1
|
Zhang Y, Hulsman M, Salazar A, Tesi N, Knoop L, van der Lee S, Wijesekera S, Krizova J, Kamsteeg EJ, Holstege H. Multisample motif discovery and visualization for tandem repeats. Genome Res 2025; 35:850-862. [PMID: 39537359 PMCID: PMC12047238 DOI: 10.1101/gr.279278.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Tandem repeats (TRs) occupy a significant portion of the human genome and are a source of polymorphisms due to variations in sizes and motif compositions. Some of these variations have been associated with various neuropathological disorders, highlighting the clinical importance of assessing the motif structure of TRs. Moreover, assessing the TR motif variation can offer valuable insights into evolutionary dynamics and population structure. Previously, characterizations of TRs were limited by short-read sequencing technology, which lacks the ability to accurately capture the full TR sequences. As long-read sequencing becomes more accessible and can capture the full complexity of TRs, there is now also a need for tools to characterize and analyze TRs using long-read data across multiple samples. In this study, we present MotifScope, a novel algorithm for the characterization and visualization of TRs based on a de novo k-mer approach for motif discovery. Comparative analysis against established tools reveals that MotifScope can identify a greater number of motifs and more accurately represent the underlying repeat sequences. Moreover, MotifScope has been specifically designed to enable motif composition comparisons across assemblies of different individuals, as well as across long-read sequencing reads within an individual, through combined motif discovery and sequence alignment. We showcase potential applications of MotifScope in diverse fields, including population genetics, clinical settings, and forensic analyses.
Collapse
Affiliation(s)
- Yaran Zhang
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Marc Hulsman
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Alex Salazar
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Niccolò Tesi
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Lydian Knoop
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081HV Amsterdam, The Netherlands
| | - Sanduni Wijesekera
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Jana Krizova
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Henne Holstege
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands;
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081HV Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Javadzadeh S, Adamson A, Park J, Jo SY, Ding YC, Bakhtiari M, Bansal V, Neuhausen SL, Bafna V. Analysis of targeted and whole genome sequencing of PacBio HiFi reads for a comprehensive genotyping of gene-proximal and phenotype-associated Variable Number Tandem Repeats. PLoS Comput Biol 2025; 21:e1012885. [PMID: 40193344 PMCID: PMC11975116 DOI: 10.1371/journal.pcbi.1012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Variable Number Tandem repeats (VNTRs) refer to repeating motifs of size greater than five bp. VNTRs are an important source of genetic variation, and have been associated with multiple Mendelian and complex phenotypes. However, the highly repetitive structures require reads to span the region for accurate genotyping. Pacific Biosciences HiFi sequencing spans large regions and is highly accurate but relatively expensive. Therefore, targeted sequencing approaches coupled with long-read sequencing have been proposed to improve efficiency and throughput. In this paper, we systematically explored the trade-off between targeted and whole genome HiFi sequencing for genotyping VNTRs. We curated a set of 10 , 787 gene-proximal (G-)VNTRs, and 48 phenotype-associated (P-)VNTRs of interest. Illumina reads only spanned 46% of the G-VNTRs and 71% of P-VNTRs, motivating the use of HiFi sequencing. We performed targeted sequencing with hybridization by designing custom probes for 9,999 VNTRs and sequenced 8 samples using HiFi and Illumina sequencing, followed by adVNTR genotyping. We compared these results against HiFi whole genome sequencing (WGS) data from 28 samples in the Human Pangenome Reference Consortium (HPRC). With the targeted approach only 4,091 (41%) G-VNTRs and only 4 (8%) of P-VNTRs were spanned with at least 15 reads. A smaller subset of 3,579 (36%) G-VNTRs had higher median coverage of at least 63 spanning reads. The spanning behavior was consistent across all 8 samples. Among 5,638 VNTRs with low-coverage ( < 15), 67% were located within GC-rich regions ( > 60%). In contrast, the 40X WGS HiFi dataset spanned 98% of all VNTRs and 49 (98%) of P-VNTRs with at least 15 spanning reads, albeit with lower coverage. Spanning reads were sufficient for accurate genotyping in both cases. Our findings demonstrate that targeted sequencing provides consistently high coverage for a small subset of low-GC VNTRs, but WGS is more effective for broad and sufficient sampling of a large number of VNTRs.
Collapse
Affiliation(s)
- Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Aaron Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Se-Young Jo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Vikas Bansal
- School of Medicine, University of California, San Diego La Jolla, California, United States of America
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Heath A, McNerney MW, Yesavage J. Whole Genome Variable Number Tandem Repeat Analysis in Alzheimer Disease. Neurol Genet 2025; 11:e200241. [PMID: 39980902 PMCID: PMC11839231 DOI: 10.1212/nxg.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/10/2024] [Indexed: 02/22/2025]
Abstract
Background and Objectives Investigation into different allelic variants may yield new associative genes to predict late-onset Alzheimer disease (LOAD). Variable number tandem repeats (VNTRs) are important polymorphic components of the genome; however, they have been previously overlooked because of their complex genotyping. New software can now determine differing lengths of VNTRs; however, this has not been tested in a large case-control population. Methods We used VNTRseek to genotype over 200,000 tandem repeats in 9,501 cases and controls from the Alzheimer's Disease Sequencing Project. We first identified limiting factors of this analysis and then examined the association of VNTRs with AD diagnosis in a subset of non-Hispanic White participants. Results We found that VNTRs were highly associated with areas of the genome with a high number of previously identified variants. From our case-control analysis, we identified 9 VNTRs with a repeat allele length associated with LOAD including VNTRs on DSC3, NR2E3, CCNY, PKP4, GRAP, and MAP6. Discussion We were able to show the feasibility of this new type of analysis in large-scale whole-genome sequencing data and identify promising VNTRs that are associated with LOAD.
Collapse
Affiliation(s)
- Alesha Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| | - M Windy McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| | - Jerome Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| |
Collapse
|
4
|
Kawahara R, Morishita S. Approximating edit distances between complex tandem repeats efficiently. Bioinformatics 2025; 41:btaf155. [PMID: 40203069 PMCID: PMC12014093 DOI: 10.1093/bioinformatics/btaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/24/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
MOTIVATION Extended tandem repeats (TRs) have been associated with 60 or more diseases over the past 30 years. Although most TRs have single repeat units (or motifs), complex TRs with different units have recently been correlated with some brain disorders. Of note, a population-scale analysis shows that complex TRs at one locus can be divergent, and different units are often expanded between individuals. To understand the evolution of high TR diversity, it is informative to visualize a phylogenetic tree. To do this, we need to measure the edit distance between pairs of complex TRs by considering duplication and contraction of units created by replication slippage. However, traditional rigorous algorithms for this purpose are computationally expensive. RESULTS We here propose an efficient heuristic algorithm to estimate the edit distance with duplication and contraction of units (EDDC, for short). We select a set of frequent units that occur in given complex TRs, encode each unit as a single symbol, compress a TR into an optimal series of unit symbols that partially matches the original TR with the minimum Levenshtein distance, and estimate the EDDC between a pair of complex TRs from their compressed forms. Using substantial synthetic benchmark datasets, we demonstrate that the estimated EDDC is highly correlated with the accurate EDDC, with a Pearson correlation coefficient of >0.983, while the heuristic algorithm achieves orders of magnitude performance speedup. AVAILABILITY AND IMPLEMENTATION The software program hEDDC that implements the proposed algorithm is available at https://github.com/Ricky-pon/hEDDC (DOI: 10.5281/zenodo.14732958).
