1
|
Pandey S, Khandhedia P. An attractive alternative to prenatal diagnosis: a case report of preimplantation genetic testing in familial cardiomyopathy. AJOG GLOBAL REPORTS 2025; 5:100476. [PMID: 40231191 PMCID: PMC11994401 DOI: 10.1016/j.xagr.2025.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Familial hypertrophic cardiomyopathy is an autosomal dominant familial inherited heart disease caused by mutations in the sarcomere protein that affects nearly 1 in 500 people. Genetic testing is of immense importance for familial inherited diseases. This study aimed to determine a way to allow couples with either partner or both partners with familial disease to achieve a healthy biological child. Preimplantation genetic testing for monogenic disorders of the embryos is a new technique that identifies the causative mutation in the genome of family members. The embryo trophectoderm is biopsied at the blastocyst stage of development. Subsequently, embryos are made via in vitro fertilization, and 6 to 8 cells are biopsied from the trophectoderm of the day 5 blastocyst. A couple in their early 20s consulted the hospital for preconceptional counseling for a second child. Their first child was a girl who had a heterozygous variant of chr7:128844078C>T; (HET); c.3004C>T; p.Arg1002Trp on Exon 20 with a gene transcript of filamin C (+) ENST00000 325888.13. Preconceptional pretest genetic counseling of the couple regarding the genetic aspects of the severity of the mutation and its inheritance was conducted. A heterozygous missense variation was present in the asymptomatic father, whereas the mother was normal. Posttest genetic counseling was conducted using a multidisciplinary approach, and the parents were informed about the clinical implications and the possibility of risk of transmission. Preimplantation genetic testing for monogenic disorders was performed, and 6 of 10 embryos were abnormal. A frozen-thawed embryo transfer was performed that resulted in a singleton pregnancy and the term delivery of a healthy male child. Genetic testing of embryos assists clinicians in managing couples at risk of transmission of serious genetic disorders. For couples with familial disease in either partner, medically assisted reproduction with preimplantation genetic testing for monogenic disorders is a promising strategy to achieve a healthy biological child.
Collapse
Affiliation(s)
| | - Parth Khandhedia
- College of Physicians and Surgeons of Mumbai, Mumbai, India (Khandhedia)
| |
Collapse
|
2
|
Wang D, Wang Y, Peng Y, Peng L. Utilizing multi-omics analysis, a new signature has been identified and validated for predicting prognosis and response to immunotherapy in lung squamous cell carcinoma, which is based on tumor mutation burden. Discov Oncol 2025; 16:539. [PMID: 40240626 PMCID: PMC12003222 DOI: 10.1007/s12672-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Immunotherapy is used extensively in treating non-small cell lung cancer (NSCLC) patients. Nevertheless, in contrast to lung adenocarcinoma (LUAD), the endeavors to develop effective targeted treatments for lung squamous cell carcinoma (LUSC) have not yielded positive outcomes. Hence, it is crucial to discover biomarkers for immunotherapy and investigate more potent treatments, which is an immediate requirement for individuals with LUSC. The LUSC somatic mutation data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Multivariate analysis was performed to create a signature related to tumor mutation burden (TMB). Next, we utilized the CIBERSORT algorithm to assess the correlation between TMB and immune infiltrates. Additionally, we identified prognostic immune cells of LUSC through Kaplan-Meier analysis. The TCGA and ICGC cohorts covered a combined total of 11 genes that were frequently mutated. SYNE1 and TTN mutation correlated with an increased TMB and suggested a positive clinical outlook. A TMB-related signature (SYNE1 and TTN) was constructed based on this. The outlook for the high-risk group in LUSC was considerably poorer than the low-risk group (p = 0.004). In LUSC, there was a correlation between the TMB-related signature and immune infiltrates, and a positive response to anti-PD-L1 therapy was observed in individuals with low-risk scores. Furthermore, based on Kaplan-Meier analysis, plasma cells were identified as predictive immune cells in LUSC samples. In conclusion, the GSEA examination demonstrated that the TMB-associated signature stimulated immune system-related signaling pathways. To sum up, the TMB-associated signature could be marker to anticipate the immune reaction in individuals with LUSC.
Collapse
Affiliation(s)
- Dongguang Wang
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Yan Wang
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Yiqun Peng
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Liang Peng
- Department of Nephrology, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Coppens S, Deconinck N, Sullivan P, Smolnikov A, Clayton JS, Griffin KR, Jones KJ, Vilain CN, Kadhim H, Bryen SJ, Faiz F, Waddell LB, Evesson FJ, Bakshi M, Pinner JR, Charlton A, Brammah S, Graf NS, Krivanek M, Tay CG, Foulds NC, Illingworth MA, Thomas NH, Ellard S, Mazanti I, Park S, French CE, Brewster J, Belteki G, Hoodbhoy S, Allinson K, Krishnakumar D, Baynam G, Wood BM, Ward M, Vijayakumar K, Syed A, Murugan A, Majumdar A, Scurr IJ, Splitt MP, Moldovan C, de Silva DC, Senanayake K, Gardeitchik T, Arens Y, Cooper ST, Laing NG, Raymond FL, Jungbluth H, Kamsteeg E, Manzur A, Corley SM, Ravenscroft G, Wilkins MR, Cowley MJ, Pinese M, Phadke R, Davis MR, Muntoni F, Oates EC. Congenital Titinopathy: Comprehensive Characterization of the Most Severe End of the Disease Spectrum. Ann Neurol 2025; 97:611-628. [PMID: 39853809 PMCID: PMC11889535 DOI: 10.1002/ana.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 01/26/2025]
Abstract
Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders. OBJECTIVE To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum. METHODS We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families. RESULTS Prenatal features included hypokinesia or akinesia and growth restriction. Six pregnancies were terminated. Nine infants were born at or near term with severe-to-profound weakness and required resuscitation. Seven died following withdrawal of life support. Two surviving children require ongoing respiratory support. Most cohort members had at least 1 disease-causing variant predicted to result in some near-normal-length titin expression. The exceptions, from 2 unrelated families, had homozygous truncating variants predicted to induce complete nonsense mediated decay. However, subsequent analyses suggested that the causative variant in each family had an additional previously unrecognized impact on splicing likely to result in some near-normal-length titin expression. This impact was confirmed by minigene assay for 1 variant. INTERPRETATION This study confirms the clinical variability of congenital titinopathy. Severely affected individuals succumb prenatally/during infancy, whereas others survive into adulthood. It is likely that this variability is because of differences in the amount and/or length of expressed titin. If confirmed, analysis of titin expression could facilitate clinical prediction and increasing expression might be an effective treatment strategy. Our findings also further-support the hypothesis that some near-normal-length titin expression is essential to early prenatal survival. Sometimes expression of normal/near-normal-length titin is due to disease-causing variants having an additional impact on splicing. ANN NEUROL 2025;97:611-628.
