF signaling pathway downstream genes (scldha, scvegf, and scglut-1) were significantly increased by hypoxic stress, thereby indicating that mandarin fish has an HIF signaling pathway. The mandarin fish HIF-1α (scHIF-1α) was also characterized. Multiple sequence alignments showed that scHIF-1α presented similar architectures to other known vertebrates. Subcellular localization analysis showed that scHIF-1α was mainly located in the nucleus of the mandarin fish fry-1 (MFF-1) cells. The role of scHIF-1α in the regulation of the HIF signaling pathway was confirmed. Overexpression of scHIF-1α could induce the HIF signaling pathway, whereas knockdown of scHIF-1α inhibited the activity of the HIF-1 signaling pathway. Tissue distribution analysis showed that schif-1α was significantly highly expressed in the blood, heart, and liver, which indicated that the main function of scHIF-1α was closely related to the circulatory system. Furthermore, scHIF-1α expression was significantly induced by poly I:C, poly dG:dC or PMA, thereby indicating that scHIF-1α was involved in the immune response. HIF-1α plays an important role in pathogen infections in mammals, but its role in fish is rarely investigated. Overexpression of scHIF-1α could inhibit MRV and SCRV infections, whereas knockdown of scHIF-1α could promote such infections. Those results suggested that scHIF-1α played an important role in fish virus infection. Our study will help understand the hypoxia associated with the outbreaks of aquatic viral disease.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Xiao-Wei Qin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ruo-Yun Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Yuan-Yuan Wang
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Shu Mi
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Shao-Ping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
11
|
Del Valle L, Piña-Oviedo S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front Oncol 2019; 9:711. [PMID: 31440465 PMCID: PMC6694743 DOI: 10.3389/fonc.2019.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human neurotropic virus JCPyV, a member of the Polyomaviridiae family, is the opportunistic infectious agent of Progressive Multifocal Leukoencephalopathy (PML), a fatal disease seen in severe immunosuppressive conditions and, during the last decade, in patients undergoing immunotherapy. JCPyV is a ubiquitous pathogen with up to 85% of the adult population word-wide exhibiting antibodies against it. Early experiments demonstrated that direct inoculation of JCPyV into the brain of different species resulted in the development of brain tumors and other neuroectodermal-derived neoplasias. Later, several reports showed the detection of viral sequences in medulloblastomas and glial tumors, as well as expression of the viral protein T-Antigen. Few oncogenic viruses, however, have caused so much controversy regarding their role in the pathogenesis of brain tumors, but the discovery of new Polyomaviruses that cause Merkel cell carcinomas in humans and brain tumors in racoons, in addition to the role of JCPyV in colon cancer and multiple mechanistic studies have shed much needed light on the role of JCPyV in cancer. The pathways affected by the viral protein T-Antigen include cell cycle regulators, like p53 and pRb, and transcription factors that activate pro-proliferative genes, like c-Myc. In addition, infection with JCPyV causes chromosomal damage and T-Antigen inhibits homologous recombination, and activates anti-apoptotic proteins, such as Survivin. Here we review the different aspects of the biology and physiopathology of JCPyV.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
12
|
Shi WL, Zhang YB, Wei W, Gao HY, Huang YH. WITHDRAWN: Whole genome sequencing identifies novel NOTCH3 mutations for leukoaraiosis. Biochem Biophys Res Commun 2018:S0006-291X(18)30297-3. [PMID: 29428736 DOI: 10.1016/j.bbrc.2018.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Wen-Lei Shi
- Department of Neurology, Beijing Military General Hospital, Beijing, 10070, China; Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, HeBei, 050082, PR China
| | - Yong-Biao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Wei Wei
- Department of Neurology, Beijing Military General Hospital, Beijing, 10070, China
| | - Hong-Yan Gao
- Section of Science Research and Training, Beijing Military General Hospital, Beijing 10070, China
| | - Yong-Hua Huang
- Department of Neurology, Beijing Military General Hospital, Beijing, 10070, China
| |
Collapse
|
13
|
Davies SI, Muranski P. T cell therapies for human polyomavirus diseases. Cytotherapy 2017; 19:1302-1316. [PMID: 28927823 DOI: 10.1016/j.jcyt.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Rapid restoration of virus-specific T immunity via adoptive transfer of ex vivo generated T cells has been proven as a powerful therapy for patients with advanced cancers and refractory viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). BK virus (BKV), John Cunningham virus (JCV), and Merkel cell carcinoma virus (MCV) are the members of the rapidly growing human polyomavirus (hPyV) family that commonly infects most healthy humans. These viruses have a clearly established potential for causing severe end-organ damage or malignant transformation, especially in individuals with weakened immunity who are unable to mount or regain endogenous T-cell responses as a result of underlying leukemia or iatrogenic immunosuppression in autoimmunity, bone marrow and solid organ transplant settings. Here we will discuss recent advances in using T-cell-based immunotherapies to save patients suffering from PyV-associated diseases including hemorrhagic cystitis, BKV virus-associated nephropathy, and JC-associated progressive multifocal leukoencephalopathy (PML). We will also review progress in the understanding of Merkel cell carcinoma (MCC) as a virally driven tumor that is amenable to immune intervention and can be targeted with adoptively transferred T cells specific for viral oncoproteins.