Collapse
Affiliation(s)
- Riki Kawahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Ramirez P, Sun W, Dehkordi SK, Zare H, Pascarella G, Carninci P, Fongang B, Bieniek KF, Frost B. Nanopore Long-Read Sequencing Unveils Genomic Disruptions in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.01.578450. [PMID: 38370753 PMCID: PMC10871260 DOI: 10.1101/2024.02.01.578450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Studies in laboratory models and postmortem human brain tissue from patients with Alzheimer's disease have revealed disruption of basic cellular processes such as DNA repair and epigenetic control as drivers of neurodegeneration. While genomic alterations in regions of the genome that are rich in repetitive sequences, often termed "dark regions," are difficult to resolve using traditional sequencing approaches, long-read technologies offer promising new avenues to explore previously inaccessible regions of the genome. In the current study, we leverage nanopore-based long-read whole-genome sequencing of DNA extracted from postmortem human frontal cortex at early and late stages of Alzheimer's disease, as well as age-matched controls, to analyze retrotransposon insertion events, non-allelic homologous recombination (NAHR), structural variants and DNA methylation within retrotransposon loci and other repetitive/dark regions of the human genome. Interestingly, we find that retrotransposon insertion events and repetitive element-associated NAHR are particularly enriched within centromeric and pericentromeric regions of DNA in the aged human brain, and that ribosomal DNA (rDNA) is subject to a high degree of NAHR compared to other regions of the genome. We detect a trending increase in potential somatic retrotransposition events of the small interfering nuclear element (SINE) AluY in late-stage Alzheimer's disease, and differential changes in methylation within repetitive elements and retrotransposons according to disease stage. Taken together, our analysis provides the first long-read DNA sequencing-based analysis of retrotransposon sequences, NAHR, structural variants, and DNA methylation in the aged brain, and points toward transposable elements, centromeric/pericentromeric regions and rDNA as hotspots for genomic variation.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| |
Collapse
|
6
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
7
|
Cui Y, Arnold FJ, Li JS, Wu J, Wang D, Philippe J, Colwin MR, Michels S, Chen C, Sallam T, Thompson LM, La Spada AR, Li W. Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain. Nat Genet 2025; 57:369-378. [PMID: 39809899 DOI: 10.1038/s41588-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.2 million TR molecular quantitative trait loci (TR-xQTLs), linking ~139,000 unique TRs to nearby molecular phenotypes, including many known disease-risk TRs, such as the G2C4 expansion in C9orf72 associated with amyotrophic lateral sclerosis. Fine-mapping revealed ~18,700 TRs as potential causal variants. Our in vitro experiments further confirmed the causal and independent regulatory effects of three TRs. Additional colocalization analysis indicated the potential causal role of TR variation in brain-related phenotypes, highlighted by a 3'-UTR TR in NUDT14 linked to cortical surface area and a TG repeat in PLEKHA1, associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Frederick J Arnold
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jason Sheng Li
- Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jie Wu
- Departments of Psychiatry and Human Behavior, Neurobiology and Behavior, and Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Dan Wang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julien Philippe
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Michael R Colwin
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Sebastian Michels
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of Ulm, Oberer Eselsberg, Ulm, Germany
| | - Chaorong Chen
- Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior, Neurobiology and Behavior, and Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
- UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Tesi N, Salazar A, Zhang Y, van der Lee S, Hulsman M, Knoop L, Wijesekera S, Krizova J, Schneider AF, Pennings M, Sleegers K, Kamsteeg EJ, Reinders M, Holstege H. Characterizing tandem repeat complexities across long-read sequencing platforms with TREAT and otter. Genome Res 2024; 34:1942-1953. [PMID: 39406499 DOI: 10.1101/gr.279351.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization, and analysis across multiple genomes. In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT, Simplex and Duplex) and Pacific Bioscience (PacBio, Sequel II and Revio), otter and TREAT achieve state-of-the-art genotyping and motif characterization accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identify individuals with pathogenic TR expansions. When applied to a case-control setting, we replicate previously reported associations of TRs with Alzheimer's disease, including those near or within APOC1 (P = 2.63 × 10-9), SPI1 (P = 6.5 × 10-3), and ABCA7 (P = 0.04) genes. Finally, we use TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and PacBio long-read sequencing data sets. We show that, in rare cases (0.06%), long-read sequencing from coverage drops in TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR misgenotyping, hampering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TRs across different sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TRs in human genomes, with broad applications in research and clinical fields.
Collapse
Affiliation(s)
- Niccoló Tesi
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands;
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Alex Salazar
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Yaran Zhang
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Marc Hulsman
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Lydian Knoop
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sanduni Wijesekera
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Jana Krizova
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Anne-Fleur Schneider
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Maartje Pennings
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Antwerp Center for Molecular Neurology, VIB, Antwerp B-2650, Belgium
| | - Erik-Jan Kamsteeg
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Henne Holstege
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
9
|
Song Z, Zahin T, Li X, Shao M. Accurate Detection of Tandem Repeats from Error-Prone Sequences with EquiRep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621953. [PMID: 39574759 PMCID: PMC11580891 DOI: 10.1101/2024.11.05.621953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
A tandem repeat is a sequence of nucleotides that occurs as multiple contiguous and near-identical copies positioned next to each other. These repeats play critical roles in genetic diversity, gene regulation, and are strongly linked to various neurological and developmental disorders. While several methods exist for detecting tandem repeats, they often exhibit low accuracy when the repeat unit length increases or the number of copies is low. Furthermore, methods capable of handling highly mutated sequences remain scarce, highlighting a significant opportunity for improvement. We introduce EquiRep, a tool for accurate detection of tandem repeats from erroneous sequences. EquiRep estimates the likelihood of positions originating from the same position in the unit by self-alignment followed by a novel approach that refines the estimation. The built equivalent classes and the consecutive position information will be then used to build a weighted graph, and the cycle in this graph with maximum bottleneck weight while covering most nucleotide positions will be identified to reconstruct the repeat unit. We test EquiRep on simulated and real HOR and RCA datasets where it consistently outperforms or is comparable to state-of-the-art methods. EquiRep is robust to sequencing errors, and is able to make better predictions for long units and low frequencies which underscores its broad usability for studying tandem repeats.
Collapse
Affiliation(s)
- Zhezheng Song
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tasfia Zahin
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiang Li
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mingfu Shao
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Bertholim-Nasciben L, Nuytemans K, Van Booven D, Rajabli F, Moura S, Ramirez AM, Dykxhoorn DM, Wang L, Scott WK, Davis DA, Vontell RT, McInerney KF, Cuccaro ML, Byrd GS, Haines JL, Gearing M, Adams LD, Pericak-Vance MA, ADSP, Young JI, Griswold AJ, Vance JM. African origin haplotype protective for Alzheimer's disease in APOEε4 carriers: exploring potential mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619909. [PMID: 39484566 PMCID: PMC11527192 DOI: 10.1101/2024.10.24.619909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
APOEε4 is the strongest genetic risk factor for Alzheimer's disease (AD) with approximately 50% of AD patients carrying at least one APOEε4 allele. Our group identified a protective interaction between APOEε4 with the African-specific A allele of rs10423769, which reduces the AD risk effect of APOEε4 homozygotes by approximately 75%. The protective variant lies 2Mb from APOE in a region of segmental duplications (SD) of chromosome 19 containing a cluster of pregnancy specific beta-1 glycoprotein genes (PSGs) and a long non-coding RNA. Using both short and long read sequencing, we demonstrate that rs10423769_A allele lies within a unique single haplotype inside this region of segmental duplication. We identified the protective haplotype in all African ancestry populations studied, including both West and East Africans, suggesting the variant has an old origin. Long-read sequencing identified both structural and DNA methylation differences between the protective rs10423769_A allele and non-protective haplotypes. An expanded variable number tandem repeat (VNTR) containing multiple MEF2 family transcription factor binding motifs was found associated with the protective haplotype (p-value = 2.9e-10). These findings provide novel insights into the mechanisms of this African-origin protective variant for AD in APOEε4 carriers and supports the importance of including all ancestries in AD research.