Collapse
Affiliation(s)
- Sandra Coppens
- Hopital Erasme, ULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Nicolas Deconinck
- Department of Paediatric Neurology, Neuromuscular Reference CenterHôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrusselsBelgium
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Kaitlyn R. Griffin
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kristi J. Jones
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Catheline N. Vilain
- Hopital Erasme, ULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Hazim Kadhim
- Neuropathology Unit (Anatomic Pathology Service) and Reference Center for Neuromuscular PathologyCHU Brugmann‐HUDERF, Université Libre de BruxellesBrusselsBelgium
| | - Samantha J. Bryen
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Fathimath Faiz
- Department of Diagnostic Genomics, PathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Leigh B. Waddell
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Frances J. Evesson
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
- Functional NeuromicsChildren's Medical Research InstituteWestmeadNew South WalesAustralia
| | - Madhura Bakshi
- Department of Clinical GeneticsLiverpool HospitalLiverpoolNew South WalesAustralia
| | - Jason R. Pinner
- Department of Medical GenomicsRoyal Prince Alfred Hospital, The University of SydneyCamperdownNew South WalesAustralia
| | - Amanda Charlton
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Susan Brammah
- Electron Microscope Unit, Department of Anatomical PathologyConcord Repatriation General HospitalConcordNew South WalesAustralia
| | - Nicole S. Graf
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Michael Krivanek
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Chee Geap Tay
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Nicola C. Foulds
- Wessex Clinical Genetics ServiceUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Marjorie A. Illingworth
- Department of Paediatric NeurologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Neil H. Thomas
- Department of Paediatric NeurologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Sian Ellard
- College of Medicine and Health, University of Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation TrustExeterUK
| | - Ingrid Mazanti
- Department of Cellular PathologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Soo‐Mi Park
- Department of Clinical GeneticsCambridge University Hospital NHS Foundation TrustCambridgeUK
| | - Courtney E. French
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUK
| | - Jennifer Brewster
- Department of Fetomaternal MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Gusztav Belteki
- Neonatal Intensive Care UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Shazia Hoodbhoy
- Neonatal Intensive Care UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Kieren Allinson
- Department of HistopathologyCambridge University Hospitals Foundation TrustCambridgeUK
| | - Deepa Krishnakumar
- Department of Paediatric NeurologyCambridge University Hospitals Foundation TrustCambridgeUK
| | - Gareth Baynam
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthWestern AustraliaAustralia
| | | | - Michelle Ward
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthWestern AustraliaAustralia
| | - Kayal Vijayakumar
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Amber Syed
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Archana Murugan
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Anirban Majumdar
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Ingrid J. Scurr
- Department of Clinical GeneticsUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Miranda P. Splitt
- Northern Genetics ServiceInstitute of Genetic MedicineNewcastle upon TyneUK
| | - Corina Moldovan
- Department of PathologyNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaRagamaSri Lanka
| | - Kumudu Senanayake
- Department of HistopathologyCastle Street Hospital for WomenColomboSri Lanka
| | - Thatjana Gardeitchik
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Yvonne Arens
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Sandra T. Cooper
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
- Functional NeuromicsChildren's Medical Research InstituteWestmeadNew South WalesAustralia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - F. Lucy Raymond
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular ServiceEvelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation TrustLondonUK
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling SectionKing's College LondonLondonUK
- Department of Basic and Clinical NeuroscienceIoPPN, King's College LondonLondonUK
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Adnan Manzur
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
| | - Susan M. Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rahul Phadke
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
- Division of NeuropathologyUCL Institute of Neurology, The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Francesco Muntoni
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
| | - Emily C. Oates
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurologySydney Children's HospitalSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Dai Y, Wang Y, Fan Y, Han B. Genotype-phenotype insights of pediatric dilated cardiomyopathy. Front Pediatr 2025; 13:1505830. [PMID: 39959410 PMCID: PMC11825472 DOI: 10.3389/fped.2025.1505830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Dilated cardiomyopathy (DCM) in children is a severe myocardial disease characterized by enlargement of the left ventricle or both ventricles with impaired contractile function. DCM can cause adverse consequences such as heart failure, sudden death, thromboembolism, and arrhythmias. This article reviews the latest advances in genotype and phenotype research in pediatric DCM. With the development of gene sequencing technologies, considerable progress has been made in genetic research on DCM. Research has shown that DCM exhibits notable genetic heterogeneity, with over 100 DCM-related genes identified to date, primarily involving functions such as calcium handling, the cytoskeleton, and ion channels. As human genomic variations are linked to phenotypes, DCM phenotypes are influenced by numerous genetic variations across the entire genome. Children with DCM display high genetic heterogeneity and are characterized by early onset, rapid disease progression, and poor prognosis. The genetic architecture of pediatric DCM markedly differs from that of adult DCM, necessitating analyses through clinical phenotyping, familial cosegregation studies, and functional validation. Clarifying the genotype-phenotype relationship can improve diagnostic accuracy, enhance prognosis, and guide follow-up treatment for genotype-positive and phenotype-negative patients identified through genetic testing, providing new insights for precision medicine. Future research should further explore novel pathogenic genes and mutations and strengthen genotype-phenotype correlation analyses to facilitate precise diagnosis and treatment of DCM in children.
