1
|
Vaughan DP, Real R, Jensen MT, Fumi RG, Hodgson M, Jabbari E, Lux D, Wu L, Warner TT, Jaunmuktane Z, Revesz T, Rowe JB, Rohrer J, Morris HR. Analysis of C9orf72 repeat length in progressive supranuclear palsy, corticobasal syndrome, corticobasal degeneration, and atypical parkinsonism. J Neurol 2025; 272:293. [PMID: 40138021 PMCID: PMC11947049 DOI: 10.1007/s00415-025-12990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pathogenic hexanucleotide repeat expansions in C9orf72 are the commonest genetic cause of frontotemporal dementia and/or amyotrophic lateral sclerosis. There is growing interest in intermediate repeat expansions in C9orf72 and their relationship to a wide range of neurological presentations, including Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, corticobasal degeneration, and corticobasal syndromes. AIMS To assess the prevalence of intermediate C9orf72 repeat expansions in a large cohort of prospectively-recruited patients clinically diagnosed with progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and atypical parkinsonism (APS), compared with healthy controls. We also sought to replicate the association between C9orf72 repeat length and CBD in neuropathologically confirmed cases. METHODS 626 cases, including PSP (n = 366), CBS (n = 130), and APS (n = 53) from the PROSPECT study, and 77 cases with pathologically confirmed CBD were screened for intermediate repeat expansions in C9orf72 using repeat-primed PCR. These were compared to controls from the PROSPECT-M-UK study and from the 1958 Birth Cohort. RESULTS There was no difference in the mean or largest allele size in any affected patient group compared with controls. A higher proportion of our affected cohort had large C9orf72 repeat expansions compared to controls, but there was no difference when comparing the frequency of intermediate expansions between affected patients and controls. There was no relationship between repeat length and age at onset, level of disability, or survival. CONCLUSIONS Intermediate expansions in C9orf72 do not appear to be a genetic risk factor for PSP, CBS, CBD, or atypical parkinsonism. They are not associated with age at onset, disability, or survival in our study.
Collapse
Affiliation(s)
- David P Vaughan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Marte Theilmann Jensen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Riona G Fumi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Danielle Lux
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Jonathan Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic behavioral variant frontotemporal degeneration. Mol Neurodegener 2025; 20:17. [PMID: 39920674 PMCID: PMC11806866 DOI: 10.1186/s13024-025-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Cortical atrophy is a common manifestation in behavioral variant frontotemporal degeneration (bvFTD), exhibiting spatial heterogeneity across various genetic subgroups, which may be driven by distinct biological mechanisms. METHODS We employed an integrative imaging transcriptomics approach to identify both disparate and shared transcriptomic signatures associated with cortical thickness in bvFTD with C9orf72 repeat expansions or pathogenic variants in GRN or MAPT. Functional enrichment analyses were conducted on each gene list significantly associated with cortical thickness. Additionally, we mapped neurotransmitter receptor/transporter density maps to the cortical thickness maps, to uncover different correlation patterns for each genetic form. Furthermore, we examined whether the identified genes were enriched for pathology-related genes by using previously identified genes linked to TDP-43 positive neurons and genes associated with tau pathology. RESULTS For each genetic form of bvFTD, we identified cortical thickness signatures and gene sets associated with them. The cortical thickness associated genes for GRN-bvFTD were significantly involved in neurotransmitter system and circadian entrainment. The different patterns of spatial correlations between synaptic density and cortical thinning, further confirmed the critical role of neurotransmission and synaptic signaling in shaping brain structure, especially in the GRN-bvFTD group. Furthermore, we observed significant overlap between genes linked to TDP-43 pathology and the gene sets associated with cortical thickness in C9orf72-bvFTD and GRN-bvFTD but not the MAPT-bvFTD group providing specificity for our associations. C9orf72-bvFTD and GRN-bvFTD also shared genes displaying consistent directionality, with those exhibiting either positive or negative correlations with cortical thickness in C9orf72-bvFTD showing the same direction (positive or negative) in GRN-bvFTD. MAPT-bvFTD displayed more pronounced differences in transcriptomic signatures compared to the other two genetic forms. The genes that exhibited significantly positive or negative correlations with cortical thickness in MAPT-bvFTD showed opposing directionality in C9orf72-bvFTD and GRN-bvFTD. CONCLUSIONS Overall, this integrative transcriptomic approach identified several new shared and disparate genes associated with regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression. These findings illuminated the intricate molecular underpinnings contributing to the heterogeneous nature of disease distribution in bvFTD with distinct genetic backgrounds.
Collapse
Affiliation(s)
- Ting Shen
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laynie Dratch
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Richards 606B, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Udine E, Finch NA, DeJesus-Hernandez M, Jackson JL, Baker MC, Saravanaperumal SA, Wieben E, Ebbert MTW, Shah J, Petrucelli L, Rademakers R, Oskarsson B, van Blitterswijk M. Targeted long-read sequencing to quantify methylation of the C9orf72 repeat expansion. Mol Neurodegener 2024; 19:99. [PMID: 39709476 DOI: 10.1186/s13024-024-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels. METHODS We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method. Our primary goal was to determine the presence and subsequent quantification of observed methylation in the C9orf72 repeat expansion. In addition, we measured the repeat length and purity of the expansion. To do this, we sequenced DNA extracted from blood for 27 individuals with an expanded C9orf72 repeat. RESULTS For these individuals, we obtained a total of 7,765 on-target reads, including 1,612 fully covering the expanded allele. Our in-depth analysis revealed that the expansion itself is methylated, with great variability in total methylation levels observed, as represented by the proportion of methylated CpGs (13 to 66%). Interestingly, we demonstrated that the expanded allele is more highly methylated than the wild-type allele (P-Value = 2.76E-05) and that increased methylation levels are observed in longer repeat expansions (P-Value = 1.18E-04). Furthermore, methylation levels correlate with age at collection (P-Value = 3.25E-04) as well as age at disease onset (P-Value = 0.020). Additionally, we detected repeat lengths up to 4,088 repeats (~ 25 kb) and found that the expansion contains few interruptions in the blood. CONCLUSIONS Taken together, our study demonstrates robust ability to quantify methylation of the expanded C9orf72 repeat, capturing differences between individuals harboring this expansion and revealing clinical associations.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric Wieben
- Genome Analysis Core, Mayo Clinic, Rochester, MN, USA
| | - Mark T W Ebbert
- Department of Neuroscience, University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Spencer BE, Xie SX, Elman L, Quinn CC, Amado D, Baer M, Lee EB, Van Deerlin VM, Dratch L, Massimo L, Irwin DJ, McMillan CT. C9orf72 repeat expansions modify risk for secondary motor and cognitive-behavioral symptoms in behavioral-variant frontotemporal degeneration and amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306638. [PMID: 38746326 PMCID: PMC11092697 DOI: 10.1101/2024.04.30.24306638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In behavioral-variant frontotemporal degeneration (bvFTD) and amyotrophic lateral sclerosis (ALS), secondary motor or cognitive-behavioral symptoms, respectively, are associated with shorter survival. However, factors influencing secondary symptom development remain largely unexplored. We performed a retrospective evaluation of the entire disease course of individuals with ALS (n=172) and bvFTD (n=69). Only individuals who had neuropathological confirmation of TDP-43 proteinopathy at autopsy or a C9orf72 hexanucleotide repeat expansion were included for analysis. We examined the odds and hazard of secondary symptom development and assessed whether each was modified by the presence of a C9orf72 expansion or initial clinical syndrome. Binary logistic regression and Cox proportional hazard analyses revealed increased odds (OR=4.25 [95% CI 1.97-9.14], p<0.001) and an increased hazard (HR= 4.77 [95% CI 2.33-9.79], p<0.001) for developing secondary symptoms in those with a C9orf72 expansion compared to those without. Initial clinical syndrome (bvFTD or ALS), age at symptom onset, and sex were not associated with development of secondary symptoms. These data highlight the need for clinician vigilance to detect the onset of secondary motor and cognitive-behavioral symptoms in patients carrying a C9orf72 expansion, regardless of initial clinical syndrome. C9orf72 clinical care can be enhanced through coordination between cognitive and neuromuscular clinics.
Collapse
|
5
|
Shen T, Vogel JW, Van Deerlin VM, Suh E, Dratch L, Phillips JS, Massimo L, Lee EB, Irwin DJ, McMillan CT. Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic bvFTD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.25.24310894. [PMID: 39211858 PMCID: PMC11361203 DOI: 10.1101/2024.07.25.24310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cortical atrophy in behavioral variant frontotemporal degeneration (bvFTD) exhibits spatial heterogeneity across genetic subgroups, potentially driven by distinct biological mechanisms. Using an integrative imaging-transcriptomics approach, we identified disparate and shared transcriptomic signatures associated with cortical thickness in C9orf72 , GRN or MAPT -related bvFTD. Genes associated with cortical thinning in GRN -bvFTD were implicated in neurotransmission, further supported by mapping synaptic density maps to cortical thickness maps. Previously identified genes linked to TDP-43 positive neurons were significantly overlapped with genes associated with C9orf72 -bvFTD and GRN -bvFTD, but not MAPT -bvFTD providing specificity for our associations. C9orf72 -bvFTD and GRN -bvFTD shared genes displaying consistent directionality of correlations with cortical thickness, while MAPT -bvFTD displayed more pronounced differences in transcriptomic signatures with opposing directionality. Overall, we identified disparate and shared genes tied to regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression, illuminating intricate molecular underpinnings contributing to heterogeneities in bvFTD.