Collapse
Affiliation(s)
- Luciana Bertholim-Nasciben
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen Nuytemans
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sofia Moura
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aura M. Ramirez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William K. Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David A. Davis
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina T. Vontell
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Goldie S. Byrd
- Maya Angelou Center for Health Equity, Wake Forest University, Winston-Salem, NC, USA
| | - Jonathan L. Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marla Gearing
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - Larry D. Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - ADSP
- Alzheimer’s Disease Sequencing Project
| | - Juan I. Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Garliyev V, Lyssenko CA, Wiener JP, Praticò D, Lyssenko NN. Very low levels of ABCA7 in the cerebrum and Alzheimer's disease onset between the ages of 60 and 80 independently of APOE. J Neuropathol Exp Neurol 2024; 83:808-821. [PMID: 38900184 DOI: 10.1093/jnen/nlae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
This cross-sectional study addressed the ABCA7-Alzheimer's disease (AD) association. ABCA7 protein levels were quantified in 3 cerebral regions of brain donors with Braak neurofibrillary tangle (NFT) stages 0-V. Ordinal regression models were implemented to estimate the effect of ABCA7 on stopping in an earlier Braak NFT stage versus progressing to the later stages in 2 prespecified age segments. In the final model, high ABCA7 levels in the parietal cortex increased the odds of remaining cognitively healthy (ie, in stages 0/I) versus experiencing AD onset (ie, progressing to stages II-V) in the 61-80 age segment (OR = 2.87, adj 95% CI = 1.41-7.86, adj P = .007, n = 109), after controlling for APOE and other covariates. No ABCA7-AD association was found in the 81-98 age segment (n = 113). Parietal ABCA7 levels in 61-80-year-old with stages II-V were very low, even significantly lower than in 81-98-year-old with stages II-V. ABCA7 levels in the prefrontal cortex and hippocampus predicted AD onset in the 61-80 age segment after adjustment for APOE. ABCA7 levels were also the lowest in 61-80-year-old with frequent neuritic plaques. Thus, very low ABCA7 levels in the cerebrum are associated with AD onset in the 7th-8th decade of life.
Collapse
Affiliation(s)
- Viktor Garliyev
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine A Lyssenko
- Office of Institutional Research & Analysis, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel P Wiener
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nicholas N Lyssenko
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
12
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
13
|
Chiu R, Rajan-Babu IS, Friedman JM, Birol I. A comprehensive tandem repeat catalog of the human genome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309173. [PMID: 38947075 PMCID: PMC11213036 DOI: 10.1101/2024.06.19.24309173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
With the increasing availability of long-read sequencing data, high-quality human genome assemblies, and software for fully characterizing tandem repeats, genome-wide genotyping of tandem repeat loci on a population scale becomes more feasible. Such efforts not only expand our knowledge of the tandem repeat landscape in the human genome but also enhance our ability to differentiate pathogenic tandem repeat mutations from benign polymorphisms. To this end, we analyzed 272 genomes assembled using datasets from three public initiatives that employed different long-read sequencing technologies. Here, we report a catalog of over 18 million tandem repeat loci, many of which were previously unannotated. Some of these loci are highly polymorphic, and many of them reside within coding sequences.
Collapse
Affiliation(s)
- Readman Chiu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Indhu-Shree Rajan-Babu
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
14
|
Moya R, Wang X, Tsien RW, Maurano MT. Structural characterization of a polymorphic repeat at the CACNA1C schizophrenia locus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303780. [PMID: 38798557 PMCID: PMC11118589 DOI: 10.1101/2024.03.05.24303780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic variation within intron 3 of the CACNA1C calcium channel gene is associated with schizophrenia and bipolar disorder, but analysis of the causal variants and their effect is complicated by a nearby variable-number tandem repeat (VNTR). Here, we used 155 long-read genome assemblies from 78 diverse individuals to delineate the structure and population variability of the CACNA1C intron 3 VNTR. We categorized VNTR sequences into 7 Types of structural alleles using sequence differences among repeat units. Only 12 repeat units at the 5' end of the VNTR were shared across most Types, but several Types were related through a series of large and small duplications. The most diverged Types were rare and present only in individuals with African ancestry, but the multiallelic structural polymorphism Variable Region 2 was present across populations at different frequencies, consistent with expansion of the VNTR preceding the emergence of early hominins. VR2 was in complete linkage disequilibrium with fine-mapped schizophrenia variants (SNPs) from genome-wide association studies (GWAS). This risk haplotype was associated with decreased CACNA1C gene expression in brain tissues profiled by the GTEx project. Our work suggests that sequence variation within a human-specific VNTR affects gene expression, and provides a detailed characterization of new alleles at a flagship neuropsychiatric locus.
Collapse
Affiliation(s)
- Raquel Moya
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Xiaohan Wang
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University, New York, NY 10016
| | - Richard W. Tsien
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University, New York, NY 10016
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Ahmed H, Wang Y, Griffiths WJ, Levey AI, Pikuleva I, Liang SH, Haider A. Brain cholesterol and Alzheimer's disease: challenges and opportunities in probe and drug development. Brain 2024; 147:1622-1635. [PMID: 38301270 PMCID: PMC11068113 DOI: 10.1093/brain/awae028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-β and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, 8093 Zurich, Switzerland
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
17
|
Jeong MS, Mun JY, Yang GE, Kim MH, Lee SY, Choi YH, Kim HS, Nam JK, Kim TN, Leem SH. Exploring the Relationship between CLPTM1L-MS2 Variants and Susceptibility to Bladder Cancer. Genes (Basel) 2023; 15:50. [PMID: 38254939 PMCID: PMC10815179 DOI: 10.3390/genes15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
CLPTM1L (Cleft Lip and Palate Transmembrane Protein 1-Like) has previously been implicated in tumorigenesis and drug resistance in cancer. However, the genetic link between CLPTM1L and bladder cancer remains uncertain. In this study, we investigated the genetic association of variable number of tandem repeats (VNTR; minisatellites, MS) regions within CLPTM1L with bladder cancer. We identified four CLPTM1L-MS regions (MS1~MS4) located in intron regions. To evaluate the VNTR polymorphic alleles, we analyzed 441 cancer-free controls and 181 bladder cancer patients. Our analysis revealed a higher frequency of specific repeat sizes within the MS2 region in bladder cancer cases compared to controls. Notably, 25 and 27 repeats were exclusively present in the bladder cancer group. Moreover, rare alleles within the medium-length repeat range (25-29 repeats) were associated with an elevated bladder cancer risk (odds ratio [OR] = 5.78, 95% confidence interval [CI]: 1.49-22.47, p = 0.004). We confirmed that all MS regions followed Mendelian inheritance, and demonstrated that MS2 alleles increased CLPTM1L promoter activity in the UM-UC3 bladder cancer cells through a luciferase assay. Our findings propose the utility of CLPTM1L-MS regions as DNA typing markers, particularly highlighting the potential of middle-length rare alleles within CLPTM1L-MS2 as predictive markers for bladder cancer risk.
Collapse
Affiliation(s)
- Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Republic of Korea
| | - Jeong-Yeon Mun
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| | - Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea;
| | - Heui Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Yangsan 50612, Republic of Korea;
| | - Tae Nam Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute and Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
18
|
Cacace R, Zhou L, Hendrickx Van de Craen E, Buist A, Hoogmartens J, Sieben A, Cras P, Vandenberghe R, De Deyn PP, Oehlrich D, De Bondt A, Engelborghs S, Moechars D, Van Broeckhoven C. Mutated Toll-like receptor 9 increases Alzheimer's disease risk by compromising innate immunity protection. Mol Psychiatry 2023; 28:5380-5389. [PMID: 37433968 PMCID: PMC11041692 DOI: 10.1038/s41380-023-02166-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aβ42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.
