1
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 PMCID: PMC11796330 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
3
|
Bui MT, Fernández-Eulate G, Evangelista T, Lacène E, Brochier G, Labasse C, Madelaine A, Chanut A, Beuvin M, Borsato-Levy F, Biancalana V, Barcia G, De Lonlay P, Laporte J, Böhm J, Romero NB. Relevance of muscle biopsies in the neonatal and early infantile period: a 52 years retrospective study in the gene-sequencing era. Acta Neuropathol Commun 2024; 12:191. [PMID: 39707553 PMCID: PMC11662432 DOI: 10.1186/s40478-024-01882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Abstract
Neuromuscular disorders (NMD) with neonatal or early infantile onset are usually severe and differ in symptoms, complications, and treatment options. The establishment of a diagnosis relies on the combination of clinical examination, morphological analyses of muscle biopsies, and genetic investigations. Here, we re-evaluated and classified a unique collection of 535 muscle biopsies from NMD infants aged 0-6 months examined over a period of 52 years. We aimed to assess the importance and contribution of morphological muscle biopsy analyses for the establishment of a precise and accurate molecular diagnosis. Altogether, 82% of the biopsies showed typical structural myofiber anomalies highly suggestive of specific NMD classes (congenital myopathies, metabolic myopathies, lower motor neuron (LMN) and neuromuscular junction (NMJ) disorders, muscular dystrophies, inflammatory myopathies), while the remaining 18% showed no or only non-specific histological abnormalities. The diagnostic success rate differed among the NMD classes and was particularly high for congenital myopathies as illustrated by the identification of causative genes in 61% of cases. This is essentially due to the presence of characteristic histopathological hallmarks on biopsies visible by light or electron microscopy often pointing to specific genes. In contrast, metabolic myopathies commonly displayed non-specific features on muscle sections, led to the identification of causative genes in only 19% of the patients, and typically required additional enzymatic tests to establish a more precise diagnosis. The evolution of sequencing technologies fundamentally improved molecular diagnosis and also shifted the relevance of muscle biopsies within the diagnostic process. Depending on the clinical presentation of the patients, direct gene or panel sequencing may be the preferred method nowadays. However, histological and ultrastructural examinations of muscle sections are still frequently useful and can constitute an elemental step in the diagnostic process-either by directing purposeful gene sequencing or pointing to genes and pathogenic variants identified by next-generation sequencing (NGS), or by complementing clinical findings and biochemical analysis methods.
Collapse
Affiliation(s)
- Mai Thao Bui
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Gorka Fernández-Eulate
- Institute of Myology, Neuromuscular Diseases Reference Center Nord/Est/Ile-de-France, GHU Pitié-Salpêtrière, APHP, Paris, France
- Hôpital Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Teresinha Evangelista
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
- Institute of Myology, Neuromuscular Diseases Reference Center Nord/Est/Ile-de-France, GHU Pitié-Salpêtrière, APHP, Paris, France
- Neuromuscular Pathology Functional Unit, Neuropathology Service, Institute of Myology, University Hospital Pitié-Salpêtrière-APHP, Paris, France
| | - Emmanuelle Lacène
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Clémence Labasse
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Angéline Madelaine
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Anaïs Chanut
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Maud Beuvin
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Favienne Borsato-Levy
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Valérie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
- Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker Enfants Malades, APHP, Université Paris Cité, Paris, France
| | - Pascale De Lonlay
- Hôpital Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Norma Beatriz Romero
- Institute of Myology, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France.
- Institute of Myology, Neuromuscular Diseases Reference Center Nord/Est/Ile-de-France, GHU Pitié-Salpêtrière, APHP, Paris, France.
| |
Collapse
|
4
|
Clayton JS, Johari M, Taylor RL, Dofash L, Allan G, Monahan G, Houweling PJ, Ravenscroft G, Laing NG. An Update on Reported Variants in the Skeletal Muscle α-Actin ( ACTA1) Gene. Hum Mutat 2024; 2024:6496088. [PMID: 40225930 PMCID: PMC11918651 DOI: 10.1155/2024/6496088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 04/15/2025]
Abstract
The ACTA1 gene encodes skeletal muscle alpha-actin, which forms the core of the sarcomeric thin filament in adult skeletal muscle. ACTA1 represents one of six highly conserved actin proteins that have all been associated with human disease. The first 15 pathogenic variants in ACTA1 were reported in 1999, which expanded to 177 in 2009. Here, we update on the now 607 total variants reported in LOVD, HGMD, and ClinVar, which includes 343 reported pathogenic/likely pathogenic (P/LP) variants. We also provide suggested ACTA1-specific modifications to ACMG variant interpretation guidelines based on our analysis of known variants, gnomAD reports, and pathogenicity in other actin isoforms. Using these criteria, we report a total of 447 P/LP ACTA1 variants. From a clinical perspective, the number of reported ACTA1 disease phenotypes has grown from five to 20, albeit with some overlap. The vast majority (74%) of ACTA1 variants cause nemaline myopathy (NEM), but there are increasing numbers that cause cardiomyopathy and novel phenotypes such as distal myopathy. We highlight challenges associated with identifying genotype-phenotype correlations for ACTA1. Finally, we summarize key animal models and review the current state of preclinical treatments for ACTA1 disease. This update provides important resources and recommendations for the study and interpretation of ACTA1 variants.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Lein Dofash
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Georgina Allan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Peter J. Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Sha R, Guo R, Duan H, Peng Q, Yuan N, Wang Z, Li Z, Xie Z, You X, Feng Y. SRSF2 is a key player in orchestrating the directional migration and differentiation of MyoD progenitors during skeletal muscle development. eLife 2024; 13:RP98175. [PMID: 39248331 PMCID: PMC11383525 DOI: 10.7554/elife.98175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of Srsf2 in MyoD + progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in Srsf2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by Srsf2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with Srsf2 knockdown. Crucially, the introduction of exogenous Aurka in Srsf2-knockdown cells markedly alleviated the differentiation defects caused by Srsf2 knockdown. Furthermore, our research unveiled the role of Srsf2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following Srsf2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.