Collapse
Affiliation(s)
| | | | - Youfei Fan
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Eibach Y, Kreher S, Poetsch MS, Kho AL, Gaertner U, Clemen CS, Schröder R, Guo K, Milting H, Meder B, Potente M, Richter M, Schneider A, Meiners S, Gautel M, Braun T. The deubiquitinase USP5 prevents accumulation of protein aggregates in cardiomyocytes. SCIENCE ADVANCES 2025; 11:eado3852. [PMID: 39841822 PMCID: PMC11753375 DOI: 10.1126/sciadv.ado3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM. CM-specific loss of mUsp5 leads to the accumulation of polyubiquitin chains and protein aggregates, cardiac remodeling, and eventually DCM. USP5 interacts with key components of the proteostasis machinery, including PSMD14, and the absence of USP5 increases activity of the ubiquitin-proteasome system and autophagic flux in CMs. Cardiac-specific hUSP5 overexpression reduces pathological remodeling in pressure-overloaded mouse hearts and attenuates protein aggregate formation in titinopathy and desminopathy models. Since CMs from humans with end-stage DCM show lower USP5 levels and display accumulation of ubiquitinated protein aggregates, we hypothesize that therapeutically increased USP5 activity may reduce protein aggregates during DCM. Our findings demonstrate that USP5 is essential for ubiquitin turnover and proteostasis in mature CMs.
Collapse
Affiliation(s)
- Yvonne Eibach
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Silke Kreher
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Mareike S. Poetsch
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Ulrich Gaertner
- University of Giessen, Institute of Anatomy and Cell Biology, Giessen, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Institute for Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Potente
- Berlin Institute of Health (BIH) and Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| |
Collapse
|
6
|
Pérez-Arzola AA, Juárez-Melchor D, Crisanto-López IE, Vera-Loaiza A, Hernández-Castañeda Y, Guzmán-Santiago TA, Jiménez-Pérez B, Rodríguez-Hurtado PO, Salazar-Bonilla W. [Autosomal recessive limb-girdle muscular dystrophy-10. Case report]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2025; 63:e6447. [PMID: 40267405 PMCID: PMC12088016 DOI: 10.5281/zenodo.14201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 04/25/2025]
Abstract
Background The autosomal recessive limb-girdle muscular dystrophy-10 (LGMDR10) is a muscular dystrophy caused by pathogenetic variants in the TTN gene encoding the titin protein, which is responsible for muscle flexibility and tension. Its prevalence is unknown. The main clinical manifestations are proximal muscle weakness predominantly in the shoulder girdle and pelvic girdle, mild weakness of distal muscles and muscle atrophy. The objective is to present a case report of autosomal recessive limb-girdle muscular dystrophy-10 in a Mexican patient. Clinical case 39-year-old male with hypotrophy of the left leg, muscle weakness of the 4 limbs predominantly proximal and asymmetrical, myalgia and nocturnal cramps. Total creatine phosphokinase level was of 819.7 IU/L, nerve conduction velocity and electromyography with left femoral neuropathy of the axonotmesis type and mixed axonal neuropathy with myopathic pattern of upper limbs. The molecular study for muscular dystrophies reported 2 pathogenic variants in compound heterozygous state in the TTN gene: c.107578C>T (p. Gln37860*) and c.104269C>T (p. Gln34767*), respectively. Conclusions In line with the information available, there are no reported cases of LGMDR10 in Mexico. This is a progressive disease with total loss of ambulation between the fourth and the sixth decade of life, which is why its clinical suspicion is important for a timely diagnosis, an adequate counseling, and preventive measures of complications for a better quality of life.
Collapse
Affiliation(s)
- Alan Alberto Pérez-Arzola
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Daniela Juárez-Melchor
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Israel Enrique Crisanto-López
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Aurea Vera-Loaiza
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Yazmin Hernández-Castañeda
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Tania Alejandra Guzmán-Santiago
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Berenice Jiménez-Pérez
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Pablo Omar Rodríguez-Hurtado
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 20 “La Margarita”. Servicio de Genética Médica. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Wilbert Salazar-Bonilla
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar No. 55, Servicio de Medicina Familiar. Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
7
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
8
|
Õunap K, Reimand T, Õiglane-Shlik E, Puusepp S, Mihkla L, Pajusalu S, Savarese M, Udd B. TTN-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant. Neurol Genet 2024; 10:e200199. [PMID: 39807212 PMCID: PMC11727988 DOI: 10.1212/nxg.0000000000200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the TTN gene-the Finnish founder variant (FINmaj). In homozygous state or compound heterozygosity with a truncating variant, the FINmaj causes early-onset recessive titin-related limb-girdle muscular dystrophy type 10 (LGMD R10). So far, the FINmaj variant has not been detected outside the Finnish population. Methods We describe an Estonian family presenting both early-onset LGMD R10 and late-onset TMD. The index patient underwent trio exome sequencing (ES), muscle biopsy, and RNA sequencing. The detected variants were validated by Sanger sequencing. Muscle MRI was performed in all affected individuals. Results Trio ES revealed 2 heterozygous variants in the TTN gene: (NM_001267550.2):c.107780_107790delinsTGAAAGAAAAA, p.(Glu35927_Trp35930delinsValLysGluLys) (FINmaj variant, paternally inherited) and (NM_001267550.2):c.64672+2dup (maternally inherited) in trans in the proband. Familial segregation analysis revealed the same biallelic variants in the younger affected sister and heterozygous FINmaj in the father. We characterized the effect of the splice variant by RNA sequencing, proving that it causes an intronic retention resulting in a premature stop codon. Muscle histology of the proband showed myopathic changes. Muscle MRI of both individuals with LGMD R10 showed early degenerative changes in tibialis anterior and in hypotrophy of distal hamstrings. Muscle MRI of the father with TMD, at the age of 38 years, showed early minimal fatty degeneration in the peroneus longus and right tibialis anterior muscles. Discussion For the first time, we have detected the FINmaj variant in the Estonian population. We report an Estonian family without any known Finnish ancestry for many generations, with 2 siblings harboring FINmaj in a compound with a splice site variant and their father with heterozygous FINmaj. It is currently not known whether the FINmaj is originally Estonian or Finnish ancestry. Further population studies in Estonia to establish the frequency of FINmaj in the population are ongoing and will solve the quest.