Collapse
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lujia Zhou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisabeth Hendrickx Van de Craen
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
| | - Arjan Buist
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Julie Hoogmartens
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Patrick Cras
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
- Institute Born-Bunge, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, and Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter P De Deyn
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Daniel Oehlrich
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Duchateau L, Küҫükali F, De Roeck A, Wittens MMJ, Temmerman J, Weets I, Timmers M, Engelborghs S, Bjerke M, Sleegers K. CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response. Alzheimers Res Ther 2023; 15:195. [PMID: 37946268 PMCID: PMC10634183 DOI: 10.1186/s13195-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aβ1-42, Aβ1-40, P-tau181, T-tau, sAPPα, sAPPβ, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aβ ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS Carriers of ABCA7 expansion mutations had significantly lower Aβ1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aβ1-40 (P = 0.023), sAPPα (P = 0.047), sAPPβ (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Fahri Küҫükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Arne De Roeck
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Present Address: Argenx, Ghent, Belgium
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Joke Temmerman
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Ilse Weets
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Experimental Pharmacology (EFAR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium.
| |
Collapse
|
20
|
Qian XH, Chen SY, Liu XL, Tang HD. ABCA7-Associated Clinical Features and Molecular Mechanisms in Alzheimer's Disease. Mol Neurobiol 2023; 60:5548-5556. [PMID: 37322288 DOI: 10.1007/s12035-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aβ production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aβ is destroyed by ABCA7 deficiency, leading to reduced clearance of Aβ. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Yue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Ichikawa K, Kawahara R, Asano T, Morishita S. A landscape of complex tandem repeats within individual human genomes. Nat Commun 2023; 14:5530. [PMID: 37709751 PMCID: PMC10502081 DOI: 10.1038/s41467-023-41262-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Markedly expanded tandem repeats (TRs) have been correlated with ~60 diseases. TR diversity has been considered a clue toward understanding missing heritability. However, haplotype-resolved long TRs remain mostly hidden or blacked out because their complex structures (TRs composed of various units and minisatellites containing >10-bp units) make them difficult to determine accurately with existing methods. Here, using a high-precision algorithm to determine complex TR structures from long, accurate reads of PacBio HiFi, an investigation of 270 Japanese control samples yields several genome-wide findings. Approximately 322,000 TRs are difficult to impute from the surrounding single-nucleotide variants. Greater genetic divergence of TR loci is significantly correlated with more events of younger replication slippage. Complex TRs are more abundant than single-unit TRs, and a tendency for complex TRs to consist of <10-bp units and single-unit TRs to be minisatellites is statistically significant at loci with ≥500-bp TRs. Of note, 8909 loci with extended TRs (>100b longer than the mode) contain several known disease-associated TRs and are considered candidates for association with disorders. Overall, complex TRs and minisatellites are found to be abundant and diverse, even in genetically small Japanese populations, yielding insights into the landscape of long TRs.
Collapse
Affiliation(s)
- Kazuki Ichikawa
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 277-8561, Chiba, Japan
| | - Riki Kawahara
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 277-8561, Chiba, Japan
| | - Takeshi Asano
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 277-8561, Chiba, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 277-8561, Chiba, Japan.
| |
Collapse
|
22
|
Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Hujoel MLA, McCarroll SA, Loh PR. Repeat polymorphisms underlie top genetic risk loci for glaucoma and colorectal cancer. Cell 2023; 186:3659-3673.e23. [PMID: 37527660 PMCID: PMC10528368 DOI: 10.1016/j.cell.2023.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Many regions in the human genome vary in length among individuals due to variable numbers of tandem repeats (VNTRs). To assess the phenotypic impact of VNTRs genome-wide, we applied a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 418,136 unrelated UK Biobank participants and 838 GTEx participants. Association and statistical fine-mapping analyses identified 58 VNTRs that appeared to influence a complex trait in UK Biobank, 18 of which also appeared to modulate expression or splicing of a nearby gene. Non-coding VNTRs at TMCO1 and EIF3H appeared to generate the largest known contributions of common human genetic variation to risk of glaucoma and colorectal cancer, respectively. Each of these two VNTRs associated with a >2-fold range of risk across individuals. These results reveal a substantial and previously unappreciated role of non-coding VNTRs in human health and gene regulation.
Collapse
Affiliation(s)
- Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Ren J, Gu B, Chaisson MJP. vamos: variable-number tandem repeats annotation using efficient motif sets. Genome Biol 2023; 24:175. [PMID: 37501141 PMCID: PMC10373352 DOI: 10.1186/s13059-023-03010-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Roughly 3% of the human genome is composed of variable-number tandem repeats (VNTRs): arrays of motifs at least six bases. These loci are highly polymorphic, yet current approaches that define and merge variants based on alignment breakpoints do not capture their full diversity. Here we present a method vamos: VNTR Annotation using efficient Motif Sets that instead annotates VNTR using repeat composition under different levels of motif diversity. Using vamos we estimate 7.4-16.7 alleles per locus when applied to 74 haplotype-resolved human assemblies, compared to breakpoint-based approaches that estimate 4.0-5.5 alleles per locus.
Collapse
Affiliation(s)
- Jingwen Ren
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, US
| | - Bida Gu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, US
| | - Mark J. P. Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, US
| |
Collapse
|
24
|
Gawronski KA, Bone WP, Park Y, Pashos EE, Wenz BM, Dudek MF, Wang X, Yang W, Rader DJ, Musunuru K, Voight BF, Brown CD. Evaluating the Contribution of Cell Type-Specific Alternative Splicing to Variation in Lipid Levels. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:248-257. [PMID: 37165871 PMCID: PMC10284136 DOI: 10.1161/circgen.120.003249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Genome-wide association studies have identified hundreds of loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contribute to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest. METHODS We analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell lines (n=166), as well as in an independent collection of primary liver tissues (n=96) to perform discovery of splicing quantitative trait loci (sQTLs). RESULTS We observe that transcript splicing is highly cell type specific, and the genes that are differentially spliced between iPSCs and hepatocyte-like cells are enriched for metabolism pathway annotations. We identify 1384 hepatocyte-like cell sQTLs and 1455 iPSC sQTLs at a false discovery rate of <5% and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an hepatocyte-like cell expression quantitative trait locus or sQTL. Only 2 loci colocalize with both a sQTL and expression quantitative trait locus, indicating that sQTLs contribute information about genome-wide association studies loci that cannot be obtained by analysis of steady-state gene expression alone. CONCLUSIONS These results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.