Collapse
Affiliation(s)
- Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruochen Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
7
|
Hossain MR, Tareq MMI, Biswas P, Tauhida SJ, Bibi S, Zilani MNH, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Hasan MN. Identification of molecular targets and small drug candidates for Huntington's disease via bioinformatics and a network-based screening approach. J Cell Mol Med 2024; 28:e18588. [PMID: 39153206 PMCID: PMC11330274 DOI: 10.1111/jcmm.18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Shabana Bibi
- Department of BiosciencesShifa Tameer‐e‐Millat UniversityIslamabadPakistan
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| |
Collapse
|
8
|
Piga D, Rimoldi M, Magri F, Zanotti S, Napoli L, Ripolone M, Pagliarani S, Ciscato P, Velardo D, D’Amico A, Bertini E, Comi GP, Ronchi D, Corti S. Case report: A novel ACTA1 variant in a patient with nemaline rods and increased glycogen deposition. Front Neurol 2024; 15:1340693. [PMID: 38500810 PMCID: PMC10944937 DOI: 10.3389/fneur.2024.1340693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.
Collapse
Affiliation(s)
- Daniela Piga
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Martina Rimoldi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Francesca Magri
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Simona Zanotti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Michela Ripolone
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Serena Pagliarani
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Patrizia Ciscato
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Daniele Velardo
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Giacomo Pietro Comi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Dario Ronchi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Stefania Corti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Liu Y, Lin W. Morphological and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy. Hum Mol Genet 2024; 33:233-244. [PMID: 37883471 PMCID: PMC10800017 DOI: 10.1093/hmg/ddad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| |
Collapse
|
10
|
Lehtokari VL, Sagath L, Davis M, Ho D, Kiiski K, Kettunen K, Demczko M, Stein R, Vatta M, Winder TL, Shohet A, Orenstein N, Krcho P, Bohuš P, Huovinen S, Udd B, Pelin K, Laing NG, Wallgren-Pettersson C. A recurrent ACTA1 amino acid change in mosaic form causes milder asymmetric myopathy. Neuromuscul Disord 2024; 34:32-40. [PMID: 38142473 DOI: 10.1016/j.nmd.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.
Collapse
Affiliation(s)
- Vilma-Lotta Lehtokari
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland.
| | - Lydia Sagath
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA
| | - Desiree Ho
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA
| | - Kirsi Kiiski
- Folkhälsan Research Center, 00290 Helsinki, Finland; Laboratory of Genetics, Division of Genetics and Clinical Pharmacology, HUS Diagnostic Center, 00029 Helsinki University Hospital and 00014 University of Helsinki, Helsinki, Finland
| | - Kaisa Kettunen
- Laboratory of Genetics, Division of Genetics and Clinical Pharmacology, HUS Diagnostic Center, 00029 Helsinki University Hospital and 00014 University of Helsinki, Helsinki, Finland
| | - Matthew Demczko
- Division of Diagnostic Referral Services, Nemours Children's Hospital, Wilmington, DE 19803, United States
| | - Riki Stein
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel
| | - Matteo Vatta
- Invitae Corporation, San Francisco, CA 94103, United States
| | | | - Adi Shohet
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel
| | - Naama Orenstein
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Krcho
- Department of Neonatology, Pavol Jozef Safarik University, 041 80 Košice, Slovakia
| | - Peter Bohuš
- Department of Pathology, L. Pasteur University Hospital, 040 11 Košice, Slovakia
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, 33101 Tampere, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, 00290 Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, 33520 Tampere, Finland; Department of Neurology, Vaasa Central Hospital, 65130 Vaasa, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, 00290 Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Finland
| | - Nigel G Laing
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA; Harry Perkins Institute of Medical Research, and University of Western Australia Centre for Medical Research, Nedlands Western Australia 6009, Australia
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland
| |
Collapse
|
11
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
12
|
Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023; 424:113507. [PMID: 36796746 PMCID: PMC9993434 DOI: 10.1016/j.yexcr.2023.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Margaret Haberman
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Jessica Sutton
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Rebecca A Slick
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shawn M Luttrell
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - Michael W Lawlor
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| |
Collapse
|
13
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
14
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
15
|
Younger DS. Congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:533-561. [PMID: 37562885 DOI: 10.1016/b978-0-323-98818-6.00027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The congenital myopathies are inherited muscle disorders characterized clinically by hypotonia and weakness, usually from birth, with a static or slowly progressive clinical course. Historically, the congenital myopathies have been classified according to major morphological features seen on muscle biopsy as nemaline myopathy, central core disease, centronuclear or myotubular myopathy, and congenital fiber type disproportion. However, in the past two decades, the genetic basis of these different forms of congenital myopathy has been further elucidated with the result being improved correlation with histological and genetic characteristics. However, these notions have been challenged for three reasons. First, many of the congenital myopathies can be caused by mutations in more than one gene that suggests an impact of genetic heterogeneity. Second, mutations in the same gene can cause different muscle pathologies. Third, the same genetic mutation may lead to different pathological features in members of the same family or in the same individual at different ages. This chapter provides a clinical overview of the congenital myopathies and a clinically useful guide to its genetic basis recognizing the increasing reliance of exome, subexome, and genome sequencing studies as first-line analysis in many patients.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Wang J, Fan Y, Mittal B, Sanger JM, Sanger JW. Comparison of incorporation of wild type and mutated actins into sarcomeres in skeletal muscle cells: A fluorescence recovery after photobleaching study. Cytoskeleton (Hoboken) 2022; 79:105-115. [PMID: 36085566 DOI: 10.1002/cm.21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/30/2023]