Collapse
|
6
|
Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Fortuna TR, Li Y, Sato K, Clemons TD, Mckenna ED, Nguyen TP, Anderson EN, Asin J, Ichida JK, Pandey UB, Wolin SL, Stupp SI, Kiskinis E. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. SCIENCE ADVANCES 2023; 9:eadf7997. [PMID: 37948524 PMCID: PMC10637751 DOI: 10.1126/sciadv.adf7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia patients with a hexanucleotide repeat expansion in C9ORF72 (C9-HRE) accumulate poly-GR and poly-PR aggregates. The pathogenicity of these arginine-rich dipeptide repeats (R-DPRs) is thought to be driven by their propensity to bind low-complexity domains of multivalent proteins. However, the ability of R-DPRs to bind native RNA and the significance of this interaction remain unclear. Here, we used computational and experimental approaches to characterize the physicochemical properties of R-DPRs and their interaction with RNA. We find that poly-GR predominantly binds ribosomal RNA (rRNA) in cells and exhibits an interaction that is predicted to be energetically stronger than that for associated ribosomal proteins. Critically, modified rRNA "bait" oligonucleotides restore poly-GR-associated ribosomal deficits and ameliorate poly-GR toxicity in patient neurons and Drosophila models. Our work strengthens the hypothesis that ribosomal function is impaired by R-DPRs, highlights a role for direct rRNA binding in mediating ribosomal dysfunction, and presents a strategy for protecting against C9-HRE pathophysiological mechanisms.
Collapse
Affiliation(s)
- Juan A. Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona 08907, Spain
| | - Ivan R. Sasselli
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Marco Boccitto
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew C. Fleming
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kohei Sato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. Mckenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao P. Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jesus Asin
- Department of Statistical Methods, School of Engineering, University of Zaragoza, Zaragoza 50018, Spain
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sandra L. Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samuel I. Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Dane TL, Gill AL, Vieira FG, Denton KR. Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci 2023; 17:1134090. [PMID: 37138766 PMCID: PMC10149854 DOI: 10.3389/fncel.2023.1134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Intronic repeat expansions in the C9orf72 gene are the most frequent known single genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These repeat expansions are believed to result in both loss-of-function and toxic gain-of-function. Gain-of-function results in the production of toxic arginine-rich dipeptide repeat proteins (DPRs), namely polyGR and polyPR. Small-molecule inhibition of Type I protein arginine methyltransferases (PRMTs) has been shown to protect against toxicity resulting from polyGR and polyPR challenge in NSC-34 cells and primary mouse-derived spinal neurons, but the effect in human motor neurons (MNs) has not yet been explored. Methods To study this, we generated a panel of C9orf72 homozygous and hemizygous knockout iPSCs to examine the contribution of C9orf72 loss-of-function toward disease pathogenesis. We differentiated these iPSCs into spinal motor neurons (sMNs). Results We found that reduced levels of C9orf72 exacerbate polyGR15 toxicity in a dose-dependent manner. Type I PRMT inhibition was able to partially rescue polyGR15 toxicity in both wild-type and C9orf72-expanded sMNs. Discussion This study explores the interplay of loss-of-function and gain-of-function toxicity in C9orf72 ALS. It also implicates type I PRMT inhibitors as a possible modulator of polyGR toxicity.
Collapse
|
8
|
Motor, cognitive and behavioural profiles of C9orf72 expansion-related amyotrophic lateral sclerosis. J Neurol 2023; 270:898-908. [PMID: 36308529 PMCID: PMC9886586 DOI: 10.1007/s00415-022-11433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) individuals carrying the hexanucleotide repeat expansion (HRE) in the C9orf72 gene (C9Pos) have been described as presenting distinct features compared to the general ALS population (C9Neg). We aim to identify the phenotypic traits more closely associated with the HRE and analyse the role of the repeat length as a modifier factor. METHODS We studied a cohort of 960 ALS patients (101 familial and 859 sporadic cases). Motor phenotype was determined using the MRC scale, the lower motor neuron score (LMNS) and the Penn upper motor neuron score (PUMNS). Neuropsychological profile was studied using the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), the Frontal Behavioral Inventory (FBI), the Beck Depression Inventory-II (BDI-II) and the State-Trait Anxiety Inventory (STAI). A two-step PCR protocol and Southern blotting were performed to determine the presence and the size of C9orf72 HRE, respectively. RESULTS C9orf72 HRE was detected in 55/960 ALS patients. C9Pos patients showed a younger onset, higher odds of bulbar onset, increased burden of UMN signs, reduced survival and higher frequency of concurrent dementia. We found an inverse correlation between the HRE length and the performance at ECAS ALS-specific tasks (P = 0.031). Patients also showed higher burden of behavioural disinhibition (P = 1.6 × 10-4), lower degrees of depression (P = 0.015) and anxiety (P = 0.008) compared to C9Neg cases. CONCLUSIONS Our study provides an extensive characterization of motor, cognitive and behavioural features of C9orf72-related ALS, indicating that the C9orf72 HRE size may represent a modifier of the cognitive phenotype.
Collapse
|
9
|
López-Cáceres A, Cruz-Sanabria F, Mayorga P, Sanchez AI, Gonzalez-Nieves S, Ayala-Ramírez P, Zarante I, Matallana D. Association between risk polymorphisms for neurodegenerative diseases and cognition in colombian patients with frontotemporal dementia. Front Neurol 2022; 13:675301. [PMID: 36071893 PMCID: PMC9443520 DOI: 10.3389/fneur.2022.675301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disease of presenile onset. A better characterization of neurodegenerative disorders has been sought by using tools such as genome-wide association studies (GWAS), where associations between single nucleotide polymorphisms (SNPs) and cognitive profiles could constitute predictive biomarkers for these diseases. However, in FTD, associations between genotypes and cognitive phenotypes are yet to be explored. Here, we evaluate a possible relationship between genetic variants and some cognitive functions in an FTD population.MethodologyA total of 47 SNPs in genes associated with neurodegenerative diseases were evaluated using the Sequenom MassARRAY platform along with their possible relationship with performance in neuropsychological tests in 105 Colombian patients diagnosed with FTD.Results and discussionThe SNPs rs429358 (APOE), rs1768208 (MOBP), and rs1411478 (STX6), were identified as risk factors for having a low cognitive performance in inhibitory control and phonological verbal fluency. Although the significance level was not enough to reach the corrected alpha for multiple comparison correction, our exploratory data may constitute a starting point for future studies of these SNPs and their relationship with cognitive performance in patients with a probable diagnosis of FTD. Further studies with an expansion of the sample size and a long-term design could help to explore the predictive nature of the potential associations we identified.
Collapse
Affiliation(s)
- Andrea López-Cáceres
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
- Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- *Correspondence: Andrea López-Cáceres
| | - Francy Cruz-Sanabria
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Neuroscience Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pilar Mayorga
- Mental Health Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Ana Isabel Sanchez
- Faculty of Health Sciences, Pontificia Universidad Javeriana, Cali, Colombia
- Imbanaco Medical Center, Cali, Colombia
| | | | - Paola Ayala-Ramírez
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ignacio Zarante
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Matallana
- Mental Health Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Department of Psychiatry, School of Medicine, Instituto de Envejecimiento, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
10
|
Ramic M, Andrade NS, Rybin MJ, Esanov R, Wahlestedt C, Benatar M, Zeier Z. Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD. Brain Sci 2021; 11:brainsci11111543. [PMID: 34827542 PMCID: PMC8616043 DOI: 10.3390/brainsci11111543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport “biosensors”, composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype—persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects—resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.
Collapse
Affiliation(s)
- Melina Ramic
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Nadja S. Andrade
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Matthew J. Rybin
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Rustam Esanov
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, FL 33136, USA;
| | - Zane Zeier
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
- Correspondence: ; Tel.: +1-305-243-1367
| |
Collapse
|
11
|
Barbier M, Camuzat A, Hachimi KE, Guegan J, Rinaldi D, Lattante S, Houot M, Sánchez-Valle R, Sabatelli M, Antonell A, Molina-Porcel L, Clot F, Couratier P, van der Ende E, van der Zee J, Manzoni C, Camu W, Cazeneuve C, Sellal F, Didic M, Golfier V, Pasquier F, Duyckaerts C, Rossi G, Bruni AC, Alvarez V, Gómez-Tortosa E, de Mendonça A, Graff C, Masellis M, Nacmias B, Oumoussa BM, Jornea L, Forlani S, Van Deerlin V, Rohrer JD, Gelpi E, Rademakers R, Van Swieten J, Le Guern E, Van Broeckhoven C, Ferrari R, Génin E, Brice A, Le Ber I. SLITRK2, an X-linked modifier of the age at onset in C9orf72 frontotemporal lobar degeneration. Brain 2021; 144:2798-2811. [PMID: 34687211 DOI: 10.1093/brain/awab171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms.