Collapse
Affiliation(s)
- Katerina A.B. Gawronski
- Cell and Molecular Biology Graduate Group (K.A.B.G., B.M.W.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - William P. Bone
- Genomics and Computational Biology Graduate Group (W.P.B., M.F.D.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - YoSon Park
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Evanthia E. Pashos
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Brandon M. Wenz
- Cell and Molecular Biology Graduate Group (K.A.B.G., B.M.W.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Max F. Dudek
- Genomics and Computational Biology Graduate Group (W.P.B., M.F.D.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Xiao Wang
- Cardiovascular Institute (X.W.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Wenli Yang
- Institute for Regenerative Medicine (W.Y.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Daniel J. Rader
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
- Department of Medicine (D.J.R., K.M.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
- Division of Translational Medicine & Human Genetics (D.J.R.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Kiran Musunuru
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
- Department of Medicine (D.J.R., K.M.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Benjamin F. Voight
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics (B.F.V.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
- Institute for Translational Medicine and Therapeutics (B.F.V.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| | - Christopher D. Brown
- Department of Genetics (Y.P., E.E.P., D.J.R., K.M., B.F.V., C.D.B.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Apsley AT, Domico ER, Verbiest MA, Brogan CA, Buck ER, Burich AJ, Cardone KM, Stone WJ, Anisimova M, Vandenbergh DJ. A novel hypervariable variable number tandem repeat in the dopamine transporter gene ( SLC6A3). Life Sci Alliance 2023; 6:e202201677. [PMID: 36754567 PMCID: PMC9909461 DOI: 10.26508/lsa.202201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The dopamine transporter gene, SLC6A3, has received substantial attention in genetic association studies of various phenotypes. Although some variable number tandem repeats (VNTRs) present in SLC6A3 have been tested in genetic association studies, results have not been consistent. VNTRs in SLC6A3 that have not been examined genetically were characterized. The Tandem Repeat Annotation Library was used to characterize the VNTRs of 64 unrelated long-read haplotype-phased SLC6A3 sequences. Sequence similarity of each repeat unit of the five VNTRs is reported, along with the correlations of SNP-SNP, SNP-VNTR, and VNTR-VNTR alleles across the gene. One of these VNTRs is a novel hyper-VNTR (hyVNTR) in intron 8 of SLC6A3, which contains a range of 3.4-133.4 repeat copies and has a consensus sequence length of 38 bp, with 82% G+C content. The 38-base repeat was predicted to form G-quadruplexes in silico and was confirmed by circular dichroism spectroscopy. In addition, this hyVNTR contains multiple putative binding sites for PRDM9, which, in combination with low levels of linkage disequilibrium around the hyVNTR, suggests it might be a recombination hotspot.
Collapse
Affiliation(s)
- Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
| | - Emma R Domico
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Max A Verbiest
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, Faculty of Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carly A Brogan
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Evan R Buck
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Andrew J Burich
- Department of Information Science and Technologies - Applied Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Kathleen M Cardone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Wesley J Stone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Maria Anisimova
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J Vandenbergh
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
- Institute of the Neurosciences, The Pennsylvania State University, State College, PA, USA
- The Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| |
Collapse
|
27
|
Hamanaka K, Yamauchi D, Koshimizu E, Watase K, Mogushi K, Ishikawa K, Mizusawa H, Tsuchida N, Uchiyama Y, Fujita A, Misawa K, Mizuguchi T, Miyatake S, Matsumoto N. Genome-wide identification of tandem repeats associated with splicing variation across 49 tissues in humans. Genome Res 2023; 33:435-447. [PMID: 37307504 PMCID: PMC10078293 DOI: 10.1101/gr.277335.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Tandem repeats (TRs) are one of the largest sources of polymorphism, and their length is associated with gene regulation. Although previous studies reported several tandem repeats regulating gene splicing in cis (spl-TRs), no large-scale study has been conducted. In this study, we established a genome-wide catalog of 9537 spl-TRs with a total of 58,290 significant TR-splicing associations across 49 tissues (false discovery rate 5%) by using Genotype-Tissue expression (GTex) Project data. Regression models explaining splicing variation by using spl-TRs and other flanking variants suggest that at least some of the spl-TRs directly modulate splicing. In our catalog, two spl-TRs are known loci for repeat expansion diseases, spinocerebellar ataxia 6 (SCA6) and 12 (SCA12). Splicing alterations by these spl-TRs were compatible with those observed in SCA6 and SCA12. Thus, our comprehensive spl-TR catalog may help elucidate the pathomechanism of genetic diseases.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan;
| |
Collapse
|
28
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Ding YC, Adamson AW, Bakhtiari M, Patrick C, Park J, Laitman Y, Weitzel JN, Bafna V, Friedman E, Neuhausen SL. Variable number tandem repeats (VNTRs) as modifiers of breast cancer risk in carriers of BRCA1 185delAG. Eur J Hum Genet 2023; 31:216-222. [PMID: 36434258 PMCID: PMC9905572 DOI: 10.1038/s41431-022-01238-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yael Laitman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxla Gutierrez, Chiapas, MX and Natera, San Carlos, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Preventive Personalized Medicine, Assuta Medical Center, Tel Aviv, Israel
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
30
|
Gallego-Martinez A, Escalera-Balsera A, Trpchevska N, Robles-Bolivar P, Roman-Naranjo P, Frejo L, Perez-Carpena P, Bulla J, Gallus S, Canlon B, Cederroth CR, Lopez-Escamez JA. Using coding and non-coding rare variants to target candidate genes in patients with severe tinnitus. NPJ Genom Med 2022; 7:70. [PMID: 36450758 PMCID: PMC9712652 DOI: 10.1038/s41525-022-00341-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Tinnitus is the phantom percept of an internal non-verbal set of noises and tones. It is reported by 15% of the population and it is usually associated with hearing and/or brain disorders. The role of structural variants (SVs) in coding and non-coding regions has not been investigated in patients with severe tinnitus. In this study, we performed whole-genome sequencing in 97 unrelated Swedish individuals with chronic tinnitus (TIGER cohort). Rare single nucleotide variants (SNV), large structural variants (LSV), and copy number variations (CNV) were retrieved to perform a gene enrichment analysis in TIGER and in a subgroup of patients with severe tinnitus (SEVTIN, n = 34), according to the tinnitus handicap inventory (THI) scores. An independent exome sequencing dataset of 147 Swedish tinnitus patients was used as a replication cohort (JAGUAR cohort) and population-specific datasets from Sweden (SweGen) and Non-Finish Europeans (NFE) from gnomAD were used as control groups. SEVTIN patients showed a higher prevalence of hyperacusis, hearing loss, and anxiety when they were compared to individuals in the TIGER cohort. We found an enrichment of rare missense variants in 6 and 8 high-constraint genes in SEVTIN and TIGER cohorts, respectively. Of note, an enrichment of missense variants was found in the CACNA1E gene in both SEVTIN and TIGER. We replicated the burden of missense variants in 9 high-constrained genes in the JAGUAR cohort, including the gene NAV2, when data were compared with NFE. Moreover, LSVs in constrained regions overlapping CACNA1E, NAV2, and TMEM132D genes were observed in TIGER and SEVTIN.