Abstract
The α-actin mutation G15R in the nucleotide-binding pocket of skeletal muscle, causes severe actin myopathy in human skeletal muscles. Expressed in cultured embryonic quail skeletal myotubes, YFP-G15R-α-actin incorporates in sarcomeres in a pattern indistinguishable from wildtype YFP-α-actin. However, patches of YFP-G15R-α-actin form, resembling those in patients. Analyses with FRAP of incorporation of YFP-G15R-α-actin showed major differences between fast-exchanging plus ends of overlapping actin filaments in Z-bands, versus slow exchanging ends of overlapping thin filaments in the middle of sarcomeres. Wildtype skeletal muscle YFP-α-actin shows a faster rate of incorporation at plus ends of F-actin than at their minus ends. Incorporation of YFP-G15R-α-actin molecules is reduced at plus ends, increased at minus ends. The same relationship of wildtype YFP-α-actin incorporation is seen in myofibrils treated with cytochalasin-D: decreased dynamics at plus ends, increased dynamics at minus ends, and F-actin aggregates. Speculation: imbalance of normal polarized assembly of F-actin creates excess monomers that form F-actin aggregates. Two other severe skeletal muscle YFP-α-actin mutations (H40Y and V163L) not in the nucleotide pocket do not affect actin dynamics, and lack F-actin aggregates. These results indicate that normal α-actin plus and minus end dynamics are needed to maintain actin filament stability, and avoid F-actin patches.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Balraj Mittal
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
17
|
Labasse C, Brochier G, Taratuto AL, Cadot B, Rendu J, Monges S, Biancalana V, Quijano-Roy S, Bui MT, Chanut A, Madelaine A, Lacène E, Beuvin M, Amthor H, Servais L, de Feraudy Y, Erro M, Saccoliti M, Neto OA, Fauré J, Lannes B, Laugel V, Coppens S, Lubieniecki F, Bello AB, Laing N, Evangelista T, Laporte J, Böhm J, Romero NB. Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies. Acta Neuropathol Commun 2022; 10:101. [PMID: 35810298 PMCID: PMC9271256 DOI: 10.1186/s40478-022-01400-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.
Collapse
Affiliation(s)
- Clémence Labasse
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Ana-Lia Taratuto
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Bruno Cadot
- Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - John Rendu
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Soledad Monges
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Valérie Biancalana
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Susana Quijano-Roy
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Mai Thao Bui
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Anaïs Chanut
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Angéline Madelaine
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacène
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Maud Beuvin
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Helge Amthor
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Laurent Servais
- Centre de Références Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of Liège, Liège, Belgium.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yvan de Feraudy
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Marcela Erro
- Gutierrez Pediatric Hospital, Buenos Aires, Argentina
| | - Maria Saccoliti
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Osorio Abath Neto
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Julien Fauré
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Lannes
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Sandra Coppens
- Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabiana Lubieniecki
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Ana Buj Bello
- Université Paris-Saclay, Integrare Research Unit UMR S951, Inserm, Evry, France.,Généthon, Université Evry, Evry, France
| | - Nigel Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Teresinha Evangelista
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France. .,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
18
|
Hunley C, Mohsin M, Marucho M. Electrical impulse characterization along actin filaments in pathological conditions. COMPUTER PHYSICS COMMUNICATIONS 2022; 275:108317. [PMID: 35369107 PMCID: PMC8967275 DOI: 10.1016/j.cpc.2022.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present an interactive Mathematica notebook that characterizes the electrical impulses along actin filaments in both muscle and non-muscle cells for a wide range of physiological and pathological conditions. The simplicity of the theoretical formulation, and high performance of the Mathematica software, enable the analysis of multiple conditions without computational restrictions. The program is based on a multi-scale (atomic → monomer → filament) approach capable of accounting for the atomistic details of a protein molecular structure, its biological environment, and their impact on the travel distance, velocity, and attenuation of monovalent ionic wave packets propagating along microfilaments. The interactive component allows investigators to choose the experimental conditions (intracellular Vs in vitro), nucleotide state (ATP Vs ADP), actin isoform (alpha, gamma, beta, and muscle or non-muscle cell), as well as a conformation model that covers a variety of mutants and wild-type (the control) actin filament. We used the computational tool to analyze environmental changes such as temperature effects and pH changes of the surrounding solutions, as well as structural changes to an actin monomer due to radius changes. Additionally, we investigated for the first time the electrostatic consequences of actin mutations from different disease conditions. These studies may provide an unprecedented molecular understanding of why and how age, inheritance, and disease conditions induce dysfunctions in the biophysical mechanisms underlying the propagation of electrical signals along actin filaments.