Collapse
Affiliation(s)
- Mathieu Barbier
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Agnès Camuzat
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Khalid El Hachimi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Justine Guegan
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Daisy Rinaldi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Center for Rare or Early-Onset Dementias, IM2A, Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
| | - Serena Lattante
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore; U.O.C. Genetica Medica, Dipartimento di Scienze di Laboratorio e Infettivologico, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Marion Houot
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Center for Rare or Early-Onset Dementias, IM2A, Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
- Centre of Excellence of Neurodegenerative Disease (CoEN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Catalunya, Spain
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Catalunya, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Catalunya, Spain
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Catalunya, Spain
| | - Fabienne Clot
- Unité Fonctionnelle de Neurogénétique Moléculaire et Cellulaire, Département de Génétique et Cytogénétique, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Emma van der Ende
- Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - William Camu
- Reference Centre for ALS, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Cécile Cazeneuve
- Unité Fonctionnelle de Neurogénétique Moléculaire et Cellulaire, Département de Génétique et Cytogénétique, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - François Sellal
- Neurology Department, Hôpitaux Civils de Colmar, France
- INSERM U-1118, Strasbourg University, Strasbourg, France
| | - Mira Didic
- APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Véronique Golfier
- Service de Neurologie, Centre Hospitalier Yves Le Foll, Saint Brieuc, France
| | - Florence Pasquier
- University of Lille, Inserm UMRS1172, CHU, DISTAlz, LiCEND, F-59000 Lille, France
| | - Charles Duyckaerts
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology; Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, Department of Primary Care, ASP-CZ, Catanzaro, Italy
| | - Victoria Alvarez
- Laboratorio de Genética- Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de INvestigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | | | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75013, Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Viviana Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Catalunya, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Rosa Rademakers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - John Van Swieten
- Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Eric Le Guern
- Unité Fonctionnelle de Neurogénétique Moléculaire et Cellulaire, Département de Génétique et Cytogénétique, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Emmanuelle Génin
- Génétique, Génomique Fonctionnelle et Biotechnologies, Faculté de Médecine, Univ Brest, Inserm UMR1078, Brest, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Center for Rare or Early-Onset Dementias, IM2A, Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Mao F, Robinson JL, Unger T, Posavi M, Amado DA, Elman L, Grossman M, Wolk DA, Lee EB, Van Deerlin VM, Porta S, Lee VMY, Trojanowski JQ, Chen-Plotkin AS. TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathol 2021; 142:629-642. [PMID: 34152475 PMCID: PMC8812793 DOI: 10.1007/s00401-021-02330-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well understood. Here, we investigated the influence of genotypes at TMEM106B, a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72, a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)-allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. To elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B, to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Fei Mao
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - John L Robinson
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Travis Unger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijan Posavi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021; 10:cells10092438. [PMID: 34572087 PMCID: PMC8468417 DOI: 10.3390/cells10092438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Collapse
|
14
|
López-Cáceres A, Velasco-Rueda M, Garcia-Cifuentes E, Zarante I, Matallana D. Analysis of Heritability Across the Clinical Phenotypes of Frontotemporal Dementia and the Frequency of the C9ORF72 in a Colombian Population. Front Neurol 2021; 12:681595. [PMID: 34526954 PMCID: PMC8435669 DOI: 10.3389/fneur.2021.681595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Frontotemporal dementia (FTD) is a highly heritable condition. Up to 40% of FTD is familial and an estimated 15% to 40% is due to single-gene mutations. It has been estimated that the G4C2 hexanucleotide repeat expansions in the C9ORF72 gene can explain up to 37.5% of the familial cases of FTD, especially in populations of Caucasian origin. The purpose of this paper is to evaluate hereditary risk across the clinical phenotypes of FTD and the frequency of the G4C2 expansion in a Colombian cohort diagnosed with FTD. Methods: A total of 132 FTD patients were diagnosed according to established criteria in the behavioral variant FTD, logopenic variant PPA, non-fluent agrammatic PPA, and semantic variant PPA. Hereditary risk across the clinical phenotypes was established in four categories that indicate the pathogenic relationship of the mutation: high, medium, low, and apparently sporadic, based on those proposed by Wood and collaborators. All subjects were also examined for C9ORF72 hexanucleotide expansion (defined as >30 repetitions). Results: There were no significant differences in the demographic characteristics of the patients between the clinical phenotypes of FTD. The higher rate phenotype was bvFTD (62.12%). In accordance with the risk classification, we found that 72 (54.4%) complied with the criteria for the sporadic cases; for the familial cases, 23 (17.4%) fulfilled the high-risk criteria, 23 (17.4%) fulfilled the low risk criteria, and 14 (10.6%) fulfilled the criteria to be classified as subject to medium risk. C9ORF72 expansion frequency was 0.76% (1/132). Conclusion: The FTD heritability presented in this research was very similar to the results reported in the literature. The C9ORF72 expansion frequency was low. Colombia is a triethnic country, with a high frequency of genetic Amerindian markers; this shows consistency with the present results of a low repetition frequency. This study provides an initial report of the frequency for the hexanucleotide repeat expansions in C9ORF72 in patients with FTD in a Colombian population and paves the way for further study of the possible genetic causes of FTD in Colombia.
Collapse
Affiliation(s)
- Andrea López-Cáceres
- School of Medicine, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
- Fundación Santa Fé de Bogotá, Bogotá, Colombia
| | - María Velasco-Rueda
- School of Medicine, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Elkin Garcia-Cifuentes
- School of Medicine, Departamento de Neurociencias, Unidad de neurología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ignacio Zarante
- School of Medicine, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Matallana
- Fundación Santa Fé de Bogotá, Bogotá, Colombia
- School of Medicine, Instituto de Envejecimiento, Doctorado de Neurociencias, Psychiatry and Mental Health Department, Pontificia Universidad Javeriana, Bogotá, Colombia
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
15
|
Ratti A, Peverelli S, D'Adda E, Colombrita C, Gennuso M, Prelle A, Silani V. Genetic and epigenetic disease modifiers in an Italian C9orf72 family expressing ALS, FTD or PD clinical phenotypes. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:292-298. [PMID: 34382491 DOI: 10.1080/21678421.2021.1962355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: The presence of the hexanucleotide repeat expansion (HRE) in C9orf72 gene is associated to the ALS/FTD spectrum, but also to parkinsonisms. We here describe an Italian family with the father diagnosed with Parkinson disease (PD) at the age of 67 and the two daughters developing FTD and ALS at 45 years of age. We searched for C9orf72 HRE with possible genetic and epigenetic modifiers to account for the intrafamilial phenotypic variability. Methods: C9orf72 mutational analysis was performed by fragment length analysis, Repeat-primed PCR and Southern blot. Targeted next generation sequencing was used to analyze 48 genes associated to neurodegenerative diseases. Promoter methylation was analyzed by bisulfite sequencing. Results: Genetic analysis identified C9orf72 HRE in all the affected members with a similar repeat expansion size. Both the father and the FTD daughter also carried the heterozygous p.Ile946Phe variant in ATP13A2 gene, associated to PD. In addition, the father also showed a heterozygous EIF4G1 variant (p.Ala13Pro), that might increase his susceptibility to develop PD. The DNA methylation analysis showed that all the 26 CpG sites within C9orf72 promoter were unmethylated in all family members. Conclusions: Neither C9orf72 HRE size nor promoter methylation act as disease modifiers within this family, at least in blood, not excluding HRE mosaicism and a different methylation pattern in the brain. However, the presence of rare genetic variants in PD genes suggests that they may influence the clinical manifestation in the father. Other genetic and/or epigenetic modifiers must be responsible for disease variability in this C9orf72 family case.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | | | - Claudia Colombrita
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | | | - Alessandro Prelle
- U.O.C. of Neurology - Stroke Unit, ASST Ovest milanese, Legnano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
16
|
Smeyers J, Banchi EG, Latouche M. C9ORF72: What It Is, What It Does, and Why It Matters. Front Cell Neurosci 2021; 15:661447. [PMID: 34025358 PMCID: PMC8131521 DOI: 10.3389/fncel.2021.661447] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
When the non-coding repeat expansion in the C9ORF72 gene was discovered to be the most frequent cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in 2011, this gene and its derived protein, C9ORF72, were completely unknown. The mutation appeared to produce both haploinsufficiency and gain-of-function effects in the form of aggregating expanded RNAs and dipeptide repeat proteins (DPRs). An unprecedented effort was then unleashed to decipher the pathogenic mechanisms and the functions of C9ORF72 in order to design therapies. A decade later, while the toxicity of accumulating gain-of-function products has been established and therapeutic strategies are being developed to target it, the contribution of the loss of function starts to appear more clearly. This article reviews the current knowledge about the C9ORF72 protein, how it is affected by the repeat expansion in models and patients, and what could be the contribution of its haploinsufficiency to the disease in light of the most recent findings. We suggest that these elements should be taken into consideration to refine future therapeutic strategies, compensating for the decrease of C9ORF72 or at least preventing a further reduction.
Collapse
Affiliation(s)
- Julie Smeyers
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| | - Elena-Gaia Banchi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Morwena Latouche
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| |
Collapse
|
17
|
van der Ende EL, Jackson JL, White A, Seelaar H, van Blitterswijk M, Van Swieten JC. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J Neurol Neurosurg Psychiatry 2021; 92:502-509. [PMID: 33452054 PMCID: PMC8053328 DOI: 10.1136/jnnp-2020-325377] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Since the discovery of the C9orf72 repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with C9orf72-associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with C9orf72 repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with C9orf72-associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of C9orf72-related diseases.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Adrianna White
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - John C Van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Pal A, Kretner B, Abo-Rady M, Glaβ H, Dash BP, Naumann M, Japtok J, Kreiter N, Dhingra A, Heutink P, Böckers TM, Günther R, Sterneckert J, Hermann A. Concomitant gain and loss of function pathomechanisms in C9ORF72 amyotrophic lateral sclerosis. Life Sci Alliance 2021; 4:e202000764. [PMID: 33619157 PMCID: PMC7918691 DOI: 10.26508/lsa.202000764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/02/2022] Open
Abstract
Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient-albeit to a smaller extent-to induce premature distal axonal trafficking deficits and increased DSBs.