Collapse
Affiliation(s)
- Alvaro Gallego-Martinez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Alba Escalera-Balsera
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Natalia Trpchevska
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Paula Robles-Bolivar
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Pablo Roman-Naranjo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Lidia Frejo
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| | - Patricia Perez-Carpena
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| | - Jan Bulla
- grid.7914.b0000 0004 1936 7443Department of Mathematics, University of Bergen, 5020 Bergen, Norway ,grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Silvano Gallus
- grid.4527.40000000106678902Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Barbara Canlon
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christopher R. Cederroth
- grid.4714.60000 0004 1937 0626Section of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ,grid.240404.60000 0001 0440 1889National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Ropewalk House, Nottingham, NG1 5DU UK ,grid.4563.40000 0004 1936 8868Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH UK
| | - Jose A. Lopez-Escamez
- grid.470860.d0000 0004 4677 7069Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain ,grid.411380.f0000 0000 8771 3783Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain ,grid.452372.50000 0004 1791 1185Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain ,grid.4489.10000000121678994Department of Surgery, Division of Otolaryngology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
31
|
Chaar DL, Nguyen K, Wang YZ, Ratliff SM, Mosley TH, Kardia SLR, Smith JA, Zhao W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes (Basel) 2022; 13:2150. [PMID: 36421824 PMCID: PMC9691156 DOI: 10.3390/genes13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kim Nguyen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
32
|
Marshall JNG, Fröhlich A, Li L, Pfaff AL, Middlehurst B, Spargo TP, Iacoangeli A, Lang B, Al-Chalabi A, Koks S, Bubb VJ, Quinn JP. A polymorphic transcriptional regulatory domain in the amyotrophic lateral sclerosis risk gene CFAP410 correlates with differential isoform expression. Front Mol Neurosci 2022; 15:954928. [PMID: 36131690 PMCID: PMC9484465 DOI: 10.3389/fnmol.2022.954928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
We describe the characterisation of a variable number tandem repeat (VNTR) domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene CFAP410 (Cilia and flagella associated protein 410) (previously known as C21orf2), providing insight into how this domain could support differential gene expression and thus be a modulator of ALS progression or risk. We demonstrated the VNTR was functional in a reporter gene assay in the HEK293 cell line, exhibiting both the properties of an activator domain and a transcriptional start site, and that the differential expression was directed by distinct repeat number in the VNTR. These properties embedded in the VNTR demonstrated the potential for this VNTR to modulate CFAP410 expression. We extrapolated these findings in silico by utilisation of tagging SNPs for the two most common VNTR alleles to establish a correlation with endogenous gene expression. Consistent with in vitro data, CFAP410 isoform expression was found to be variable in the brain. Furthermore, although the number of matched controls was low, there was evidence for one specific isoform being correlated with lower expression in those with ALS. To address if the genotype of the VNTR was associated with ALS risk, we characterised the variation of the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of the VNTR length, defining eight alleles of the VNTR. No significant difference was observed between cases and controls, we noted, however, the cohort was unlikely to contain sufficient power to enable any firm conclusion to be drawn from this analysis. This data demonstrated that the VNTR domain has the potential to modulate CFAP410 expression as a regulatory element that could play a role in its tissue-specific and stimulus-inducible regulation that could impact the mechanism by which CFAP410 is involved in ALS.
Collapse
Affiliation(s)
- Jack N. G. Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Li Li
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Abigail L. Pfaff
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, King's College Hospital, London, United Kingdom
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Gao C, Shen X, Tan Y, Chen S. Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to microglia in Alzheimer's disease. J Neuroinflammation 2022; 19:215. [PMID: 36058959 PMCID: PMC9441025 DOI: 10.1186/s12974-022-02580-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most common cause of dementia. Among various pathophysiological aspects, microglia are considered to play important roles in the pathogenesis of AD. Genome wide association studies (GWAS) showed that the majority of AD risk genes are highly or exclusively expressed in microglia, underscoring the critical roles of microglia in AD pathogenesis. Recently, omics technologies have greatly advanced our knowledge of microglia biology in AD. Omics approaches, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics/lipidomics, present remarkable opportunities to delineate the underlying mechanisms, discover novel diagnostic biomarkers, monitor disease progression, and shape therapeutic strategies for diseases. In this review, we summarized research based on microglial "omics" analysis in AD, especially the recent research advances in the identification of AD-associated microglial subsets. This review reinforces the important role of microglia in AD and advances our understanding of the mechanism of microglia in AD pathogenesis. Moreover, we proposed the value of microglia-based omics in the development of therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
34
|
Yang Z, Xue L, Li C, Li M, Xie A. Association between ABCA7 gene polymorphisms and Parkinson's disease susceptibility in a northern Chinese Han population. Neurosci Lett 2022; 784:136734. [PMID: 35709878 DOI: 10.1016/j.neulet.2022.136734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE As a typical member of the ABC transporter superfamily, ABCA7 has been shown to play an important role in stalling the pathogenesis of neurodegenerative disorders through maintaining the normal microglial function, regulating cellular responses to inflammation and ER stress, and modulating lipid metabolism. Variants in the ABCA7 locus have been hypothesized to be correlated with the genetic predisposition of several neurodegenerative disorders. The goal of this study was to examine whether there is a link between three specific single nucleotide polymorphisms in the ABCA7 gene, namely, rs3764650, rs4147929, and rs3752246, with the risk of developing Parkinson's disease (PD) in a northern Chinese Han community. METHODS In this case-control study, we recruited 821 participants, including 411 patients with sporadic PD and 410 independent, healthy controls. A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism genotyping assay was used to identify polymorphisms of the three selected single nucleotide polymorphisms (rs3764650, rs4147929, and rs3752246) of the ABCA7 gene. Sanger sequencing was further applied to identify the accuracy of the genotyping results. The chi-square test was used to compare the frequencies of alleles and genotypes in patients and controls. Odds ratios and 95% confidence intervals were calculated using logistic regression. RESULTS We found significant between-group differences in the alleles (A vs. G, nominal P = 0.014) and dominant models (AA + GA vs. GG, nominal P = 0.015) of rs4147929. Subgroup analysis showed that the frequency of the rs4147929 A allele in male patients with PD was significantly higher than that in male controls (nominal P = 0.036). For the rs3752246 polymorphism, the frequency of the G allele was significantly higher in patients with PD than in controls, and the dominant model fit the data best when considering the nominal P-values (nominal P = 0.019, nominal P = 0.033, respectively). Differences in G allele and genotypes frequencies between patients and controls remained significant in women (nominal P = 0.032 for allele, nominal P = 0.015 for genotype), as well as in individuals aged more than 50 years (nominal P = 0.044, nominal P = 0.020, respectively). No significant differences were observed in allele or genotype frequencies between patients with PD and healthy controls for rs3764650. The frequency of the TCG (rs3764650-rs3752246-rs4147929) haplotype was significantly lower in the PD group than in the healthy control group (odds ratio = 0.772; 95% confidence interval = 0.634-0.940; P = 0.011). CONCLUSION The rs4147929 polymorphism was significantly associated with PD susceptibility in the northern Chinese Han population. The A allele of rs4147929 was a risk factor for developing PD. The TCG haplotype presented a protective role in the pathogenesis of PD. Further studies using larger sample sizes, considering different clinical and biochemical parameters such as the cognitive status of subjects at the same time, are warranted to better clarify the effects of these common variants on the pathogenesis and development of PD.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- The Recording Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjuan Li
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Garg P, Jadhav B, Lee W, Rodriguez OL, Martin-Trujillo A, Sharp AJ. A phenome-wide association study identifies effects of copy-number variation of VNTRs and multicopy genes on multiple human traits. Am J Hum Genet 2022; 109:1065-1076. [PMID: 35609568 PMCID: PMC9247821 DOI: 10.1016/j.ajhg.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/28/2022] [Indexed: 01/04/2023] Open
Abstract
The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - William Lee
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
36
|
Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer's disease. Mol Neurodegener 2022; 17:31. [PMID: 35477481 PMCID: PMC9044696 DOI: 10.1186/s13024-022-00536-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading cause of dementia, clinically characterized by memory deficits and progressive cognitive decline. Despite decades of research effective therapies are lacking, and a large part of the genetic heritability remains unidentified. ABCA7 and ABCA1, members of the ATP-binding cassette subfamily A (ABCA), were identified as AD risk genes in genome-wide association studies. Nevertheless, genetic and/or functional studies propose a link between AD and two other members of the ABCA subclass, i.e., ABCA2 and ABCA5. Main body Changes in expression or dysfunction of these transporters were found to increase amyloid β levels. This might be related to the common role of ABCA transporters in cellular cholesterol homeostasis, for which a prominent role in AD development has been suggested. In this review, we provide a comprehensive overview and discussion on the contribution of the ABCA subfamily to the etiopathogenesis of AD. Conclusions A better understanding of the function and identification of disease-associated genetic variants in ABCA transporters can contribute to the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp - CDE, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
37
|
Bossaerts L, Hendrickx Van de Craen E, Cacace R, Asselbergh B, Van Broeckhoven C. Rare missense mutations in ABCA7 might increase Alzheimer's disease risk by plasma membrane exclusion. Acta Neuropathol Commun 2022; 10:43. [PMID: 35361255 PMCID: PMC8973822 DOI: 10.1186/s40478-022-01346-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
The adenosine triphosphate-binding cassette subfamily A member 7 gene (ABCA7) is associated with Alzheimer's disease (AD) in large genome-wide association studies. Targeted sequencing of ABCA7 suggests a role for rare premature termination codon (PTC) mutations in AD, with haploinsufficiency through nonsense-mediated mRNA decay as a plausible pathogenic mechanism. Since other classes of rare variants in ABCA7 are poorly understood, we investigated the contribution and pathogenicity of rare missense, indel and splice variants in ABCA7 in Belgian AD patient and control cohorts. We identified 8.36% rare variants in the patient cohort versus 6.05% in the control cohort. For 10 missense mutations identified in the Belgian cohort we analyzed the pathogenetic effect on protein localization in vitro using immunocytochemistry. Our results demonstrate that rare ABCA7 missense mutations can contribute to AD by inducing protein mislocalization, resulting in a lack of functional protein at the plasma membrane. In one pedigree, a mislocalization-inducing missense mutation in ABCA7 (p.G1820S) co-segregated with AD in an autosomal dominant inheritance pattern. Brain autopsy of six patient missense mutation carriers showed typical AD neuropathological characteristics including cerebral amyloid angiopathy type 1. Also, among the rare ABCA7 missense mutations, we observed mutations that affect amino acid residues that are conserved in ABCA1 and ABCA4, of which some correspond to established ABCA1 or ABCA4 disease-causing mutations involved in Tangier or Stargardt disease.