Collapse
Affiliation(s)
- Katrin Õunap
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Tiia Reimand
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Eve Õiglane-Shlik
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Sanna Puusepp
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Laura Mihkla
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Sander Pajusalu
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Marco Savarese
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| | - Bjarne Udd
- From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland
| |
Collapse
|
9
|
McNamee L, Schoch K, Huang A, Lee H, Wang LK, Smith EC, Lark RK, Buckley AF, Jobanputra V, Nelson SF, Shashi V. Reanalysis of RNA sequencing data ends diagnostic odyssey and expands the phenotypic spectrum of congenital titinopathy. Am J Med Genet A 2024; 194:e63798. [PMID: 38924341 PMCID: PMC11934095 DOI: 10.1002/ajmg.a.63798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Although next-generation sequencing has enabled diagnoses for many patients with Mendelian disorders, the majority remain undiagnosed. Here, we present a sibling pair who were clinically diagnosed with Escobar syndrome, however targeted gene testing was negative. Exome sequencing (ES), and later genome sequencing (GS), revealed compound heterozygous TTN variants in both siblings, a maternally inherited frameshift variant [(NM_133378.4):c.36812del; p.(Asp12271Valfs*10)], and a paternally inherited missense variant [(NM_133378.4):c.12322G > A; p.(Asp4108Asn)]. This result was considered nondiagnostic due to poor clinical fit and limited pathogenicity evidence for the missense variant of uncertain significance (VUS). Following initial nondiagnostic RNA sequencing (RNAseq) on muscle and further pursuit of other variants detected on the ES/GS, a reanalysis of noncanonical splice sites in the muscle transcriptome identified an out-of-frame exon retraction in TTN, near the known VUS. Interim literature included reports of patients with similar TTN variants who had phenotypic concordance with the siblings, and a diagnosis of a congenital titinopathy was given 4 years after the TTN variants had been initially reported. This report highlights the value of reanalysis of RNAseq with a different approach, expands the phenotypic spectrum of congenital titinopathy and also illustrates how a perceived phenotypic mismatch, and failure to consider known variants, can result in a prolongation of the diagnostic journey.
Collapse
Affiliation(s)
- Lucy McNamee
- UNC-Greensboro Genetic Counseling Program, Greensboro, North Carolina, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alden Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Lee-kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Edward C. Smith
- Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert K. Lark
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina, USA
| | - Anne F. Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- New York Genome Center, New York, New York, USA
| | - Stanley F. Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
10
|
Hayes LH, Neuhaus SB, Donkervoort S, Mohassel P, Foley AR, Dastgir J, Bharucha-Goebel D, Leach ME, Vuillerot C, Iannaccone ST, Grosmann CM, Beggs AH, Bönnemann CG. Taking on the Titin: Muscle imaging as a diagnostic marker of biallelic TTN-related myopathy. J Neuromuscul Dis 2024; 11:1211-1220. [PMID: 39967429 DOI: 10.1177/22143602241283391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BACKGROUND The accurate diagnosis of titin-related myopathies (TTN-RM) is challenging due to the "gigantism" of the coding gene TTN with an incompletely understood landscape of normal genetic variation, an increasing number of pathogenic variants, and wide phenotypic variability of both cardiac and muscle involvement. Particularly in situations of potentially incomplete genotypes, clinicians need more phenotyping tools to help confidently determine the pathogenicity of variants in TTN and accurately diagnose titinopathies. OBJECTIVE To illustrate the pattern of muscle involvement found by muscle imaging in patients with TTN-RM. METHODS We reviewed the clinical and imaging data of patients with TTN-RM. Cross secitonal MR images of the lower extremity muscles were scored for degree of abnormality using the Mercuri scoring system and patterns were identified with comparison across muscle groups. Ultrasound images were also reviewed and described. RESULTS Eleven patients with TTN-RM had clinical and imaging data available for review. The relatively more severe involvement of the semitendinosus muscle in the hamstring group ("semitendinosus sign") emerged as a consistent feature in patients with recessive TTN-RM despite clinical heterogeneity. CONCLUSIONS Here we find that despite considerable complexity, the pattern of muscle involvement on MRI and ultrasound may aid in the confirmation of TTN-RM by establishing compatibility with the diagnosis.