Collapse
Affiliation(s)
- Arun Pal
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Benedikt Kretner
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Masin Abo-Rady
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Hannes Glaβ
- Translational Neurodegeneration Section "Albrecht-Kossel," Department of Neurology, and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Banaja P Dash
- Translational Neurodegeneration Section "Albrecht-Kossel," Department of Neurology, and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht-Kossel," Department of Neurology, and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Julia Japtok
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Nicole Kreiter
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Genome Biology of Neurodegenerative Diseases, Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Genome Biology of Neurodegenerative Diseases, Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tobias M Böckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - René Günther
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel," Department of Neurology, and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
19
|
Characterization of C9orf72 haplotypes to evaluate the effects of normal and pathological variations on its expression and splicing. PLoS Genet 2021; 17:e1009445. [PMID: 33780440 PMCID: PMC8031855 DOI: 10.1371/journal.pgen.1009445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/08/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of the hexanucleotide repeat (HR) in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasians. All C9orf72-ALS/FTD patients share a common risk (R) haplotype. To study C9orf72 expression and splicing from the mutant R allele compared to the complementary normal allele in ALS/FTD patients, we initially created a detailed molecular map of the single nucleotide polymorphism (SNP) signature and the HR length of the various C9orf72 haplotypes in Caucasians. We leveraged this map to determine the allelic origin of transcripts per patient, and decipher the effects of pathological and normal HR lengths on C9orf72 expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of a downstream initiated transcript variant and increased levels of transcripts initiated upstream of the HR. HR expanded R alleles correlated with high levels of unspliced intron 1 and activation of cryptic donor splice sites along intron 1. Retention of intron 1 was associated with sequential intron 2 retention. The SNP signature of C9orf72 haplotypes described here enables allele-specific analysis of transcriptional products and may pave the way to allele-specific therapeutic strategies. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative diseases, whose most frequent genetic cause is hexanucleotide repeat (HR) expansion from normal 2 to 20 repeats to pathological hundreds of repeats within a non-coding region of the C9orf72 gene. Haplotype is a specific combination of multiple polymorphic sites along a chromosome that are inherited together in block. We characterized the single nucleotide polymorphism (SNP) signature and HR length of the major C9orf72 haplotypes in Caucasians to identify the allelic origin of C9orf72 transcripts per patient and determine the effects of expanded HR on C9orf72 gene expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of downstream initiated transcript variant, increased levels of upstream initiated transcripts, accumulation of introns 1 and 2, and abnormal splicing at cryptic splice sites along intron 1. The C9orf72 haplotypes DNA signatures described here are valuable for studying C9-ALS/FTD pathogenesis and for developing allele-specific therapeutic strategies.
Collapse
|
20
|
Glasmacher SA, Wong C, Pearson IE, Pal S. Survival and Prognostic Factors in C9orf72 Repeat Expansion Carriers: A Systematic Review and Meta-analysis. JAMA Neurol 2021; 77:367-376. [PMID: 31738367 DOI: 10.1001/jamaneurol.2019.3924] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance The c9orf72 repeat expansion (c9 or c9orf72RE) confers a survival disadvantage in amyotrophic lateral sclerosis (ALS); its effect on prognosis in frontotemporal dementia (FTD) remains uncertain. Data on prognostic factors in c9orf72RE disorders could inform patient care, genetic counseling, and trial design. Objective To examine prognostic factors in c9ALS, c9FTD, c9ALS-FTD, and atypical phenotypes. Data Sources The MEDLINE, Embase, Amed, ProQuest, PsychINFO, CINAHL, and LILACS databases were searched between January 2011 and January 2019. Keywords used were c9orf72 and chromosome 9 open reading frame 72. Reference lists, citations of eligible studies, and review articles were also searched by hand. Study Selection Studies reporting disease duration for patients with a confirmed c9orf72RE and a neurological and/or psychiatric disorder were included. A second author independently reviewed studies classified as irrelevant by the first author. Analysis began in January 2019. Data Extraction and Synthesis Data were extracted by 1 author; a further author independently extracted 10% of data. Data were synthesized in univariate and multivariable Cox regression and are displayed as hazard ratios (HR) and 95% confidence intervals. Main Outcomes and Measures Survival after symptom onset. Results Overall, 206 studies reporting on 1060 patients were included from 2878 publications identified (c9ALS: n = 455; c9FTD: n = 296; c9ALS-FTD: n = 198; atypical phenotypes: n = 111); 197 duplicate cases were excluded. The median (95% CI) survival (in years) differed significantly between patients with c9ALS (2.8 [2.67-3.00]), c9FTD (9.0 [8.09-9.91]), and c9ALS-FTD (3.0 [2.73-3.27]); survival in atypical phenotypes varied substantially. Older age at onset was associated with shorter survival in c9ALS (HR, 1.03; 95% CI, 1.02-1.04; P < .001), c9FTD (HR, 1.04; 95% CI, 1.02-1.06; P < .001), and c9ALS-FTD (HR, 1.02; 95% CI, 1.004-1.04; P = .016). Bulbar onset was associated with shorter survival in c9ALS (HR, 1.64; 95% CI, 1.27-2.08; P < .001). Age at onset and bulbar onset ALS remained significant in multivariable regression including variables indicating potential diagnostic ascertainment bias, selection bias, and reporting bias. Family history, sex, study continent, FTD subtype, or the presence of additional pathogenic sequence variants were not significantly associated with survival. Clinical phenotypes in patients with neuropathologically confirmed frontotemporal lobar degeneration-TDP-43, motor neuron disease-TDP-43 and frontotemporal lobar degeneration-motor neuron disease-TDP-43 were heterogenous and impacted on survival. Conclusions and Relevance Several factors associated with survival in c9orf72RE disorders were identified. The inherent limitations of our methodological approach must be considered; nonetheless, the reported prognostic factors were not significantly associated with the bias indicators examined.
Collapse
Affiliation(s)
- Stella A Glasmacher
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Charis Wong
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Iona E Pearson
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, Grossman M, Irwin DJ, Elman L, McCluskey L, Quinn C, Granit V, Statland JM, Burns TM, Ravits J, Swenson A, Katz J, Pioro EP, Jackson C, Caress J, So Y, Maiser S, Walk D, Lee EB, Trojanowski JQ, Cook P, Gee J, Sha J, Naj AC, Rademakers R, Chen W, Wu G, Paul Taylor J, McMillan CT. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol Med 2021; 13:e12595. [PMID: 33270986 PMCID: PMC7799365 DOI: 10.15252/emmm.202012595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.
Collapse
|
22
|
Placek K, Benatar M, Wuu J, Rampersaud E, Hennessy L, Van Deerlin VM, Grossman M, Irwin DJ, Elman L, McCluskey L, Quinn C, Granit V, Statland JM, Burns TM, Ravits J, Swenson A, Katz J, Pioro EP, Jackson C, Caress J, So Y, Maiser S, Walk D, Lee EB, Trojanowski JQ, Cook P, Gee J, Sha J, Naj AC, Rademakers R, Chen W, Wu G, Paul Taylor J, McMillan CT. Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Mol Med 2021. [PMID: 33270986 PMCID: PMC7799365 DOI: 10.15252/emmm.202012595|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post-mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.
Collapse
Affiliation(s)
- Katerina Placek
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael Benatar
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Joanne Wuu
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Evadnie Rampersaud
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - Laura Hennessy
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Vivianna M Van Deerlin
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Murray Grossman
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - David J Irwin
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lauren Elman
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Leo McCluskey
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Colin Quinn
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Volkan Granit
- Department of NeurologyLeonard M. Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Jeffrey M Statland
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Ted M Burns
- Department of NeurologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - John Ravits
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
| | | | - Jon Katz
- Forbes Norris ALS CenterCalifornia Pacific Medical CenterSan FranciscoCAUSA
| | - Erik P Pioro
- Department of NeurologyCleveland ClinicClevelandOHUSA
| | - Carlayne Jackson
- Department of NeurologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - James Caress
- Department of NeurologyWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Yuen So
- Department of NeurologyStanford University Medical CenterSan JoseCAUSA
| | - Samuel Maiser
- Department of NeurologyUniversity of Minnesota Medical CenterMinneapolisMNUSA
| | - David Walk
- Department of NeurologyUniversity of Minnesota Medical CenterMinneapolisMNUSA
| | - Edward B Lee
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - John Q Trojanowski
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Philip Cook
- Penn Image Computing Science Laboratory (PICSL)Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - James Gee
- Penn Image Computing Science Laboratory (PICSL)Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jin Sha
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Adam C Naj
- Department of Pathology & Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA,Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | | | - Wenan Chen
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - Gang Wu
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA
| | - J Paul Taylor
- Center for Applied BioinformaticsSt. Jude Children’s Research HospitalMemphisTNUSA,The Howard Hughes Medical InstituteChevy ChaseMSUSA
| | - Corey T McMillan
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
23
|
Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 2021; 24:1542-1554. [PMID: 34675437 PMCID: PMC8553627 DOI: 10.1038/s41593-021-00923-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022]
Abstract
Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.
Collapse
|
24
|
Fortier G, Butti Z, Patten SA. Modelling C9orf72-Related Amyotrophic Lateral Sclerosis in Zebrafish. Biomedicines 2020; 8:E440. [PMID: 33096681 PMCID: PMC7589578 DOI: 10.3390/biomedicines8100440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
A hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and its discovery has revolutionized our understanding of this devastating disease. Model systems are a valuable tool for studying ALS pathobiology and potential therapies. The zebrafish (Danio rerio) has particularly become a useful model organism to study neurological diseases, including ALS, due to high genetic and physiological homology to mammals, and sensitivity to various genetic and pharmacological manipulations. In this review we summarize the zebrafish models that have been used to study the pathology of C9orf72-related ALS. We discuss their value in providing mechanistic insights and their potential use for drug discovery.