Collapse
Affiliation(s)
- Sarah I Davies
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Columbia Center for Translational Immunology, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Assetta B, Atwood WJ. The biology of JC polyomavirus. Biol Chem 2017; 398:839-855. [PMID: 28493815 DOI: 10.1515/hsz-2016-0345] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.
Collapse
|
15
|
Laukoter S, Rauschka H, Tröscher AR, Köck U, Saji E, Jellinger K, Lassmann H, Bauer J. Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis. Acta Neuropathol 2017; 133:613-627. [PMID: 27817117 PMCID: PMC5348553 DOI: 10.1007/s00401-016-1642-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/29/2022]
Abstract
During the appearance of human immunodeficiency virus infection in the 1980 and the 1990s, progressive multifocal leukoencephalopathy (PML), a viral encephalitis induced by the JC virus, was the leading opportunistic brain infection. As a result of the use of modern immunomodulatory compounds such as Natalizumab and Rituximab, the number of patients with PML is once again increasing. Despite the presence of PML over decades, little is known regarding the mechanisms leading to death of infected cells and the role the immune system plays in this process. Here we compared the presence of inflammatory T cells and the targeting of infected cells by cytotoxic T cells in PML, herpes simplex virus encephalitis (HSVE) and cytomegalovirus encephalitis (CMVE). In addition, we analyzed cell death mechanisms in infected cells in these encephalitides. Our results show that large numbers of inflammatory cytotoxic T cells are present in PML lesions. Whereas in HSVE and CMVE, single or multiple appositions of CD8+ or granzyme-B+ T cells to infected cells are found, in PML such appositions are significantly less apparent. Analysis of apoptotic pathways by markers such as activated caspase-3, caspase-6, poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) showed upregulation of caspase-3 and loss of caspase-6 from mitochondria in CMVE and HSVE infected cells. Infected oligodendrocytes in PML did not upregulate activated caspase-3 but instead showed translocation of PARP-1 from nucleus to cytoplasm and AIF from mitochondria to nucleus. These findings suggest that in HSVE and CMVE, cells die by caspase-mediated apoptosis induced by cytotoxic T cells. In PML, on the other hand, infected cells are not eliminated by the immune system but seem to die by virus-induced PARP and AIF translocation in a type of cell death defined as parthanatos.
Collapse
|
16
|
Hypoxia inducible factor one alpha and human viral pathogens. Curr Res Transl Med 2017; 65:7-9. [PMID: 28340697 DOI: 10.1016/j.retram.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
If the oxygen tension level is 21% in ambient air, it is only between 14% and 1% in vivo. Consequently, viral pathogens are exposed and must adapt to these fluctuating oxygen levels to colonize the host and cause diseases. The problem is that for many years, the virological studies have been performed at 21% oxygen levels and consequently this is a real handicap to have a correct view of the mechanistic aspects of human viral infections. In this brief review, we describe for some selected examples the interactions of human viruses with this relative hypoxia observed in vivo.