Collapse
Affiliation(s)
- L H Hayes
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - S Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - P Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A R Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - J Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ, USA
| | - D Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - M E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Neurology, Oregon Health and Science University, Portland, OR, USA
| | - C Vuillerot
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Paediatric Physical Medicine and Rehabilitation Department, NeuroMyogène Institute, Lyon University, Lyon, France
| | | | - C M Grosmann
- Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - A H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
12
|
Liang H, Liu D, Gao Q, Zhai Z. TTN-related hereditary myopathy with early respiratory failure presented with elevated hemoglobin initially: A case report and literature review. Heliyon 2024; 10:e29637. [PMID: 38655354 PMCID: PMC11035038 DOI: 10.1016/j.heliyon.2024.e29637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Background As common abnormal conditions in clinical practice, hypoxemia and respiratory failure are mainly caused by various respiratory diseases. However, other causes are easily overlooked but deserve more attention from doctors. Case presentation A 44-year-old man presented with dyspnea for 10 years. In the early stage, his dyspnea was mild without hypoxemia, and he was misdiagnosed with polycythemia vera due to elevated hemoglobin level. He later developed to respiratory failure but he did not have weakness in his extremities. The positional difference in pulmonary function tests and arterial blood gas analysis led us to identify the respiratory muscle dysfunction. Fatty infiltration of the thigh muscle found by magnetic resonance imaging and muscle biopsies gave us more clues to the causes of diaphragmatic dysfunction. Finally, in combination with his family history and the results of whole exome sequencing, he was diagnosed with hereditary myopathy with early respiratory failure (HMERF, OMIM 603689) caused by a variant in the titin gene (TTN). Conclusions We have identified a Chinese family with HMERF due to genetic variants in TTN NM_001256850.1: c.90272C > T, p. Pro30091Leu, located at g.179410829A > G on chromosome 2 (GRCh37), which may be specifically associated with the diagrammatic dysfunction. And hyperhemoglobinemia could serve as a potential sign for the early identification of HMERF.
Collapse
Affiliation(s)
- Hanyang Liang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Institute of Respiratory Medicine, Chinese Academy of Medical Sciences National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dong Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Institute of Respiratory Medicine, Chinese Academy of Medical Sciences National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Qian Gao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Institute of Respiratory Medicine, Chinese Academy of Medical Sciences National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Institute of Respiratory Medicine, Chinese Academy of Medical Sciences National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
13
|
Meyer AP, Barnett CL, Myers K, Siskind CE, Moscarello T, Logan R, Roggenbuck J, Rich KA. Neuromuscular and cardiovascular phenotypes in paediatric titinopathies: a multisite retrospective study. J Med Genet 2024; 61:356-362. [PMID: 38050027 DOI: 10.1136/jmg-2023-109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Pathogenic variants in TTN cause a spectrum of autosomal dominant and recessive cardiovascular, skeletal muscle and cardioskeletal disease with symptom onset across the lifespan. The aim of this study was to characterise the genotypes and phenotypes in a cohort of TTN+paediatric patients. METHODS Retrospective chart review was performed at four academic medical centres. Patients with pathogenic or truncating variant(s) in TTN and paediatric-onset cardiovascular and/or neuromuscular disease were eligible. RESULTS 31 patients from 29 families were included. Seventeen patients had skeletal muscle disease, often with proximal weakness and joint contractures, with average symptom onset of 2.2 years. Creatine kinase levels were normal or mildly elevated; electrodiagnostic studies (9/11) and muscle biopsies (11/11) were myopathic. Variants were most commonly identified in the A-band (14/32) or I-band (13/32). Most variants were predicted to be frameshift truncating, nonsense or splice-site (25/32). Seventeen patients had cardiovascular disease (14 isolated cardiovascular, three cardioskeletal) with average symptom onset of 12.9 years. Twelve had dilated cardiomyopathy (four undergoing heart transplant), two presented with ventricular fibrillation arrest, one had restrictive cardiomyopathy and two had other types of arrhythmias. Variants commonly localised to the A-band (8/15) or I-band (6/15) and were predominately frameshift truncating, nonsense or splice-site (14/15). CONCLUSION Our cohort demonstrates the genotype-phenotype spectrum of paediatric-onset titinopathies identified in clinical practice and highlights the risk of life-threatening cardiovascular complications. We show the difficulties of obtaining a molecular diagnosis, particularly in neuromuscular patients, and bring awareness to the complexities of genetic counselling in this population.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cara L Barnett
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katherine Myers
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carly E Siskind
- Department of Neurology, Stanford Health Care, Stanford, California, USA
| | - Tia Moscarello
- Stanford Center for Inherited Cardiovascular Disease, Stanford Health Care, Stanford, California, USA
| | - Rachel Logan
- Division of Neurosciences, Children's Healthcare of Atlanta Inc, Atlanta, Georgia, USA
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Human Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
14
|
Töpf A, Cox D, Zaharieva IT, Di Leo V, Sarparanta J, Jonson PH, Sealy IM, Smolnikov A, White RJ, Vihola A, Savarese M, Merteroglu M, Wali N, Laricchia KM, Venturini C, Vroling B, Stenton SL, Cummings BB, Harris E, Marini-Bettolo C, Diaz-Manera J, Henderson M, Barresi R, Duff J, England EM, Patrick J, Al-Husayni S, Biancalana V, Beggs AH, Bodi I, Bommireddipalli S, Bönnemann CG, Cairns A, Chiew MT, Claeys KG, Cooper ST, Davis MR, Donkervoort S, Erasmus CE, Fassad MR, Genetti CA, Grosmann C, Jungbluth H, Kamsteeg EJ, Lornage X, Löscher WN, Malfatti E, Manzur A, Martí P, Mongini TE, Muelas N, Nishikawa A, O'Donnell-Luria A, Ogonuki N, O'Grady GL, O'Heir E, Paquay S, Phadke R, Pletcher BA, Romero NB, Schouten M, Shah S, Smuts I, Sznajer Y, Tasca G, Taylor RW, Tuite A, Van den Bergh P, VanNoy G, Voermans NC, Wanschitz JV, Wraige E, Yoshimura K, Oates EC, Nakagawa O, Nishino I, Laporte J, Vilchez JJ, MacArthur DG, Sarkozy A, Cordell HJ, Udd B, Busch-Nentwich EM, Muntoni F, Straub V. Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy. Nat Genet 2024; 56:395-407. [PMID: 38429495 PMCID: PMC10937387 DOI: 10.1038/s41588-023-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Dan Cox
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Valeria Di Leo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ian M Sealy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard J White
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Munise Merteroglu
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | | | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Beryl B Cummings
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Northern Genetics Service, Institute of Genetics Medicine, Newcastle upon Tyne, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matt Henderson
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jennifer Duff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jane Patrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sundos Al-Husayni