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| | - Md Mohsin
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003, USA
| |
Collapse
|
19
|
Frameshift mutation S368fs in the gene encoding cytoskeletal β-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics. Eur J Cell Biol 2022; 101:151216. [DOI: 10.1016/j.ejcb.2022.151216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
|
20
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
21
|
Southard T, Kelly K, Armien AG. Myocardial protein aggregates in pet guinea pigs. Vet Pathol 2021; 59:157-163. [PMID: 34530659 DOI: 10.1177/03009858211042586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A retrospective study of guinea pigs submitted for necropsy revealed intracytoplasmic inclusions in the cardiomyocytes of 26 of 30 animals. The inclusions were found with approximately the same frequency in male and female guinea pigs and were slightly more common in older animals. In most cases, the animals did not have clinical signs or necropsy findings suggestive of heart failure, and the cause of death or reason for euthanasia was attributed to concurrent disease processes. However, the 4 guinea pigs with the highest inclusion body burden all had pulmonary edema, sometimes with intra-alveolar hemosiderin-laden macrophages, suggestive of heart failure. The inclusions were found in both the left and right ventricular myocardium, mainly in the papillary muscles, but were most common in the right ventricular free wall. No inclusions were detected in the atrial myocardium or in skeletal muscle. The inclusions did not stain with Congo red or periodic acid-Schiff. Electron microscopy revealed dense aggregates of disorganized myofilaments and microtubules that displaced and compressed the adjacent organelles. By immunohistochemistry, there was some scattered immunoreactivity for desmin and actin at the periphery of the inclusions and punctate actin reactivity within the aggregates. The inclusions did not react with antibodies to ubiquitin or cardiac myosin, but were variably reactive for alpha B crystallin, a small heat shock chaperone protein. The inclusions were interpreted as evidence of impaired proteostasis.
Collapse
|
22
|
Juntas Morales R, Perrin A, Solé G, Lacourt D, Pegeot H, Walther-Louvier U, Cintas P, Cances C, Espil C, Theze C, Zenagui R, Yauy K, Cosset E, Renard D, Rigau V, Maues de Paula A, Uro-Coste E, Arne-Bes MC, Martin Négrier ML, Leboucq N, Acket B, Malfatti E, Biancalana V, Metay C, Richard P, Rendu J, Rivier F, Koenig M, Cossée M. An Integrated Clinical-Biological Approach to Identify Interindividual Variability and Atypical Phenotype-Genotype Correlations in Myopathies: Experience on A Cohort of 156 Families. Genes (Basel) 2021; 12:genes12081199. [PMID: 34440373 PMCID: PMC8392536 DOI: 10.3390/genes12081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis of myopathies is challenged by the high genetic heterogeneity and clinical overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and hyperCKemia or effort intolerance, using a large gene panel including genes classically associated with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines, segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies, and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield (47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases. Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein. Detection of inter-individual variability and atypical phenotype-genotype associations is essential for precision medicine, patient care, and to progress in the understanding of the molecular mechanisms of myopathies.
Collapse
Affiliation(s)
- Raul Juntas Morales
- Explorations Neurologiques et Centre SLA, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France;
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Aurélien Perrin
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Guilhem Solé
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Delphine Lacourt
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Henri Pegeot
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Ulrike Walther-Louvier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Claude Cances
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France;
| | - Caroline Espil
- Service de Neuropédiatrie, Centre Hospitalier de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Corinne Theze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Reda Zenagui
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Kevin Yauy
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Elodie Cosset
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Dimitri Renard
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 30029 Nîmes, France;
| | - Valerie Rigau
- Service de Pathologie, Centre Hospitalier Universitaire de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Andre Maues de Paula
- Service de Pathologie, Centre Hospitalier Universitaire de Marseille, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône Alpes, 13005 Marseille, France;
| | - Emmanuelle Uro-Coste
- Service de Pathologie, Centre Hospitalier Universitaire de Toulouse, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31300 Toulouse, France;
| | - Marie-Christine Arne-Bes
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Marie-Laure Martin Négrier
- CHU de Bordeaux, Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, 33076 Bordeaux, France;
| | - Nicolas Leboucq
- Service de Neuroradiologie, Centre Hospitalier de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Blandine Acket
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, 92380 Garches, France;
- U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, 78180 Versailles, France
| | - Valérie Biancalana
- Laboratoire de Diagnostic Génétique, Université de Strasbourg, 67084 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - John Rendu
- CHU Grenoble, Université de Grenoble Alpes, Inserm, U1216, GIN, 38706 Saint-Martin-d’Hères, France;
- Unité Médicale de Génétique Moléculaire, Centre Hospitalier, Universitaire Grenoble Alpes, 38043 Saint-Martin-d’Hères, France
| | - François Rivier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
23
|
Chen L, Chen DF, Dong HL, Liu GL, Wu ZY. A novel frameshift ACTN2 variant causes a rare adult-onset distal myopathy with multi-minicores. CNS Neurosci Ther 2021; 27:1198-1205. [PMID: 34170073 PMCID: PMC8446211 DOI: 10.1111/cns.13697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Distal myopathies are a group of rare muscle disorders characterized by selective or predominant weakness in the feet and/or hands. In 2019, ACTN2 gene was firstly identified to be a cause of a new adult‐onset distal muscular dystrophy calling actininopathy and another distinctly different myopathy, named multiple structured core disease (MsCD). Thus, the various phenotypes and limited mutations in ACTN2‐related myopathy make the genotype‐phenotype correlation hard to understand. Aims To investigate the clinical features and histological findings in a Chinese family with distal myopathy. Whole exome sequencing and several functional studies were performed to explore the pathogenesis of the disease. Results We firstly identified a novel frameshift variant (c.2504delT, p.Phe835Serfs*66) within ACTN2 in a family including three patients. The patients exhibited adult‐onset distal myopathy with multi‐minicores, which, interestingly, was more like a combination of MsCD and actininopathy. Moreover, functional analysis using muscle samples revealed that the variant significantly increased the expression level of α‐actinin‐2 and resulted in abnormal Z‐line organization of muscle fiber. Vitro studies suggested aggregate formations might be involved in the pathogenesis of the disease. Conclusion Our results expanded the phenotypes of ACTN2‐related myopathy and provided helpful information to clarify the molecular mechanisms.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Meunier J, Villar-Quiles RN, Duband-Goulet I, Ferreiro A. Inherited Defects of the ASC-1 Complex in Congenital Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116039. [PMID: 34204919 PMCID: PMC8199739 DOI: 10.3390/ijms22116039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype–phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.