Collapse
Affiliation(s)
- Gabrielle Fortier
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC H7V 1B7, Canada; (G.F.); (Z.B.)
| | - Zoé Butti
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC H7V 1B7, Canada; (G.F.); (Z.B.)
| | - Shunmoogum A. Patten
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC H7V 1B7, Canada; (G.F.); (Z.B.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H2X 3Y7, Canada
| |
Collapse
|
25
|
Ranganathan R, Haque S, Coley K, Shepheard S, Cooper-Knock J, Kirby J. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurosci 2020; 14:684. [PMID: 32733193 PMCID: PMC7358438 DOI: 10.3389/fnins.2020.00684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two progressive, adult onset neurodegenerative diseases, caused by the cell death of motor neurons in the motor cortex and spinal cord and cortical neurons in the frontal and temporal lobes, respectively. Whilst these have previously appeared to be quite distinct disorders, in terms of areas affected and clinical symptoms, identification of cognitive dysfunction as a component of amyotrophic lateral sclerosis (ALS), with some patients presenting with both ALS and FTD, overlapping features of neuropathology and the ongoing discoveries that a significant proportion of the genes underlying the familial forms of the disease are the same, has led to ALS and FTD being described as a disease spectrum. Many of these genes encode proteins in common biological pathways including RNA processing, autophagy, ubiquitin proteasome system, unfolded protein response and intracellular trafficking. This article provides an overview of the ALS-FTD genes before summarizing other known ALS and FTD causing genes where mutations have been found primarily in patients of one disease and rarely in the other. In discussing these genes, the review highlights the similarity of biological pathways in which the encoded proteins function and the interactions that occur between these proteins, whilst recognizing the distinctions of MAPT-related FTD and SOD1-related ALS. However, mutations in all of these genes result in similar pathology including protein aggregation and neuroinflammation, highlighting that multiple different mechanisms lead to common downstream effects and neuronal loss. Next generation sequencing has had a significant impact on the identification of genes associated with both diseases, and has also highlighted the widening clinical phenotypes associated with variants in these ALS and FTD genes. It is hoped that the large sequencing initiatives currently underway in ALS and FTD will begin to uncover why different diseases are associated with mutations within a single gene, especially as a personalized medicine approach to therapy, based on a patient's genetics, approaches the clinic.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Shaila Haque
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Kayesha Coley
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Stephanie Shepheard
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Jackson JL, Finch NA, Baker MC, Kachergus JM, DeJesus-Hernandez M, Pereira K, Christopher E, Prudencio M, Heckman MG, Thompson EA, Dickson DW, Shah J, Oskarsson B, Petrucelli L, Rademakers R, van Blitterswijk M. Elevated methylation levels, reduced expression levels, and frequent contractions in a clinical cohort of C9orf72 expansion carriers. Mol Neurodegener 2020; 15:7. [PMID: 32000838 PMCID: PMC6993399 DOI: 10.1186/s13024-020-0359-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background A repeat expansion in the C9orf72-SMCR8 complex subunit (C9orf72) is the most common genetic cause of two debilitating neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Currently, much remains unknown about which variables may modify these diseases. We sought to investigate associations between C9orf72 promoter methylation, RNA expression levels, and repeat length, their potential effects on disease features, as well as changes over time and within families. Methods All samples were obtained through the ALS Center at Mayo Clinic Florida. Our primary cohort included 75 unrelated patients with an expanded C9orf72 repeat, 33 patients who did not possess this expansion, and 20 control subjects without neurodegenerative diseases. Additionally, 67 members from 17 independent C9orf72 families were selected of whom 33 harbored this expansion. Longitudinally collected samples were available for 35 C9orf72 expansion carriers. To increase our understanding of C9orf72-related diseases, we performed quantitative methylation-sensitive restriction enzyme-based assays, digital molecular barcoding, quantitative real-time PCR, and Southern blotting. Results In our primary cohort, higher methylation levels were observed in patients with a C9orf72 repeat expansion than in patients without this expansion (p = 1.7e-13) or in control subjects (p = 3.3e-07). Moreover, we discovered that an increase in methylation levels was associated with a decrease in total C9orf72 transcript levels (p = 5.5e-05). These findings aligned with our observation that C9orf72 expansion carriers had lower expression levels of total C9orf72 transcripts than patients lacking this expansion (p = 3.7e-07) or control subjects (p = 9.1e-05). We also detected an elevation of transcripts containing intron 1a (upstream of the repeat) in patients carrying a C9orf72 repeat expansion compared to (disease) controls (p ≤ 0.01), an indication of abortive transcripts and/or a switch in transcription start site usage. While methylation and expression levels were relatively stable over time, fluctuations were seen in repeat length. Interestingly, contractions occurred frequently in parent-offspring transmissions (> 50%), especially in paternal transmissions. Furthermore, smaller repeat lengths were detected in currently unaffected individuals than in affected individuals (p = 8.9e-04) and they were associated with an earlier age at collection (p = 0.008). Conclusions In blood from C9orf72 expansion carriers, we found elevated methylation levels, reduced expression levels, and unstable expansions that tend to contract in successive generations, arguing against anticipation.
Collapse
Affiliation(s)
- Jazmyne L Jackson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Jennifer M Kachergus
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kimberly Pereira
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Elizabeth Christopher
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
27
|
McAlary L, Plotkin SS, Yerbury JJ, Cashman NR. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:262. [PMID: 31736708 PMCID: PMC6838634 DOI: 10.3389/fnmol.2019.00262] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/14/2019] [Indexed: 01/26/2023] Open
Abstract
The discovery that prion protein can misfold into a pathological conformation that encodes structural information capable of both propagation and inducing severe neuropathology has revolutionized our understanding of neurodegenerative disease. Many neurodegenerative diseases with a protein misfolding component are now classified as “prion-like” owing to the propagation of both symptoms and protein aggregation pathology in affected individuals. The neuromuscular disorder amyotrophic lateral sclerosis (ALS) is characterized by protein inclusions formed by either TAR DNA-binding protein of 43 kDa (TDP-43), Cu/Zn superoxide dismutase (SOD1), or fused in sarcoma (FUS), in both upper and lower motor neurons. Evidence from in vitro, cell culture, and in vivo studies has provided strong evidence to support the involvement of a prion-like mechanism in ALS. In this article, we review the evidence suggesting that prion-like propagation of protein aggregation is a primary pathomechanism in ALS, focusing on the key proteins and genes involved in disease (TDP-43, SOD1, FUS, and C9orf72). In each case, we discuss the evidence ranging from biophysical studies to in vivo examinations of prion-like spreading. We suggest that the idiopathic nature of ALS may stem from its prion-like nature and that elucidation of the specific propagating protein assemblies is paramount to developing effective therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Cali CP, Patino M, Tai YK, Ho WY, McLean CA, Morris CM, Seeley WW, Miller BL, Gaig C, Vonsattel JPG, White CL, Roeber S, Kretzschmar H, Troncoso JC, Troakes C, Gearing M, Ghetti B, Van Deerlin VM, Lee VMY, Trojanowski JQ, Mok KY, Ling H, Dickson DW, Schellenberg GD, Ling SC, Lee EB. C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol 2019; 138:795-811. [PMID: 31327044 PMCID: PMC6802287 DOI: 10.1007/s00401-019-02045-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Microsatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood. Several studies have identified intermediate repeats in Parkinson's disease patients, but the association was not found in autopsy-confirmed cases. We hypothesized that intermediate C9orf72 repeats are a genetic risk factor for corticobasal degeneration (CBD), a neurodegenerative disease that can be clinically similar to Parkinson's but has distinct tau protein pathology. Indeed, intermediate C9orf72 repeats were significantly enriched in autopsy-proven CBD (n = 354 cases, odds ratio = 3.59, p = 0.00024). While large C9orf72 repeat expansions are known to decrease C9orf72 expression, intermediate C9orf72 repeats result in increased C9orf72 expression in human brain tissue and CRISPR/cas9 knockin iPSC-derived neural progenitor cells. In contrast to cases of FTD/ALS with large C9orf72 expansions, CBD with intermediate C9orf72 repeats was not associated with pathologic RNA foci or dipeptide repeat protein aggregates. Knock-in cells with intermediate repeats exhibit numerous changes in gene expression pathways relating to vesicle trafficking and autophagy. Additionally, overexpression of C9orf72 without the repeat expansion leads to defects in autophagy under nutrient starvation conditions. These results raise the possibility that therapeutic strategies to reduce C9orf72 expression may be beneficial for the treatment of CBD.