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Shobhana Bommireddipalli
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Mei-Ting Chiew
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sandra T Cooper
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Casie A Genetti
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carla Grosmann
- Department of Neurology, Rady Children's Hospital University of California San Diego, San Diego, CA, USA
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Creteil, France
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Pilar Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Tiziana E Mongini
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
- Department of Medicine, Universitat de Valencia, Valencia, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | | | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stéphanie Paquay
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beth A Pletcher
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, Sorbonne Université, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), GH Pitié-Salpêtrière, Paris, France
| | - Meyke Schouten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Snehal Shah
- Department of Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Yves Sznajer
- Center for Human Genetic, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Allysa Tuite
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Van den Bergh
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Grace VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Elizabeth Wraige
- Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Juan J Vilchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL & Great Ormond Street Hospital Trust, London, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
16
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Pearce A, Ponnam S, Holt MR, Randall T, Beckingham R, Kho AL, Kampourakis T, Ehler E. Missense mutations in the central domains of cardiac myosin binding protein-C and their potential contribution to hypertrophic cardiomyopathy. J Biol Chem 2024; 300:105511. [PMID: 38042491 PMCID: PMC10772716 DOI: 10.1016/j.jbc.2023.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
Myosin binding protein-C (MyBP-C) is a multidomain protein that regulates muscle contraction. Mutations in MYBPC3, the gene encoding for the cardiac variant (henceforth called cMyBP-C), are amongst the most frequent causes of hypertrophic cardiomyopathy. Most mutations lead to a truncated version of cMyBP-C, which is most likely unstable. However, missense mutations have also been reported, which tend to cluster in the central domains of the cMyBP-C molecule. This suggests that these central domains are more than just a passive spacer between the better characterized N- and C-terminal domains. Here, we investigated the potential impact of four different missense mutations, E542Q, G596R, N755K, and R820Q, which are spread over the domains C3 to C6, on the function of MyBP-C on both the isolated protein level and in cardiomyocytes in vitro. Effect on domain stability, interaction with thin filaments, binding to myosin, and subcellular localization behavior were assessed. Our studies show that these missense mutations result in slightly different phenotypes at the molecular level, which are mutation specific. The expected functional readout of each mutation provides a valid explanation for why cMyBP-C fails to work as a brake in the regulation of muscle contraction, which eventually results in a hypertrophic cardiomyopathy phenotype. We conclude that missense mutations in cMyBP-C must be evaluated in context of their domain localization, their effect on interaction with thin filaments and myosin, and their effect on protein stability to explain how they lead to disease.
Collapse
Affiliation(s)
- Amy Pearce
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Saraswathi Ponnam
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Mark R Holt
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Randall
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Rylan Beckingham
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ay Lin Kho
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Thomas Kampourakis
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom.
| |
Collapse
|
18
|
Martinez-Martin I, Crousilles A, Ochoa JP, Velazquez-Carreras D, Mortensen SA, Herrero-Galan E, Delgado J, Dominguez F, Garcia-Pavia P, de Sancho D, Wilmanns M, Alegre-Cebollada J. Titin domains with reduced core hydrophobicity cause dilated cardiomyopathy. Cell Rep 2023; 42:113490. [PMID: 38052212 DOI: 10.1016/j.celrep.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The underlying genetic defect in most cases of dilated cardiomyopathy (DCM), a common inherited heart disease, remains unknown. Intriguingly, many patients carry single missense variants of uncertain pathogenicity targeting the giant protein titin, a fundamental sarcomere component. To explore the deleterious potential of these variants, we first solved the wild-type and mutant crystal structures of I21, the titin domain targeted by pathogenic variant p.C3575S. Although both structures are remarkably similar, the reduced hydrophobicity of deeply buried position 3575 strongly destabilizes the mutant domain, a scenario supported by molecular dynamics simulations and by biochemical assays that show no disulfide involving C3575. Prompted by these observations, we have found that thousands of similar hydrophobicity-reducing variants associate specifically with DCM. Hence, our results imply that titin domain destabilization causes DCM, a conceptual framework that not only informs pathogenicity assessment of gene variants but also points to therapeutic strategies counterbalancing protein destabilization.
Collapse
Affiliation(s)
- Ines Martinez-Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Audrey Crousilles
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain; Health in Code, 15008 A Coruña, Spain
| | | | - Simon A Mortensen
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Elias Herrero-Galan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Javier Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, 20018 Donostia-San Sebastian, Euskadi, Spain; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | | |
Collapse
|
19
|
Fleming JR, Müller I, Zacharchenko T, Diederichs K, Mayans O. Molecular insights into titin's A-band. J Muscle Res Cell Motil 2023; 44:255-270. [PMID: 37258982 PMCID: PMC10665226 DOI: 10.1007/s10974-023-09649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Abstract
The thick filament-associated A-band region of titin is a highly repetitive component of the titin chain with important scaffolding properties that support thick filament assembly. It also has a demonstrated link to human disease. Despite its functional significance, it remains a largely uncharacterized part of the titin protein. Here, we have performed an analysis of sequence and structure conservation of A-band titin, with emphasis on poly-FnIII tandem components. Specifically, we have applied multi-dimensional sequence pairwise similarity analysis to FnIII domains and complemented this with the crystallographic elucidation of the 3D-structure of the FnIII-triplet A84-A86 from the fourth long super-repeat in the C-zone (C4). Structural models serve here as templates to map sequence conservation onto super-repeat C4, which we show is a prototypical representative of titin's C-zone. This templating identifies positionally conserved residue clusters in C super-repeats with the potential of mediating interactions to thick-filament components. Conservation localizes to two super-repeat positions: Ig domains in position 1 and FnIII domains in position 7. The analysis also allows conclusions to be drawn on the conserved architecture of titin's A-band, as well as revisiting and expanding the evolutionary model of titin's A-band.