Collapse
Affiliation(s)
- Justine Meunier
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
| | - Rocio-Nur Villar-Quiles
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
| | - Isabelle Duband-Goulet
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| |
Collapse
|
25
|
Garibaldi M, Fattori F, Pennisi EM, Merlonghi G, Fionda L, Vanoli F, Leonardi L, Bucci E, Morino S, Micaloni A, Tartaglione T, Uijterwijk B, Zierikzee M, Ottenheijm C, Bertini ES, Stoppacciaro A, Raffa S, Salvetti M, Antonini G. Novel ACTA1 mutation causes late-presenting nemaline myopathy with unusual dark cores. Neuromuscul Disord 2020; 31:139-148. [PMID: 33384202 DOI: 10.1016/j.nmd.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
ACTA1 gene encodes the skeletal muscle alpha-actin, the core of thin filaments of the sarcomere. ACTA1 mutations are responsible of several muscle disorders including nemaline, cores, actin aggregate myopathies and fiber-type disproportion. We report clinical, muscle imaging, histopatological and genetic data of an Italian family carrying a novel ACTA1 mutation. All affected members showed a late-presenting, diffuse muscle weakness with sternocleidomastoideus and temporalis atrophy. Mild dysmorphic features were also detected. The most affected muscles by muscle MRI were rectus abdominis, gluteus minimus, vastus intermedius and both gastrocnemii. Muscle biopsy showed the presence of nemaline bodies with several unusual dark areas at Gomori Trichrome, corresponding to unstructured cores with abundant electrodense material by electron microscopy. The molecular analysis revealed missense variant c.148G>A; p.(Gly50Ser) in the exon 3 of ACTA1, segregating with affected members in the family. We performed a functional essay of fibre contractility showing a higher pCa50 (a measure of the calcium sensitivity of force) of type 1 fibers compared to control subjects' type 1 muscle fibers. Our findings expand the clinico-pathological spectrum of ACTA1-related congenital myopathies and the genetic spectrum of core-rod myopathies.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Andrea Micaloni
- Laboratory of Ultrastructural pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Bas Uijterwijk
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Martijn Zierikzee
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Antonella Stoppacciaro
- Unit of Pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Salvatore Raffa
- Laboratory of Ultrastructural pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
26
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
27
|
Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze JF, Romero NB, Laporte J, Böhm J. Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology 2020; 95:e3406-e3411. [DOI: 10.1212/wnl.0000000000010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo characterize 2 unrelated patients with either asymmetric or unilateral muscle weakness at the clinical, genetic, histologic, and ultrastructural level.MethodsThe patients underwent thorough clinical examination, whole-body MRI, and exome sequencing. Muscle morphology was assessed by histology and electron microscopy.ResultsBoth patients presented with early-onset hypotonia, delayed motor milestones, scoliosis, and reduced pulmonary function. Patient P1 manifested unilateral muscle weakness exclusively affecting the left side of the body; the asymmetry was less pronounced in patient P2. Muscle biopsies from both patients showed nemaline rods as the main histopathologic hallmark, and MRI revealed major fatty infiltrations in selective head, proximal, and distal muscles, correlating with the degree of muscle weakness asymmetry. Exome sequencing on blood DNA from both patients identified de novo ACTA1 missense mutations in a small number of reads, suggesting mutation mosaicism. Subsequent Sanger sequencing confirmed the presence of the mutations on muscle DNA, while they were barely detectable on blood DNA.ConclusionsDe novo mutations can occur anytime during embryonic development and may result in a mosaic pattern of affected cells and tissues and lead to the development of an asymmetric clinical picture. The present study points out that mosaic mutations might not be easily detectable on leukocyte DNA and thereby escape routine genetic analysis, and possibly account for a significant number of molecularly undiagnosed patients.