Collapse
|
17
|
Abstract
AbstractRenaut corpuscles are cylindrical hyaline structures that arise from the peripheral nerve perineurium and project into the endoneurium. Despite their earlier accurate description in the French and German literature, Kernohan and Woltman (1938) reported very similar structures as “nerve infarcts” in a case series of vasculitic neuropathy. Krücke (1955) deserves credit for discovering this error and further explaining how peripheral nerves react differently (from brain parenchyma) to ischemia. We tried to elucidate the reason why Kernohan and Woltman, and others, made this scientific error by describing the historical evolution of our understanding of the structure and function of Renaut corpuscles.
Collapse
|
18
|
Charpentier T, Hammami A, Stäger S. Hypoxia inducible factor 1α: A critical factor for the immune response to pathogens and Leishmania. Cell Immunol 2016; 309:42-49. [DOI: 10.1016/j.cellimm.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
19
|
Vassilaki N, Frakolaki E. Virus-host interactions under hypoxia. Microbes Infect 2016; 19:193-203. [PMID: 27771294 DOI: 10.1016/j.micinf.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Oxygen tension can exert a significant effect on viral propagation in vitro and possibly in vivo. In general, hypoxia restricts the replication of viruses that naturally infect tissues exposed to ambient oxygen and induces the growth of viruses that naturally target tissues exposed to low oxygen. Some viruses can reprogram cell bioenergetics towards lowering cellular respiration and therefore oxygen consumption in order to support their replication. Aim of this review is to summarize findings on the interplay between viral infection and oxygen levels, highlighting the implicated oxygen tension-sensitive elements and metabolic determinants and concluding with possible therapeutic approaches targeting these mediators.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Av., 11521, Athens, Greece.
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Av., 11521, Athens, Greece
| |
Collapse
|
20
|
Signorini L, Croci M, Boldorini R, Varella RB, Elia F, Carluccio S, Villani S, Bella R, Ferrante P, Delbue S. Interaction Between Human Polyomavirus BK and Hypoxia Inducible Factor-1 alpha. J Cell Physiol 2015; 231:1343-9. [PMID: 26529465 DOI: 10.1002/jcp.25238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
BK polyomavirus (BKV) has a worldwide seroprevalence of approximately 90%. After primary infection, BKV establishes a life-long latency within the urogenital tract. The severe immunological impairment occurring in renal transplant recipients leads to BKV reactivation, which may result in polyomavirus associated nephropathy (PVAN). While the transplanted kidney is transiently unperfused, Hypoxia Inducible Factors (HIFs) mediate the cellular response to hypoxia. The α-subunit of HIF isoform 1 (HIF-1α) may interact with several viruses, but until now, there has been no information regarding the interaction between BKV and HIF-1α. The aim of this study is to investigate the possible interaction between HIF-1α and BKV and its potential effect on the pathogenesis of PVAN. Screening of 17 kidney tissue samples revealed that HIF-1α expression was 13.6-fold higher in PVAN tissues compared to control tissues. A luminometric assay in co-transfected African green monkey kidney cells (VERO) demonstrated BKV promoter activation ranging from two to sixfold (P < 0.05) when HIF-1α was over-expressed. A Chromatin ImmunoPrecipitation (ChIP) assay showed structural binding between the BKV promoter and HIF-1α. The amount of BKV DNA increased by threefold in VERO infected cells that were exposed to simulated hypoxia, compared to the cells not subjected to hypoxia. Both ex vivo and in vitro interactions between HIF-1α and BKV were observed, suggesting that HIF-1α, stabilized during transplantation, may be able to bind the BKV promoter and enhance BKV replication. Thus, hypoxia should be considered a risk factor for the development of PVAN in kidney transplant recipients.
Collapse
Affiliation(s)
- Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Mattia Croci
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Unit of Pathology, University of Eastern Piedmont Novara, Italy
| | - Rafael Brandao Varella
- Department of Microbiology and Parasitology, Biomedical Institute, Universidade Federal Fluminense, Brazil
| | - Francesca Elia
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Silvia Carluccio
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Ramona Bella
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
21
|
Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity 2015; 41:518-28. [PMID: 25367569 DOI: 10.1016/j.immuni.2014.09.008] [Citation(s) in RCA: 867] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/11/2022]
Abstract
The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.