Collapse
Affiliation(s)
| | - Iljas Müller
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
20
|
Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M, Grange M, Kho AL, Rees M, Bennett P, Gautel M, Raunser S. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 2023; 623:863-871. [PMID: 37914933 PMCID: PMC10665186 DOI: 10.1038/s41586-023-06690-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-β chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-β chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Collapse
Affiliation(s)
- Davide Tamborrini
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
21
|
Wang G, Wu W, Lv X, Yan C, Lin P. Aberrant mRNA processing caused by splicing mutations in TTN-related neuromuscular disorders. J Hum Genet 2023; 68:777-782. [PMID: 37407718 DOI: 10.1038/s10038-023-01182-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Mutations in the TTN gene have been reported to be responsible for a range of neuromuscular disorders, including recessive distal myopathy and congenital myopathy (CM). Only five splicing mutations have been identified to induce aberrant mRNA splicing in TTN-related neuromuscular disorders. In our study, we described detailed clinical characteristics, muscle pathology and genetic analysis of two probands with TTN-related autosomal recessive neuromuscular disorders. Besides, we identified two novel intronic mutations, c.107377+1 G > C in intron 362 and c.19994-2 A > G in intron 68, in the two probands. Through cDNA analysis, we revealed the c.107377+1 G > C mutation induced retention of the entire intron 362, and the c.19994-2 A > G mutation triggered skipping of the first 11 bp of exon 69. Our study broadens the aberrant splicing spectrum of neuromuscular disorders caused by splicing mutations in the TTN gene.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Wu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
22
|
Wacker J, Di Bernardo S, Lobrinus JA, Jungbluth H, Gautel M, Beghetti M, Fluss J. Successful heart transplant in a child with congenital core myopathy and delayed-onset restrictive cardiomyopathy due to recessive mutations in the titin (TTN) gene. Pediatr Transplant 2023; 27:e14561. [PMID: 37345726 DOI: 10.1111/petr.14561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Mutations in the TTN gene, encoding the muscle filament titin, are a major cause of inherited dilated cardiomyopathy. Early-onset skeletal muscle disorders due to recessive TTN mutations have recently been described, sometimes associated with cardiomyopathies. CASE DESCRIPTION We report the case of a boy with congenital core myopathy due to compound heterozygosity for TTN variants. He presented in infancy with rapidly evolving restrictive cardiomyopathy, requiring heart transplantation at the age of 5 years with favorable long-term cardiac and neuromuscular outcome. CONCLUSION Heart transplantation may have a role in selected patients with TTN-related congenital myopathy with disproportionally severe cardiac presentation compared to skeletal and respiratory muscle involvement.
Collapse
Affiliation(s)
- Julie Wacker
- Pediatric Cardiology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
| | - Stefano Di Bernardo
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
- Pediatric Cardiology, Department of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Maurice Beghetti
- Pediatric Cardiology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Fluss
- Pediatric Neurology Unit, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Di Feo MF, Lillback V, Jokela M, McEntagart M, Homfray T, Giorgio E, Casalis Cavalchini GC, Brusco A, Iascone M, Spaccini L, D'Oria P, Savarese M, Udd B. The crucial role of titin in fetal development: recurrent miscarriages and bone, heart and muscle anomalies characterise the severe end of titinopathies spectrum. J Med Genet 2023; 60:866-873. [PMID: 36977548 DOI: 10.1136/jmg-2022-109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Titin truncating variants (TTNtvs) have been associated with several forms of myopathies and/or cardiomyopathies. In homozygosity or in compound heterozygosity, they cause a wide spectrum of recessive phenotypes with a congenital or childhood onset. Most recessive phenotypes showing a congenital or childhood onset have been described in subjects carrying biallelic TTNtv in specific exons. Often karyotype or chromosomal microarray analyses are the only tests performed when prenatal anomalies are identified. Thereby, many cases caused by TTN defects might be missed in the diagnostic evaluations. In this study, we aimed to dissect the most severe end of the titinopathies spectrum. METHODS We performed a retrospective study analysing an international cohort of 93 published and 10 unpublished cases carrying biallelic TTNtv. RESULTS We identified recurrent clinical features showing a significant correlation with the genotype, including fetal akinesia (up to 62%), arthrogryposis (up to 85%), facial dysmorphisms (up to 73%), joint (up to 17%), bone (up to 22%) and heart anomalies (up to 27%) resembling complex, syndromic phenotypes. CONCLUSION We suggest TTN to be carefully evaluated in any diagnostic process involving patients with these prenatal signs. This step will be essential to improve diagnostic performance, expand our knowledge and optimise prenatal genetic counselling.