Collapse
|
28
|
Exoenzyme C3 transferase lowers actin cytoskeleton dynamics, genomic stability and survival of malignant melanoma cells under UV-light stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111947. [PMID: 32652466 DOI: 10.1016/j.jphotobiol.2020.111947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling is the major motor of cytoskeleton dynamics driving tumor cell adhesion, migration and invasion. The typical RhoA, RhoB and RhoC GTPases are the main regulators of actin cytoskeleton dynamics. The C3 exoenzyme transferase from Clostridium botulinum is a toxin that causes the specific ADP-ribosylation of Rho-like proteins, leading to its inactivation. Here, we examine what effects the Rho GTPase inhibition and the consequent actin cytoskeleton instability would have on the emergence of DNA damage and on the recovery of genomic stability of malignant melanoma cells, as well as on their survival. Therefore, the MeWo cell line, here assumed as a melanoma cell line model for the expression of genes involved in the regulation of the actin cytoskeleton, was transiently transfected with the C3 toxin and subsequently exposed to UV-radiation. Phalloidin staining of the stress fibers revealed that actin cytoskeleton integrity was strongly disrupted by the C3 toxin in association with reduced melanoma cells survival, and further enhanced the deleterious effects of UV light. MeWo cells with actin cytoskeleton previously perturbed by the C3 toxin still showed higher levels and accumulation of UV-damaged DNA (strand breaks and cyclobutane pyrimidine dimers, CPDs). The interplay between reduced cell survival and impaired DNA repair upon actin cytoskeleton disruption can be explained by constitutive ERK1/2 activation and an inefficient phosphorylation of DDR proteins (γH2AX, CHK1 and p53) caused by C3 toxin treatment. Altogether, these results support the general idea that actin network help to protect the genome of human cells from damage caused by UV light through unknown molecular mechanisms that tie the cytoskeleton to processes of genomic stability maintenance.
Collapse
|
29
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
30
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
31
|
Abstract
Congenital myopathies comprise a clinical, histopathological, and genetic heterogeneous group of rare hereditary muscle diseases that are defined by architectural abnormalities in the muscle fibres. They are subdivided by the predominant structural pathological change on muscle biopsy, resulting in five subgroups: (1) core myopathies; (2) nemaline myopathies; (3) centronuclear myopathies; (4) congenital fibre type disproportion myopathy; and (5) myosin storage myopathy. Besides the clinical features, muscle biopsy, muscle imaging, and genetic analyses are essential in the diagnosis of congenital myopathies. Using next-generation sequencing techniques, a large number of new genes are being identified as the cause of congenital myopathies as well as new mutations in known genes, broadening the phenotype-genotype spectrum of congenital myopathies. Management is performed by a multidisciplinary team specialized in neuromuscular disorders, where the (paediatric) neurologist has an essential role. To date, only supportive treatment is available, but novel pathomechanisms are being discovered and gene therapies are being explored. WHAT THIS PAPER ADDS: Many new genes are being identified in congenital myopathies, broadening the phenotype-genotype spectrum. Management is performed by a multidisciplinary team specialized in neuromuscular disorders.
Collapse
Affiliation(s)
- Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Kamio K, Takahashi Y, Ishihara K, Sekiya A, Kato S, Shimanuki I, Ide M, Furuoka H. Centronuclear Myopathy with Abundant Nemaline Rods in a Japanese Black and Hereford Crossbred Calf. J Comp Pathol 2019; 174:8-12. [PMID: 31955807 DOI: 10.1016/j.jcpa.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Histopathological examination was performed on skeletal and diaphragmatic muscles from an 8-month-old male crossbred calf showing abnormal gait and tremor of the hindlimbs. There were numerous round fibres with centrally placed nuclei forming nuclear chains in longitudinal sections, associated with interstitial fibrosis or adipose tissue infiltration. On nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) staining, some muscle fibres in severe lesions showed a spoke-like appearance due to a radial arrangement of sarcoplasmic strands. Additionally, increased NADH-TR activity in the subsarcolemmal structures, appearingas ring-like or necklace-like forms, were observed. Transmission electron microscopy revealed dilated sarcoplasmic reticulum and variably shaped electron-dense inclusions consisting of myofibrillar streams. Another prominent feature was the existence of numerous nemaline rods within muscle fibres; these were stained red by Gomori's trichrome stain. Immunohistochemistry revealed that the nemaline rods showed strong immunoreactivity with α-actinin and desmin antibodies. Electron microscopically, these structures were composed of dense-homogeneous material and continuous with the Z disk. The case was diagnosed as centronuclear myopathy with increased nemaline rods.
Collapse
Affiliation(s)
- K Kamio
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - Y Takahashi
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - K Ishihara
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - A Sekiya
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - S Kato
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | - I Shimanuki
- Tokachi Agricultural Mutual Aid Association, Obihiro, Japan
| | - M Ide
- Tokachi Agricultural Mutual Aid Association, Obihiro, Japan
| | - H Furuoka
- Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan.