Collapse
Affiliation(s)
- Christopher P Cali
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Maribel Patino
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Yee Kit Tai
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health and Victorian Brain Bank, Florey Neurosciences, Parkville, VIC, Australia
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Edwardson Building, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Carles Gaig
- Universitat de Barcelona Hospital Clínic and Banc de Teixits Neurològics, Barcelona, Spain
| | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sigrun Roeber
- Institute for Neuropathology and Prion Research and Brain Net Germany, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hans Kretzschmar
- Institute for Neuropathology and Prion Research and Brain Net Germany, Ludwig-Maximilians-Universität, Munich, Germany
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marla Gearing
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kin Y Mok
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Helen Ling
- Reta Lila Weston Institute of Neurological Studies, University College London Institute of Neurology, London, UK
| | | | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Cammack AJ, Atassi N, Hyman T, van den Berg LH, Harms M, Baloh RH, Brown RH, van Es MA, Veldink JH, de Vries BS, Rothstein JD, Drain C, Jockel-Balsarotti J, Malcolm A, Boodram S, Salter A, Wightman N, Yu H, Sherman AV, Esparza TJ, McKenna-Yasek D, Owegi MA, Douthwright C, McCampbell A, Ferguson T, Cruchaga C, Cudkowicz M, Miller TM. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology 2019; 93:e1605-e1617. [PMID: 31578300 DOI: 10.1212/wnl.0000000000008359] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To define the natural history of the C9orf72 amyotrophic lateral sclerosis (C9ALS) patient population, develop disease biomarkers, and characterize patient pathologies. METHODS We prospectively collected clinical and demographic data from 116 symptomatic C9ALS and 12 non-amyotrophic lateral sclerosis (ALS) full expansion carriers across 7 institutions in the United States and the Netherlands. In addition, we collected blood samples for DNA repeat size assessment, CSF samples for biomarker identification, and autopsy samples for dipeptide repeat protein (DPR) size determination. Finally, we collected retrospective clinical data via chart review from 208 individuals with C9ALS and 450 individuals with singleton ALS. RESULTS The mean age at onset in the symptomatic prospective cohort was 57.9 ± 8.3 years, and median duration of survival after onset was 36.9 months. The monthly change was -1.8 ± 1.7 for ALS Functional Rating Scale-Revised and -1.4% ± 3.24% of predicted for slow vital capacity. In blood DNA, we found that G4C2 repeat size correlates positively with age. In CSF, we observed that concentrations of poly(GP) negatively correlate with DNA expansion size but do not correlate with measures of disease progression. Finally, we found that size of poly(GP) dipeptides in the brain can reach large sizes similar to that of their DNA repeat derivatives. CONCLUSIONS We present a thorough investigation of C9ALS natural history, providing the basis for C9ALS clinical trial design. We found that clinical features of this genetic subset are less variant than in singleton ALS. In addition, we identified important correlations of C9ALS patient pathologies with clinical and demographic data.
Collapse
Affiliation(s)
- Alexander J Cammack
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Nazem Atassi
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Theodore Hyman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Leonard H van den Berg
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Matthew Harms
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Robert H Baloh
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Robert H Brown
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Michael A van Es
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jan H Veldink
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Balint S de Vries
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jeffrey D Rothstein
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Caroline Drain
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jennifer Jockel-Balsarotti
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Amber Malcolm
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Sonia Boodram
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Amber Salter
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Nicholas Wightman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Hong Yu
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Alexander V Sherman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Thomas J Esparza
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Diane McKenna-Yasek
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Margaret A Owegi
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Catherine Douthwright
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | | | - Alexander McCampbell
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Toby Ferguson
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Carlos Cruchaga
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Merit Cudkowicz
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Timothy M Miller
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA.
| |
Collapse
|
30
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
31
|
Caswell C, McMillan CT, Xie SX, Van Deerlin VM, Suh E, Lee EB, Trojanowski JQ, Lee VMY, Irwin DJ, Grossman M, Massimo LM. Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology 2019; 93:e1707-e1714. [PMID: 31537715 DOI: 10.1212/wnl.0000000000008387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine autosomal dominant genetic predictors of survival in individuals with behavioral variant frontotemporal degeneration (bvFTD). METHODS A retrospective chart review of 174 cases with a clinical phenotype of bvFTD but no associated elementary neurologic features was performed, with diagnosis either autopsy-confirmed (n = 57) or supported by CSF evidence of non-Alzheimer pathology (n = 117). Genetic analysis of the 3 most common genes with pathogenic autosomal dominant mutations associated with frontotemporal degeneration was performed in all patients, which identified cases with C9orf72 expansion (n = 28), progranulin (GRN) mutation (n = 12), and microtubule-associated protein tau (MAPT) mutation (n = 10). Cox proportional hazards regressions were used to test for associations between survival and mutation status, sex, age at symptom onset, and education. RESULTS Across all patients with bvFTD, the presence of a disease-associated pathogenic mutation was associated with shortened survival (hazard ratio [HR] 2.164, 95% confidence interval [CI] 1.391, 3.368). In separate models, a GRN mutation (HR 2.423, 95% CI 1.237, 4.744), MAPT mutation (HR 8.056, 95% CI 2.938, 22.092), and C9orf72 expansion (HR 1.832, 95% CI 1.034, 3.244) were each individually associated with shorter survival relative to sporadic bvFTD. A mutation on the MAPT gene results in an earlier age at onset than a C9orf72 expansion or mutation on the GRN gene (p = 0.016). CONCLUSIONS Our findings suggest that autosomal dominantly inherited mutations, modulated by age at symptom onset, associate with shorter survival among patients with bvFTD. We suggest that clinical trials and clinical management should consider mutation status and age at onset when evaluating disease progression.
Collapse
Affiliation(s)
- Carrie Caswell
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Corey T McMillan
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sharon X Xie
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivianna M Van Deerlin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - EunRan Suh
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Virginia M-Y Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lauren M Massimo
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
32
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
33
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
34
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Fournier C, Barbier M, Camuzat A, Anquetil V, Lattante S, Clot F, Cazeneuve C, Rinaldi D, Couratier P, Deramecourt V, Sabatelli M, Belliard S, Vercelletto M, Forlani S, Jornea L, Leguern E, Brice A, Le Ber I, Brice A, Auriacombe S, Belliard S, Blanc F, Bouteleau-Bretonnière C, Ceccaldi M, Couratier P, Didic M, Dubois B, Duyckaerts C, Etcharry-Bouix F, Golfier V, Hannequin D, Lacomblez L, Le Ber I, Levy R, Michel BF, Pasquier F, Thomas-Anterion C, Pariente J, Sellal F, Vercelletto M, Benchetrit E, Bertin H, Bertrand A, Bissery A, Bombois S, Boncoeur MP, Cassagnaud P, Chastan M, Chen Y, Chupin M, Colliot O, Couratier P, Delbeucq X, Deramecourt V, Delmaire C, Gerardin E, Hossein-Foucher C, Dubois B, Habert MO, Hannequin D, Lautrette G, Lebouvier T, Le Ber I, Lehéricy S, Le Toullec B, Levy R, Martineau K, Mackowiak MA, Monteil J, Pasquier F, Petyt G, Pradat PF, Oya AH, Rinaldi D, Rollin-Sillaire A, Salachas F, Sayah S, Wallon D. Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiol Aging 2019; 74:234.e1-234.e8. [DOI: 10.1016/j.neurobiolaging.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
|
36
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, Pasinelli P, Trotti D, Haeusler A. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Mol Med 2019; 11:e9423. [PMID: 30617154 PMCID: PMC6365928 DOI: 10.15252/emmm.201809423] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Nucleotide repeat expansions (NREs) are prevalent mutations in a multitude of neurodegenerative diseases. Repeat-associated non-AUG (RAN) translation of these repeat regions produces mono or dipeptides that contribute to the pathogenesis of these diseases. However, the mechanisms and drivers of RAN translation are not well understood. Here we analyzed whether different cellular stressors promote RAN translation of dipeptide repeats (DPRs) associated with the G4C2 hexanucleotide expansions in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that activating glutamate receptors or optogenetically increasing neuronal activity by repetitive trains of depolarization induced DPR formation in primary cortical neurons and patient derived spinal motor neurons. Increases in the integrated stress response (ISR) were concomitant with increased RAN translation of DPRs, both in neurons and different cell lines. Targeting phosphorylated-PERK and the phosphorylated-eif2α complex reduces DPR levels revealing a potential therapeutic strategy to attenuate DPR-dependent disease pathogenesis in NRE-linked diseases.
Collapse
Affiliation(s)
- Thomas Westergard
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Kevin McAvoy
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Katelyn Russell
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Xinmei Wen
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Yu Pang
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Brandie Morris
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Aaron Haeusler
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Goldman JS, Van Deerlin VM. Alzheimer's Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing. Mol Diagn Ther 2019; 22:505-513. [PMID: 29971646 DOI: 10.1007/s40291-018-0347-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of next-generation sequencing has changed genetic diagnostics, allowing clinicians to test concurrently for phenotypically overlapping conditions such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, to interpret genetic results, clinicians require an understanding of the benefits and limitations of different genetic technologies, such as the inability to detect large repeat expansions in such diseases as C9orf72-associated FTD and amyotrophic lateral sclerosis. Other types of mutations such as large deletions or duplications and triple repeat expansions may also go undetected. Additionally, the concurrent testing of multiple genes or the whole exome increases the likelihood of discovering variants of unknown significance. Our goal here is to review the current knowledge about the genetics of AD and FTD and suggest up-to-date guidelines for genetic testing for these dementias. Despite the improvements in diagnosis due to biomarkers testing, AD and FTD can have overlapping symptoms. When used appropriately, genetic testing can elucidate the diagnosis and specific etiology of the disease, as well as provide information for the family and determine eligibility for clinical trials. Prior to ordering genetic testing, clinicians must determine the appropriate genes to test, the types of mutations that occur in these genes, and the best type of genetic test to use. Without this analysis, interpretation of genetic results will be difficult. Patients should be counseled about the benefits and limitations of different types of genetic tests so they can make an informed decision about testing.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute, Columbia University Medical Center, 630 W. 168th St., Box 16, New York, NY, 10032, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 7.103 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
40
|
Placek K, Baer GM, Elman L, McCluskey L, Hennessy L, Ferraro PM, Lee EB, Lee VMY, Trojanowski JQ, Van Deerlin VM, Grossman M, Irwin DJ, McMillan CT. UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2019; 73:190-199. [PMID: 30368160 PMCID: PMC6251755 DOI: 10.1016/j.neurobiolaging.2018.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
The majority (90%-95%) of amyotrophic lateral sclerosis (ALS) is sporadic, and ∼50% of patients develop symptoms of frontotemporal degeneration (FTD) associated with shorter survival. The genetic polymorphism rs12608932 in UNC13A confers increased risk of sporadic ALS and sporadic FTD and modifies survival in ALS. Here, we evaluate whether rs12608932 is also associated with frontotemporal disease in sporadic ALS. We identified reduced cortical thickness in sporadic ALS with T1-weighted magnetic resonance imaging (N = 109) relative to controls (N = 113), and observed that minor allele (C) carriers exhibited greater reduction of cortical thickness in the dorsal prefrontal, ventromedial prefrontal, anterior temporal, and middle temporal cortices and worse performance on a frontal lobe-mediated cognitive test (reverse digit span). In sporadic ALS with autopsy data (N = 102), minor allele homozygotes exhibited greater burden of phosphorylated tar DNA-binding protein-43 kda (TDP-43) pathology in the middle frontal, middle temporal, and motor cortices. Our findings demonstrate converging evidence that rs12608932 may modify frontotemporal disease in sporadic ALS and suggest that rs12608932 may function as a prognostic indicator and could be used to define patient endophenotypes in clinical trials.