Collapse
Affiliation(s)
- Asis Palazon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ananda W Goldrath
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
22
|
Bhandari T, Nizet V. Hypoxia-Inducible Factor (HIF) as a Pharmacological Target for Prevention and Treatment of Infectious Diseases. Infect Dis Ther 2014; 3:159-74. [PMID: 25134687 PMCID: PMC4269623 DOI: 10.1007/s40121-014-0030-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
In the present era of ever-increasing antibiotic resistance and increasingly complex and immunosuppressed patient populations, physicians and scientists are seeking novel approaches to battle difficult infectious disease conditions. Development of a serious infection implies a failure of innate immune capabilities in the patient, and one may consider whether pharmacological strategies exist to correct and enhance innate immune cell function. Hypoxia-inducible factor-1 (HIF-1), the central regulator of the cellular response to hypoxic stress, has recently been recognized to control the activation state and key microbicidal functions of immune cells. HIF-1 boosting drugs are in clinical development for anemia and other indications, and could be repositioned as infectious disease therapeutics. With equal attention to opportunities and complexities, we review our current understanding of HIF-1 regulation of microbial host-pathogen interactions with an eye toward future drug development.
Collapse
Affiliation(s)
- Tamara Bhandari
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA
| | - Victor Nizet
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
- Center for Immunity, Infection and Inflammation, Medical Sciences Research 4113, University of California, San Diego, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|
23
|
Morinet F, Casetti L, François JH, Capron C, Pillet S. Oxygen tension level and human viral infections. Virology 2013; 444:31-6. [PMID: 23850460 DOI: 10.1016/j.virol.2013.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/06/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023]
Abstract
The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition.
Collapse
Affiliation(s)
- Frédéric Morinet
- Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris, France.
| | | | | | | | | |
Collapse
|
24
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
25
|
Kofman A, Marcinkiewicz L, Dupart E, Lyshchev A, Martynov B, Ryndin A, Kotelevskaya E, Brown J, Schiff D, Abounader R. The roles of viruses in brain tumor initiation and oncomodulation. J Neurooncol 2011; 105:451-66. [PMID: 21720806 PMCID: PMC3278219 DOI: 10.1007/s11060-011-0658-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/24/2011] [Indexed: 01/30/2023]
Abstract
While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin.
Collapse
Affiliation(s)
- Alexander Kofman
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Lucasz Marcinkiewicz
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Evan Dupart
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - Anton Lyshchev
- St. Petersburg State Department of Health, Laboratory of Molecular Genetics, Hospital #31, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Boris Martynov
- S.M.Kirov Medical Academy, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Anatolii Ryndin
- Clinical Diagnostic Center, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Elena Kotelevskaya
- St. Petersburg State Department of Health, Laboratory of Molecular Genetics, Hospital #31, Pr. Dinamo 3, St. Petersburg 197110, Russia
| | - Jay Brown
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA
| | - David Schiff
- Department of Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Roger Abounader
- Department of Microbiology, University of Virginia, P.O. Box 800168, Charlottesville, VA 22908, USA. Department of Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
26
|
Molecular regulation of JC virus tropism: insights into potential therapeutic targets for progressive multifocal leukoencephalopathy. J Neuroimmune Pharmacol 2010; 5:404-17. [PMID: 20401541 DOI: 10.1007/s11481-010-9203-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a growing concern for patients undergoing immune modulatory therapies for treatment of autoimmune diseases such as multiple sclerosis. Currently, there are no drugs approved for the treatment of PML that have been demonstrated in the patient to effectively and reproducibly alter the course of disease progression. The human polyoma virus JC is the causative agent of PML. JC virus (JCV) dissemination is tightly controlled by regulation of viral gene expression from the promoter by cellular transcription factors expressed in cells permissive for infection. JCV infection likely occurs during childhood, and latent virus containing PML-associated promoter sequences is maintained in lymphoid cells within the bone marrow. Because development of PML is tightly linked to suppression and or modulation of the immune system as in development of hematological malignancies, AIDS, and monoclonal antibody treatments, further scrutiny of the course of JCV infection in immune cells will be essential to our understanding of development of PML and identification of new therapeutic targets.
Collapse
|