| |
Collapse
|
33
|
Blackburn DM, Lazure F, Corchado AH, Perkins TJ, Najafabadi HS, Soleimani VD. High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J Biol Chem 2019; 294:20097-20108. [PMID: 31753917 DOI: 10.1074/jbc.ra119.011506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. Individual myofibers that make up muscle tissue exhibit variation in their metabolic and contractile properties. Although biochemical and histological assays are available to study myofiber heterogeneity, efficient methods to analyze the whole transcriptome of individual myofibers are lacking. Here, we report on a single-myofiber RNA-sequencing (smfRNA-Seq) approach to analyze the whole transcriptome of individual myofibers by combining single-fiber isolation with Switching Mechanism at 5' end of RNA Template (SMART) technology. Using smfRNA-Seq, we first determined the genes that are expressed in the whole muscle, including in nonmyogenic cells. We also analyzed the differences in the transcriptome of myofibers from young and old mice to validate the effectiveness of this new method. Our results suggest that aging leads to significant changes in the expression of metabolic genes, such as Nos1, and structural genes, such as Myl1, in myofibers. We conclude that smfRNA-Seq is a powerful tool to study developmental, disease-related, and age-related changes in the gene expression profile of skeletal muscle.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada .,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
34
|
Malfatti E. Miopatie congenite. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Abstract
Congenital myopathies (CM) are a genetically heterogeneous group of neuromuscular disorders most commonly presenting with neonatal/childhood-onset hypotonia and muscle weakness, a relatively static or slowly progressive disease course, and originally classified into subcategories based on characteristic histopathologic findings in muscle biopsies. This enduring concept of disease definition and classification based on the clinicopathologic phenotype was pioneered in the premolecular era. Advances in molecular genetics have brought into focus the increased blurring of the original seemingly "watertight" categories through broadening of the clinical phenotypes in existing genes, and continuous identification of novel genetic backgrounds. This review summarizes the histopathologic landscape of the 4 "classical" subtypes of CM-nemaline myopathies, core myopathies, centronuclear myopathies, and congenital fiber type disproportion and some of the emerging and novel genetic diseases with a CM presentation.
Collapse
Affiliation(s)
- Rahul Phadke
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children and Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
38
|
Liewluck T, Niu Z, Moore SA, Alsharabati M, Milone M. ACTA1-myopathy with prominent finger flexor weakness and rimmed vacuoles. Neuromuscul Disord 2019; 29:388-391. [PMID: 30987788 DOI: 10.1016/j.nmd.2019.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
Abstract
Actinopathy is a group of clinically and pathologically heterogeneous myopathies due to mutations in the skeletal muscle sarcomeric α-actin 1-encoding gene (ACTA1). Disease-onset spans from prenatal life to adulthood and weakness can preferentially affect proximal or distal muscles. Myopathological findings include a spectrum of structural abnormalities with nemaline rods being the most common. We report a daughter and father with prominent finger flexors and/or quadriceps involvement. Muscle biopsies revealed rimmed vacuoles in both patients, associated with type 1 fiber atrophy in the daughter, and nemaline rods in the father. Next generation sequencing identified a novel dominant ACTA1 variant, c.149G>A (p.Gly50Asp) in both individuals and no abnormal variants in vacuolar myopathy-associated genes. Our findings expand the clinico-pathological spectrum of actinopathy.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Steven A Moore
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
39
|
Autosomal dominant distal myopathy with nemaline rods due to p.Glu197Asp mutation in ACTA1. Neuromuscul Disord 2019; 29:247-250. [DOI: 10.1016/j.nmd.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022]
|
40
|
Fan J, Chan C, McNamara EL, Nowak KJ, Iwamoto H, Ochala J. Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Front Physiol 2018; 9:1756. [PMID: 30564146 PMCID: PMC6288369 DOI: 10.3389/fphys.2018.01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Myopathies are notably associated with mutations in genes encoding proteins known to be essential for the force production of skeletal muscle fibers, such as skeletal alpha-actin. The exact molecular mechanisms by which these specific defects induce myopathic phenotypes remain unclear. Hence, in the present study, to better understand actin dysfunction, we conducted a molecular dynamic simulation together with ex vivo experiments of the specific muscle disease-causing actin mutation, D286G located in the actin-actin interface. Our computational study showed that D286G impairs the flexural rigidity of actin filaments. However, upon activation, D286G did not have any direct consequences on actin filament extension. Hence, D286G may alter the structure of actin filaments but, when expressed together with normal actin molecules, it may only have minor effects on the ex vivo mechanics of actin filaments upon skeletal muscle fiber contraction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chun Chan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elyshia L McNamara
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia.,Department of Health, Office of Population Health Genomics, Public and Aboriginal Health Division, Government of Western Australia, East Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Milone M, Liewluck T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2018; 59:283-294. [PMID: 30171629 DOI: 10.1002/mus.26332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
Distal myopathies are a group of rare muscle diseases characterized by distal weakness at onset. Although acquired myopathies can occasionally present with distal weakness, the majority of distal myopathies have a genetic etiology. Their age of onset varies from early-childhood to late-adulthood while the predominant muscle weakness can affect calf, ankle dorsiflexor, or distal upper limb muscles. A spectrum of muscle pathological changes, varying from nonspecific myopathic changes to rimmed vacuoles to myofibrillar pathology to nuclei centralization, have been noted. Likewise, the underlying molecular defect is heterogeneous. In addition, there is emerging evidence that distal myopathies can result from defective proteins encoded by genes causative of neurogenic disorders, be manifestation of multisystem proteinopathies or the result of the altered interplay between different genes. In this review, we provide an overview on the clinical, electrophysiological, pathological, and molecular aspects of distal myopathies, focusing on the most recent developments in the field. Muscle Nerve 59:283-294, 2019.