Collapse
|
38
|
McHale P, Quinlan AR. trfermikit: a tool to discover VNTR-associated deletions. Bioinformatics 2022; 38:1231-1234. [PMID: 34864893 PMCID: PMC8826174 DOI: 10.1093/bioinformatics/btab805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/25/2021] [Accepted: 11/27/2021] [Indexed: 02/04/2023] Open
Abstract
SUMMARY We present trfermikit, a software tool designed to detect deletions larger than 50 bp occurring in Variable Number Tandem Repeats using Illumina DNA sequencing reads. In such regions, it achieves a better tradeoff between sensitivity and false discovery than a state-of-the-art structural variation caller, Manta and complements it by recovering a significant number of deletions that Manta missed. trfermikit is based upon the fermikit pipeline, which performs read assembly, maps the assembly to the reference genome and calls variants from the alignment. AVAILABILITY AND IMPLEMENTATION https://github.com/petermchale/trfermikit. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter McHale
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron R Quinlan
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
39
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
40
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
41
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
42
|
Fernández-Carrión R, Sorlí JV, Coltell O, Pascual EC, Ortega-Azorín C, Barragán R, Giménez-Alba IM, Alvarez-Sala A, Fitó M, Ordovas JM, Corella D. Sweet Taste Preference: Relationships with Other Tastes, Liking for Sugary Foods and Exploratory Genome-Wide Association Analysis in Subjects with Metabolic Syndrome. Biomedicines 2021; 10:biomedicines10010079. [PMID: 35052758 PMCID: PMC8772854 DOI: 10.3390/biomedicines10010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Taste perception and its association with nutrition and related diseases (type 2 diabetes, obesity, metabolic syndrome, cardiovascular, etc.) are emerging fields of biomedicine. There is currently great interest in investigating the environmental and genetic factors that influence sweet taste and sugary food preferences for personalized nutrition. Our aims were: (1) to carry out an integrated analysis of the influence of sweet taste preference (both in isolation and in the context of other tastes) on the preference for sugary foods and its modulation by type 2 diabetes status; (2) as well as to explore new genetic factors associated with sweet taste preference. We studied 425 elderly white European subjects with metabolic syndrome and analyzed taste preference, taste perception, sugary-foods liking, biochemical and genetic markers. We found that type 2 diabetic subjects (38%) have a small, but statistically higher preference for sweet taste (p = 0.021) than non-diabetic subjects. No statistically significant differences (p > 0.05) in preferences for the other tastes (bitter, salty, sour or umami) were detected. For taste perception, type 2 diabetic subjects have a slightly lower perception of all tastes (p = 0.026 for the combined “total taste score”), bitter taste being statistically lower (p = 0.023). We also carried out a principal component analysis (PCA), to identify latent variables related to preferences for the five tastes. We identified two factors with eigenvalues >1. Factor 2 was the one with the highest correlation with sweet taste preference. Sweet taste preference was strongly associated with a liking for sugary foods. In the exploratory SNP-based genome-wide association study (GWAS), we identified some SNPs associated with sweet taste preference, both at the suggestive and at the genome-wide level, especially a lead SNP in the PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) gene, whose minor allele was associated with a lower sweet taste preference. The PTPRN2 gene was also a top-ranked gene obtained in the gene-based exploratory GWAS analysis. In conclusion, sweet taste preference was strongly associated with sugary food liking in this population. Our exploratory GWAS identified an interesting candidate gene related with sweet taste preference, but more studies in other populations are required for personalized nutrition.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Jose V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Rocío Barragán
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ignacio M. Giménez-Alba
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA;
- Nutritional Genomics and Epigenomics Group, IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Correspondence: ; Tel.: +34-96-386-4800
| |
Collapse
|
43
|
Frydas A, Wauters E, van der Zee J, Van Broeckhoven C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet 2021; 38:258-272. [PMID: 34535299 DOI: 10.1016/j.tig.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Frydas
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
44
|
Chiu R, Rajan-Babu IS, Friedman JM, Birol I. Straglr: discovering and genotyping tandem repeat expansions using whole genome long-read sequences. Genome Biol 2021; 22:224. [PMID: 34389037 PMCID: PMC8361843 DOI: 10.1186/s13059-021-02447-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Tandem repeat (TR) expansion is the underlying cause of over 40 neurological disorders. Long-read sequencing offers an exciting avenue over conventional technologies for detecting TR expansions. Here, we present Straglr, a robust software tool for both targeted genotyping and novel expansion detection from long-read alignments. We benchmark Straglr using various simulations, targeted genotyping data of cell lines carrying expansions of known diseases, and whole genome sequencing data with chromosome-scale assembly. Our results suggest that Straglr may be useful for investigating disease-associated TR expansions using long-read sequencing.