Collapse
Affiliation(s)
- Katerina Placek
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - G Michael Baer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Lauren Elman
- University of Pennsylvania, Penn Comprehensive ALS Center, Philadelphia, PA, USA
| | - Leo McCluskey
- University of Pennsylvania, Penn Comprehensive ALS Center, Philadelphia, PA, USA
| | - Laura Hennessy
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Pilar M Ferraro
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Chung CY, Berson A, Kennerdell JR, Sartoris A, Unger T, Porta S, Kim HJ, Smith ER, Shilatifard A, Van Deerlin V, Lee VMY, Chen-Plotkin A, Bonini NM. Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat Commun 2018; 9:4406. [PMID: 30353006 PMCID: PMC6199344 DOI: 10.1038/s41467-018-06543-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
TDP-43 is the major disease protein associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-TDP). Here we identify the transcriptional elongation factor Ell—a shared component of little elongation complex (LEC) and super elongation complex (SEC)—as a strong modifier of TDP-43-mediated neurodegeneration. Our data indicate select targets of LEC and SEC become upregulated in the fly ALS/FTLD-TDP model. Among them, U12 snRNA and a stress-induced long non-coding RNA Hsrω, functionally contribute to TDP-43-mediated degeneration. We extend the findings of Hsrω, which we identify as a chromosomal target of TDP-43, to show that the human orthologue Sat III is elevated in a human cellular disease model and FTLD-TDP patient tissue. We further demonstrate an interaction between TDP-43 and human ELL2 by co-immunoprecipitation from human cells. These findings reveal important roles of Ell-complexes LEC and SEC in TDP-43-associated toxicity, providing potential therapeutic insight for TDP-43-associated neurodegeneration. TDP-43 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTD-TDP). Here, the authors identify the transcriptional elongation factor Ell as a strong modifier of TDP-43-mediated neurodegeneration through the Ell transcriptional elongation complexes LEC and SEC.
Collapse
Affiliation(s)
- Chia-Yu Chung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason R Kennerdell
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashley Sartoris
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Travis Unger
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hyung-Jun Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, 41068, South Korea
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivianna Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alice Chen-Plotkin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M, McLaughlin IJ, Bowman B, Seetin M, DeJesus-Hernandez M, Jackson J, Brown PH, Dickson DW, van Blitterswijk M, Rademakers R, Petrucelli L, Fryer JD. Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 2018; 13:46. [PMID: 30126445 PMCID: PMC6102925 DOI: 10.1186/s13024-018-0274-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 'GGGGCC' (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences' (PacBio) and Oxford Nanopore Technologies' (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9. RESULTS Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinION was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8× coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained > 800× coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual's repeat region was > 99% G4C2 content, though we cannot rule out small interruptions. CONCLUSIONS Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | | | | | - Jazmyne Jackson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
43
|
Validation of a Long-Read PCR Assay for Sensitive Detection and Sizing of C9orf72 Hexanucleotide Repeat Expansions. J Mol Diagn 2018; 20:871-882. [PMID: 30138726 DOI: 10.1016/j.jmoldx.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
A hexanucleotide GGGGCC repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. Accurate determination and quantitation of the repeat length is critical in both clinical and research settings. However, because of the complexity of the C9orf72 expansion with high GC content, large size of repeats, and high rate of insertions/deletions (indels) and sequence variations in the flanking regions, molecular genetic analysis of the locus is challenging. To improve the performance characteristics for clinical testing, we evaluated a commercially available long-read C9orf72 PCR assay for research use only, AmplideX PCR/CE C9orf72 assay (AmplideX-C9), and compared its performance with our existing laboratory-developed C9orf72 expansion procedure. Overall, in comparison to the laboratory-developed C9orf72 expansion procedure, AmplideX-C9 demonstrated a more efficient workflow, greater PCR efficiency for sizing of repeat expansions, and improved peak amplitude with lower DNA input and higher analytic sensitivity. This, in turn, permitted detection of indels in the 3' downstream of the repeat expansion region in expanded alleles, showed a higher success rate with formalin-fixed, paraffin-embedded tissue specimens, and facilitated the assessment of repeat mosaicism. In summary, AmplideX-C9 will not only help to improve clinical testing for C9orf72-associated amyotrophic lateral sclerosis and frontotemporal degeneration but will also be a valuable research tool to better characterize the complexity of expansions and study the effects of indels/sequence variations in the flanking region.
Collapse
|
44
|
Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, Hurtig HI, Siderowf A, Grossman M, McMillan CT, Miller B, Duda JE, Irwin DJ, Wolk D, Elman L, McCluskey L, Chen-Plotkin A, Weintraub D, Arnold SE, Brettschneider J, Lee VMY, Trojanowski JQ. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018; 141:2181-2193. [PMID: 29878075 PMCID: PMC6022546 DOI: 10.1093/brain/awy146] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Lewy bodies commonly occur in Alzheimer's disease, and Alzheimer's disease pathology is frequent in Lewy body diseases, but the burden of co-pathologies across neurodegenerative diseases is unknown. We assessed the extent of tau, amyloid-β, α-synuclein and TDP-43 proteinopathies in 766 autopsied individuals representing a broad spectrum of clinical neurodegenerative disease. We interrogated pathological Alzheimer's disease (n = 247); other tauopathies (n = 95) including Pick's disease, corticobasal disease and progressive supranuclear palsy; the synucleinopathies (n = 164) including multiple system atrophy and Lewy body disease; the TDP-43 proteinopathies (n = 188) including frontotemporal lobar degeneration with TDP-43 inclusions and amyotrophic lateral sclerosis; and a minimal pathology group (n = 72). Each group was divided into subgroups without or with co-pathologies. Age and sex matched logistic regression models compared co-pathology prevalence between groups. Co-pathology prevalence was similar between the minimal pathology group and most neurodegenerative diseases for each proteinopathy: tau was nearly universal (92-100%), amyloid-β common (20-57%); α-synuclein less common (4-16%); and TDP-43 the rarest (0-16%). In several neurodegenerative diseases, co-pathology increased: in Alzheimer's disease, α-synuclein (41-55%) and TDP-43 (33-40%) increased; in progressive supranuclear palsy, α-synuclein increased (22%); in corticobasal disease, TDP-43 increased (24%); and in neocortical Lewy body disease, amyloid-β (80%) and TDP-43 (22%) increased. Total co-pathology prevalence varied across groups (27-68%), and was increased in high Alzheimer's disease, progressive supranuclear palsy, and neocortical Lewy body disease (70-81%). Increased age at death was observed in the minimal pathology group, amyotrophic lateral sclerosis, and multiple system atrophy cases with co-pathologies. In amyotrophic lateral sclerosis and neocortical Lewy body disease, co-pathologies associated with APOE ɛ4. Lewy body disease cases with Alzheimer's disease co-pathology had substantially lower Mini-Mental State Examination scores than pure Lewy body disease. Our data imply that increased age and APOE ɛ4 status are risk factors for co-pathologies independent of neurodegenerative disease; that neurodegenerative disease severity influences co-pathology as evidenced by the prevalence of co-pathology in high Alzheimer's disease and neocortical Lewy body disease, but not intermediate Alzheimer's disease or limbic Lewy body disease; and that tau and α-synuclein strains may also modify co-pathologies since tauopathies and synucleinopathies had differing co-pathologies and burdens. These findings have implications for clinical trials that focus on monotherapies targeting tau, amyloid-β, α-synuclein and TDP-43.