Collapse
Affiliation(s)
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Malfatti E. Miopatías congénitas. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
L-tyrosine supplementation does not ameliorate skeletal muscle dysfunction in zebrafish and mouse models of dominant skeletal muscle α-actin nemaline myopathy. Sci Rep 2018; 8:11490. [PMID: 30065346 PMCID: PMC6068151 DOI: 10.1038/s41598-018-29437-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/11/2018] [Indexed: 11/30/2022] Open
Abstract
L-tyrosine supplementation may provide benefit to nemaline myopathy (NM) patients, however previous studies are inconclusive, with no elevation of L-tyrosine levels in blood or tissue reported. We evaluated the ability of L-tyrosine treatments to improve skeletal muscle function in all three published animal models of NM caused by dominant skeletal muscle α-actin (ACTA1) mutations. Highest safe L-tyrosine concentrations were determined for dosing water and feed of wildtype zebrafish and mice respectively. NM TgACTA1D286G-eGFP zebrafish treated with 10 μM L-tyrosine from 24 hours to 6 days post fertilization displayed no improvement in swimming distance. NM TgACTA1D286G mice consuming 2% L-tyrosine supplemented feed from preconception had significant elevations in free L-tyrosine levels in sera (57%) and quadriceps muscle (45%) when examined at 6–7 weeks old. However indicators of skeletal muscle integrity (voluntary exercise, bodyweight, rotarod performance) were not improved. Additionally no benefit on the mechanical properties, energy metabolism, or atrophy of skeletal muscles of 6–7 month old TgACTA1D286G and KIActa1H40Y mice eventuated from consuming a 2% L-tyrosine supplemented diet for 4 weeks. Therefore this study yields important information on aspects of the clinical utility of L-tyrosine for ACTA1 NM.
Collapse
|
44
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol 2018; 43:5-23. [PMID: 27976420 DOI: 10.1111/nan.12369] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Congenital myopathies are clinically and genetically a heterogeneous group of early onset neuromuscular disorders, characterized by hypotonia and muscle weakness. Clinical severity and age of onset are variable. Many patients are severely affected at birth while others have a milder, moderately progressive or nonprogressive phenotype. Respiratory weakness is a major clinical aspect that requires regular monitoring. Causative mutations in several genes have been identified that are inherited in a dominant, recessive or X-linked manner, or arise de novo. Muscle biopsies show characteristic pathological features such as nemaline rods/bodies, cores, central nuclei or caps. Small type 1 fibres expressing slow myosin are a common feature and may sometimes be the only abnormality. Small cores (minicores) devoid of mitochondria and areas showing variable myofibrillar disruption occur in several neuromuscular disorders including several forms of congenital myopathy. Muscle biopsies can also show more than one structural defect. There is considerable clinical, pathological and genetic overlap with mutations in one gene resulting in more than one pathological feature, and the same pathological feature being associated with defects in more than one gene. Increasing application of whole exome sequencing is broadening the clinical and pathological spectra in congenital myopathies, but pathology still has a role in clarifying the pathogenicity of gene variants as well as directing molecular analysis.
Collapse
Affiliation(s)
- C A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - C Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
47
|
Lehtokari VL, Gardberg M, Pelin K, Wallgren-Pettersson C. Clinically variable nemaline myopathy in a three-generation family caused by mutation of the skeletal muscle alpha-actin gene. Neuromuscul Disord 2018; 28:323-326. [PMID: 29433794 DOI: 10.1016/j.nmd.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
Abstract
We present here a Finnish nemaline myopathy family with a dominant mutation in the skeletal muscle α-actin gene, p.(Glu85Lys), segregating in three generations. The index patient, a 5-year-old boy, had the typical form of nemaline myopathy with congenital muscle weakness and motor milestones delayed but reached, while his mother never had sought medical attention for her very mild muscle weakness, and his maternal grandmother had been misdiagnosed as having myotonic dystrophy. This illustrates the clinical variability in nemaline myopathy.
Collapse
Affiliation(s)
- Vilma-Lotta Lehtokari
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | - Katarina Pelin
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
49
|
The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 2018; 20:198-210. [PMID: 29358706 DOI: 10.1038/s41556-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1-UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1-UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This article uses a case-based approach to highlight the clinical features as well as recent advances in molecular genetics, muscle imaging, and pathophysiology of the congenital myopathies. RECENT FINDINGS Congenital myopathies refer to a heterogeneous group of genetic neuromuscular disorders characterized by early-onset muscle weakness, hypotonia, and developmental delay. Congenital myopathies are further classified into core myopathies, centronuclear myopathies, nemaline myopathies, and congenital fiber-type disproportion based on the key pathologic features found in muscle biopsies. Genotype and phenotype correlations are hampered by the diverse clinical variability of the genes responsible for congenital myopathies, ranging from a severe neonatal course with early death to mildly affected adults with late-onset disease. An increasing number of genes have been identified, which, in turn, are associated with overlapping morphologic changes in the myofibers. Precise genetic diagnosis has important implications for disease management, including family counseling; avoidance of anesthetic-related muscle injury for at-risk individuals; monitoring for potential cardiac, respiratory, or orthopedic complications; as well as for participation in clinical trials or potential genetic therapies. SUMMARY Collaboration with neuromuscular experts, geneticists, neuroradiologists, neuropathologists, and other specialists is needed to ensure accurate and timely diagnosis based on clinical and pathologic features. An integrated multidisciplinary model of care based on expert-guided standards will improve quality of care and optimize outcomes for patients and families with congenital myopathies.
Collapse
MESH Headings
- Adult
- Child
- Child, Preschool
- Female
- Genetic Therapy/trends
- Humans
- Infant
- Infant, Newborn
- Male
- Mutation/genetics
- Myopathies, Nemaline/genetics
- Myopathies, Nemaline/pathology
- Myopathies, Nemaline/therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/therapy
Collapse
|