Collapse
Affiliation(s)
- Readman Chiu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Indhu-Shree Rajan-Babu
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical and Molecular Genetics, King's College London, Strand, London, WC2R 2LS, UK
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
45
|
Course MM, Sulovari A, Gudsnuk K, Eichler EE, Valdmanis PN. Characterizing nucleotide variation and expansion dynamics in human-specific variable number tandem repeats. Genome Res 2021; 31:1313-1324. [PMID: 34244228 PMCID: PMC8327921 DOI: 10.1101/gr.275560.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
There are more than 55,000 variable number tandem repeats (VNTRs) in the human genome, notable for both their striking polymorphism and mutability. Despite their role in human evolution and genomic variation, they have yet to be studied collectively and in detail, partially owing to their large size, variability, and predominant location in noncoding regions. Here, we examine 467 VNTRs that are human-specific expansions, unique to one location in the genome, and not associated with retrotransposons. We leverage publicly available long-read genomes, including from the Human Genome Structural Variant Consortium, to ascertain the exact nucleotide composition of these VNTRs and compare their composition of alleles. We then confirm repeat unit composition in more than 3000 short-read samples from the 1000 Genomes Project. Our analysis reveals that these VNTRs contain highly structured repeat motif organization, modified by frequent deletion and duplication events. Although overall VNTR compositions tend to remain similar between 1000 Genomes Project superpopulations, we describe a notable exception with substantial differences in repeat composition (in PCBP3), as well as several VNTRs that are significantly different in length between superpopulations (in ART1, PROP1, DYNC2I1, and LOC102723906). We also observe that most of these VNTRs are expanded in archaic human genomes, yet remain stable in length between single generations. Collectively, our findings indicate that repeat motif variability, repeat composition, and repeat length are all informative modalities to consider when characterizing VNTRs and their contribution to genomic variation.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
46
|
Reyes CJ, Laabs BH, Schaake S, Lüth T, Ardicoglu R, Rakovic A, Grütz K, Alvarez-Fischer D, Jamora RD, Rosales RL, Weyers I, König IR, Brüggemann N, Klein C, Dobricic V, Westenberger A, Trinh J. Brain Regional Differences in Hexanucleotide Repeat Length in X-Linked Dystonia-Parkinsonism Using Nanopore Sequencing. NEUROLOGY-GENETICS 2021; 7:e608. [PMID: 34250228 PMCID: PMC8265576 DOI: 10.1212/nxg.0000000000000608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Objective Our study investigated the presence of regional differences in hexanucleotide repeat number in postmortem brain tissues of 2 patients with X-linked dystonia-parkinsonism (XDP), a combined dystonia-parkinsonism syndrome modified by a (CCCTCT)n repeat within the causal SINE-VNTR-Alu retrotransposon insertion in the TAF1 gene. Methods Genomic DNA was extracted from blood and postmortem brain samples, including the basal ganglia and cortex from both patients and from the cerebellum, midbrain, and pituitary gland from 1 patient. Repeat sizing was performed using fragment analysis, small-pool PCR-based Southern blotting, and Oxford nanopore sequencing. Results The basal ganglia (p < 0.001) and cerebellum (p < 0.001) showed higher median repeat numbers and higher degrees of repeat instability compared with blood. Conclusions Somatic repeat instability may predominate in brain regions selectively affected in XDP, thereby hinting at its potential role in disease manifestation and modification.
Collapse
Affiliation(s)
- Charles Jourdan Reyes
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Björn-Hergen Laabs
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Raphaela Ardicoglu
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Aleksandar Rakovic
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Karen Grütz
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Daniel Alvarez-Fischer
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Roland Dominic Jamora
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Raymond L Rosales
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Imke Weyers
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Inke R König
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Valerija Dobricic
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics (C.J.R., S.S., T.L., R.A., A.R., K.G., D.A.-F., N.B., C.K., V.D., A.W., J.T.), University of Lübeck, and Institute of Medical Biometry and Statistics (B.-H.L., I.R.K.), University of Lübeck, Germany; Department of Neurosciences (R.D.J.), College of Medicine-Philippine General Hospital, University of the Philippines Manila; Department of Neurology and Psychiatry (R.L.R.), University of Santo Tomas Hospital, Manila, Philippines; Institute of Anatomy (I.W.), Department of Neurology (N.B.), and Lübeck Interdisciplinary Platform for Genome Analytics (V.D.), University of Lübeck, Germany
| |
Collapse
|
47
|
Eslami Rasekh M, Hernández Y, Drinan SD, Fuxman Bass J, Benson G. Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences. Nucleic Acids Res 2021; 49:4308-4324. [PMID: 33849068 PMCID: PMC8096271 DOI: 10.1093/nar/gkab224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.
Collapse
Affiliation(s)
| | - Yözen Hernández
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Juan I Fuxman Bass
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gary Benson
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Computer Science, Boston University, Boston, MA 02215, USA
| |
Collapse
|
48
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
49
|
Garg P, Martin-Trujillo A, Rodriguez OL, Gies SJ, Hadelia E, Jadhav B, Jain M, Paten B, Sharp AJ. Pervasive cis effects of variation in copy number of large tandem repeats on local DNA methylation and gene expression. Am J Hum Genet 2021; 108:809-824. [PMID: 33794196 PMCID: PMC8206010 DOI: 10.1016/j.ajhg.2021.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Variable number tandem repeats (VNTRs) are composed of large tandemly repeated motifs, many of which are highly polymorphic in copy number. However, because of their large size and repetitive nature, they remain poorly studied. To investigate the regulatory potential of VNTRs, we used read-depth data from Illumina whole-genome sequencing to perform association analysis between copy number of ∼70,000 VNTRs (motif size ≥ 10 bp) with both gene expression (404 samples in 48 tissues) and DNA methylation (235 samples in peripheral blood), identifying thousands of VNTRs that are associated with local gene expression (eVNTRs) and DNA methylation levels (mVNTRs). Using an independent cohort, we validated 73%-80% of signals observed in the two discovery cohorts, while allelic analysis of VNTR length and CpG methylation in 30 Oxford Nanopore genomes gave additional support for mVNTR loci, thus providing robust evidence to support that these represent genuine associations. Further, conditional analysis indicated that many eVNTRs and mVNTRs act as QTLs independently of other local variation. We also observed strong enrichments of eVNTRs and mVNTRs for regulatory features such as enhancers and promoters. Using the Human Genome Diversity Panel, we define sets of VNTRs that show highly divergent copy numbers among human populations and show that these are enriched for regulatory effects and preferentially associate with genes that have been linked with human phenotypes through GWASs. Our study provides strong evidence supporting functional variation at thousands of VNTRs and defines candidate sets of VNTRs, copy number variation of which potentially plays a role in numerous human phenotypes.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott J Gies
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elina Hadelia
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miten Jain
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
50
|
Bossaerts L, Hens E, Hanseeuw B, Vandenberghe R, Cras P, De Deyn PP, Engelborghs S, Van Broeckhoven C. Premature termination codon mutations in ABCA7 contribute to Alzheimer's disease risk in Belgian patients. Neurobiol Aging 2021; 106:307.e1-307.e7. [PMID: 34090711 DOI: 10.1016/j.neurobiolaging.2021.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023]
Abstract
The ATP-Binding Cassette Subfamily A Member 7 gene (ABCA7) was identified as a risk gene for Alzheimer's disease (AD) in genome-wide association studies of large cohorts of late-onset AD (LOAD) patients. Extended resequencing of the ABCA7 coding regions identified mutations that lead to premature termination codons (PTC) and loss of function of ABCA7. PTC mutations were enriched in LOAD patients and were frequently present in patients with early-onset AD (EOAD). We aimed at assessing the contribution of ABCA7 PTC mutations to AD in the Belgian population by screening the ABCA7 coding region in a Belgian AD cohort of 1376 patients, including LOAD and EOAD patients, and in a Belgian control cohort of 976 individuals. We identified a PTC mutation in 67 AD patients (4.9%) and in 18 control individuals (1.8%) confirming the enrichment of ABCA7 PTC mutations in Belgian AD patients. The patient carriers had a mean onset age of 69.7 ± 9.8 years with a wide onset age range of 42 years (48-90 years). In 77.3% of the families of ABCA7 carriers, there were AD patients present suggestive of a positive family history of disease, but a Mendelian co-segregation of ABCA7 PTC mutations with disease is not clear. Overall, our genetic data predict that PTC mutations in ABCA7 are common in the Belgian population and are present in LOAD and EOAD patients.
Collapse
Affiliation(s)
- Liene Bossaerts
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Hens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Brussels, and University Center for Neurosciences, VUB, Brussels, Belgium
| | - Bernard Hanseeuw
- Department of Neurology, University Hospitals Saint-Luc Brussels and University Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven and University Department of Neurosciences KU Leuven, Leuven, Belgium
| | - Patrick Cras
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium
| | - Peter P De Deyn
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Brussels, and University Center for Neurosciences, VUB, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|