Collapse
Affiliation(s)
- John L Robinson
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Edward B Lee
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon X Xie
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lior Rennert
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - EunRan Suh
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Colin Bredenberg
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Carrie Caswell
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ning Yan
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- University-town Hospital of Chongqing Medical University, China
| | - Ahmed Yousef
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Howard I Hurtig
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrew Siderowf
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - John E Duda
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David J Irwin
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - David Wolk
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Memory Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lauren Elman
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Leo McCluskey
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Daniel Weintraub
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven E Arnold
- Translational Neurology Head of the Interdisciplinary Brain Center at Massachusetts General Hospital, Harvard Medical School
| | | | - Virginia M-Y Lee
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Penn Alzheimer's Disease Core Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Udall Center of Excellence in Parkinson's Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
45
|
Ferraro PM, Jester C, Olm CA, Placek K, Agosta F, Elman L, McCluskey L, Irwin DJ, Detre JA, Filippi M, Grossman M, McMillan CT. Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol Aging 2018; 68:85-92. [PMID: 29751289 DOI: 10.1016/j.neurobiolaging.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and the behavioral variant of frontotemporal dementia (bvFTD) commonly share the presence of transactive response DNA-binding protein 43 (TDP-43) inclusions. Structural magnetic resonance imaging studies demonstrated evidence for TDP-43 pathology spread, but while structural imaging usually reveals overt neuronal loss, perfusion imaging may detect more subtle neural activity alterations. We evaluated perfusion as an early marker for incipient pathology-associated brain alterations in TDP-43 proteinopathies. Cortical thickness (CT) and perfusion measurements were obtained in ALS (N = 18), pathologically and/or genetically confirmed bvFTD-TDP (N = 12), and healthy controls (N = 33). bvFTD showed reduced frontotemporal CT, hypoperfusion encompassing orbitofrontal and temporal cortices, and hyperperfusion in motor and occipital regions. ALS did not show reduced CT, but exhibited hypoperfusion in motor and temporal regions, and hyperperfusion in frontal and occipital cortices. Frontotemporal hypoperfusion and reduced CT correlated with cognitive and behavioral impairments as investigated using Mini-Mental State Examination and Philadelphia Brief Assessment of Cognition in bvFTD, and hypoperfusion in motor regions correlated with motor disability as measured by the ALS Functional Rating Scale-Revised in ALS. Hypoperfusion marked early pathologically involved regions, while hyperperfusion characterized regions of late pathological involvement. Distinct perfusion patterns may provide early markers of pathology distribution in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Pilar M Ferraro
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Charles Jester
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Christopher A Olm
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA; Department of Radiology, Penn Image Computing and Science Laboratory, Philadelphia, PA, USA
| | - Katerina Placek
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Lauren Elman
- Penn Comprehensive ALS Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Leo McCluskey
- Penn Comprehensive ALS Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA; Department of Radiology, Penn Image Computing and Science Laboratory, Philadelphia, PA, USA
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Gendron TF, Petrucelli L. Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024224. [PMID: 28130314 DOI: 10.1101/cshperspect.a024224] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G4C2 repeat expansions within the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These bidirectionally transcribed expansions lead to (1) the accumulation of sense G4C2 and antisense G2C4 repeat-containing RNA, (2) the production of proteins of repeating dipeptides through unconventional translation of these transcripts, and (3) decreased C9ORF72 mRNA and protein expression. Consequently, there is ample opportunity for the C9ORF72 mutation to give rise to a spectrum of clinical manifestations, ranging from muscle weakness and atrophy to changes in behavior and cognition. It is thus somewhat surprising that investigations of these three seemingly disparate events often converge on similar putative pathological mechanisms. This review aims to summarize the findings and questions emerging from the field's quest to decipher how C9ORF72 repeat expansions cause the devastating diseases collectively referred to as "c9ALS/FTD."
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| |
Collapse
|
47
|
Llamas-Velasco S, García-Redondo A, Herrero-San Martín A, Puertas Martín V, González-Sánchez M, Pérez-Martínez DA, Villarejo-Galende A. Slowly progressive behavioral frontotemporal dementia with C9orf72 mutation. Case report and review of the literature. Neurocase 2018; 24:68-71. [PMID: 29355451 DOI: 10.1080/13554794.2018.1428353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a 86-year-old woman without relevant medical history and two brothers who died by dementia, who started at 55 years with depression and personality changes with ongoing worsening (>30 years) and functional decline. Screening dementia blood test and brain magnetic resonance imaging did not show results that pointed to a secondary cause. The patient met the diagnostic criteria for possible behavioral frontotemporal dementia with a slow progression (bvFTD-SP), suggesting a benign variant. A genetic study confirmed a C9ORF72 hexanucleotide expansion, making this the sixth case mentioned in the literature. We review and discuss the other cases described previously.
Collapse
Affiliation(s)
- S Llamas-Velasco
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain
| | | | - A Herrero-San Martín
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain
| | - V Puertas Martín
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain
| | - M González-Sánchez
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain
| | - D A Pérez-Martínez
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain.,c Universidad Complutense de Madrid , Madrid , Spain
| | - A Villarejo-Galende
- a Department of Neurology , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Imas12. CIBERNED , Madrid , Spain.,c Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
48
|
Ayers JI, Cashman NR. Prion-like mechanisms in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:337-354. [PMID: 29887144 DOI: 10.1016/b978-0-444-63945-5.00018-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prion hypothesis - a protein conformation capable of replicating without a nucleic acid genome - was heretical at the time of its discovery. However, the characteristics of the disease-misfolded prion protein and its ability to transmit disease, replicate, and spread are now widely accepted throughout the scientific community. In fact, in the last decade a wealth of evidence has emerged supporting similar properties observed for many of the misfolded proteins implicated in other neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, tauopathies, and as described in this chapter, amyotrophic lateral sclerosis (ALS). Multiple studies have now demonstrated the ability for superoxide dismutase-1, 43-kDa transactive response (TAR) DNA-binding protein, fused-in sarcoma, and most recently, C9orf72-encoded polypeptides to display properties similar to those of prions. The majority of these are cell-free and in vitro assays, while superoxide dismutase-1 remains the only ALS-linked protein to demonstrate several prion-like properties in vivo. In this chapter, we provide an introduction to ALS and review the recent literature linking several proteins implicated in the familial forms of the disease to properties of the prion protein.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, United States
| | - Neil R Cashman
- Department of Medicine, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
49
|
Irwin DJ, McMillan CT, Xie SX, Rascovsky K, Van Deerlin VM, Coslett HB, Hamilton R, Aguirre GK, Lee EB, Lee VMY, Trojanowski JQ, Grossman M. Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 2018; 141:288-301. [PMID: 29228211 PMCID: PMC5837322 DOI: 10.1093/brain/awx319] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/18/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022] Open
Abstract
Antemortem behavioural and anatomic abnormalities have largely been associated with right hemisphere disease in behavioural-variant frontotemporal dementia, but post-mortem neuropathological examination of bilateral hemispheres remains to be defined. Here we measured the severity of post-mortem pathology in both grey and white matter using a validated digital image analysis method in four cortical regions sampled from each hemisphere in 26 patients with behavioural-variant frontotemporal dementia, including those with frontotemporal degeneration (i.e. tau = 9, TDP-43 = 14, or FUS = 1 proteinopathy) or Alzheimer's pathology (n = 2). We calculated an asymmetry index based on the difference in measured pathology from each left-right sample pair. Analysis of the absolute value of the asymmetry index (i.e. degree of asymmetry independent of direction) revealed asymmetric pathology for both grey and white matter in all four regions sampled in frontototemporal degeneration patients with tau or TDP-43 pathology (P ≤ 0.01). Direct interhemispheric comparisons of regional pathology measurements within-subjects in the combined tauopathy and TDP-43 proteinopathy group found higher pathology in the right orbitofrontal grey matter compared to the left (P < 0.01) and increased pathology in ventrolateral temporal lobe grey matter of the left hemisphere compared to the right (P < 0.02). Preliminary group-wise comparisons between tauopathy and TDP-43 proteinopathy groups found differences in patterns of interhemispheric burden of grey and white matter regional pathology, with greater relative white matter pathology in tauopathies. To test the association of pathology measurement with ante-mortem observations, we performed exploratory analyses in the subset of patients with imaging data (n = 15) and found a direct association for increasing pathologic burden with decreasing cortical thickness in frontotemporal regions on ante-mortem imaging in tauopathy (P = 0.001) and a trend for TDP-43 proteinopathy (P = 0.06). Exploratory clinicopathological correlations demonstrated an association of socially-inappropriate behaviours with asymmetric right orbitofrontal grey matter pathology, and reduced semantically-guided category naming fluency was associated asymmetric white matter pathology in the left ventrolateral temporal region. We conclude that pathologic disease burden is distributed asymmetrically in behavioural-variant frontotemporal dementia, although not universally in the right hemisphere, and this asymmetry contributes to the clinical heterogeneity of the disorder. The basis for this asymmetric profile is enigmatic but may reflect distinct species or strains of tau and TDP-43 pathologies with propensities to spread by distinct cell- and region-specific mechanisms. Patterns of region-specific pathology in the right hemisphere as well as the left hemisphere may play a role in antemortem clinical observations, and these observations may contribute to antemortem identification of molecular pathology in frontotemporal degeneration.
Collapse
Affiliation(s)
- David J Irwin
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M Van Deerlin
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Neuropathology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Tang SS, Li J, Tan L, Yu JT. Genetics of Frontotemporal Lobar Degeneration: From the Bench to the Clinic. J Alzheimers Dis 2017; 52:1157-76. [PMID: 27104909 DOI: 10.3233/jad-160236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. In this review, we summarize most common mutations in MAPT, GRN, and C90RF72, as well as less common mutations in VCP, CHMP2B, TARDBP, FUS gene and so on. Several guidelines have been developed to help gene testing based on genotype-phenotype correlation, the underlying histopathological subtypes, and the neuroanatomic associations. Furthermore, we also summarize molecular pathways implicated by genes and novel targets for FTLD prevention and management in recent years.
Collapse
|