Collapse
Affiliation(s)
- Maria Francesca Di Feo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | - Victoria Lillback
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- University of Helsinki Department of Medical and Clinical Genetics, Helsinki, Uusimaa, Finland
| | - Manu Jokela
- Tampere University Hospital, Tampere, Pirkanmaa, Finland
- TYKS Turku University Hospital, Turku, Varsinais-Suomi, Finland
| | - Meriel McEntagart
- Department of Medical Genetics, St George's University of London, London, London, UK
| | - Tessa Homfray
- St George's University of London, London, London, UK
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
- Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Lombardia, Italy
| | - Guido C Casalis Cavalchini
- Medical Genetics Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin School of Medicine, Torino, Piemonte, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
| | - Luigina Spaccini
- Unità di Genetica Medica, UOC Ostetricia e Ginecologia, Ospedale dei Bambini Vittore Buzzi, Milano, Lombardia, Italy
| | - Patrizia D'Oria
- UOC Ostetrica e Ginecologia, Ospedale Bolognini di Seriate, Seriate, Lombardia, Italy
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Uusimaa, Finland
- Tampere University Hospital Department of Musculoskeletal Diseases, Tampere, Pirkanmaa, Finland
| |
Collapse
|
24
|
Castro A, Tun K, Petzey L, Soorneela S, Bainbridge R, Pollack R. Spastic Paralysis in a Full-Term Newborn. Neoreviews 2023; 24:e587-e590. [PMID: 37653084 DOI: 10.1542/neo.24-9-e587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Alejandro Castro
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| | - Khin Tun
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| | - Larissa Petzey
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| | - Shrawani Soorneela
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| | - Ronald Bainbridge
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| | - Rebecca Pollack
- Department of Pediatrics, Department of Neonatology, NYC Health and Hospitals/Lincoln Medical Center, New York, NY
| |
Collapse
|
25
|
Rees M, Nikoopour R, Alexandrovich A, Pfuhl M, Lopes LR, Akhtar MM, Syrris P, Elliott P, Carr-White G, Gautel M. Structure determination and analysis of titin A-band fibronectin type III domains provides insights for disease-linked variants and protein oligomerisation. J Struct Biol 2023; 215:108009. [PMID: 37549721 PMCID: PMC10862085 DOI: 10.1016/j.jsb.2023.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Titin is the largest protein found in nature and spans half a sarcomere in vertebrate striated muscle. The protein has multiple functions, including in the organisation of the thick filament and acting as a molecular spring during the muscle contraction cycle. Missense variants in titin have been linked to both cardiac and skeletal myopathies. Titin is primarily composed of tandem repeats of immunoglobulin and fibronectin type III (Fn3) domains in a variety of repeat patterns; however, the vast majority of these domains have not had their high-resolution structure determined experimentally. Here, we present the crystal structures of seven wild type titin Fn3 domains and two harbouring rare missense variants reported in hypertrophic cardiomyopathy (HCM) patients. All domains present the typical Fn3 fold, with the domains harbouring variants reported in HCM patients retaining the wild-type conformation. The effect on domain folding and stability were assessed for five rare missense variants found in HCM patients: four caused thermal destabilization of between 7 and 13 °C and one prevented the folding of its domain. The structures also allowed us to locate the positions of residues whose mutations have been linked to congenital myopathies and rationalise how they convey their deleterious effects. We find no evidence of physiological homodimer formation, excluding one hypothesised mechanism as to how titin variants could exert pathological effects.
Collapse
Affiliation(s)
- Martin Rees
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom.
| | - Roksana Nikoopour
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom; School of Cardiovascular Sciences and Medicine, King's College London, United Kingdom
| | - Luis R Lopes
- Institute of Cardiovascular Science, University College London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Mohammed M Akhtar
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Gerry Carr-White
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
26
|
Doh CY, Kampourakis T, Campbell KS, Stelzer JE. Basic science methods for the characterization of variants of uncertain significance in hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1238515. [PMID: 37600050 PMCID: PMC10432852 DOI: 10.3389/fcvm.2023.1238515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.
Collapse
Affiliation(s)
- Chang Yoon Doh
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
27
|
Alawneh I, Yuki KE, Amburgey K, Yoon G, Dowling JJ, Hazrati LN, Gonorazky H. Titin related myopathy with ophthalmoplegia. A novel phenotype. Neuromuscul Disord 2023; 33:605-609. [PMID: 37393749 DOI: 10.1016/j.nmd.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Titin-related myopathy is an emerging genetic neuromuscular disorder with a wide spectrum of clinical phenotypes. To date, there have not been reports of patients with this disease that presented with extraocular muscle involvement. Here we discuss a 19-year-old male with congenital weakness, complete ophthalmoplegia, thoracolumbar scoliosis, and obstructive sleep apnea. Muscle magnetic resonance imaging revealed severe involvement of the gluteal and anterior compartment muscles, and clear adductor sparing, while muscle biopsy of the right vastus lateralis showed distinctive cap-like structures. Trio Whole Exome Sequencing (WES) showed compound heterozygous likely pathologic variants in the TTN gene. (c.82541_82544dup (p.Arg27515Serfs*2) in exon 327 (NM_001267550.2) and c.31846+1G>A (p.?) in exon 123 (NM_001267550.2). To our knowledge, this is the first report of a TTN-related disorder associated with ophthalmoplegia.
Collapse
Affiliation(s)
- Issa Alawneh
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kyoko E Yuki
- Division of Genome Diagnostics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kimberly Amburgey
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Division of Genome Diagnostics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Grace Yoon
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Division of Genetic, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Division of Genetic, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Program of Genetic and Genome Biology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Lili-Naz Hazrati
- Division of Pathology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Program of Genetic and Genome Biology, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
29
|
Alkhunaizi E, Martin N, Jelin AC, Rosner M, Bailey DJ, Steiner LA, Lakhani S, Ji W, Katzman PJ, Forster KR, Jarinova O, Shannon P, Chitayat D. Fetal akinesia deformation sequence syndrome associated with recessive TTN variants. Am J Med Genet A 2023; 191:760-769. [PMID: 36495114 PMCID: PMC9928776 DOI: 10.1002/ajmg.a.63071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720-731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Angie C. Jelin
- Department of Gynecology and Obstetrics and Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Mara Rosner
- Department of Gynecology and Obstetrics, Center for Fetal Therapy, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Diana J. Bailey
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Laurie A. Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Saquib Lakhani
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Philip J. Katzman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine R. Forster
- Department of Gynecology and Obstetrics, Center for Fetal Therapy, Johns Hopkins Hospital, Baltimore, Maryland, USA
- Division of Maternal Fetal Medicine, Sibley Memorial Hospital, Johns Hopkins Medicine, Washington, Washington, USA
| | - Olga Jarinova
- Department of Pathology and Laboratory Medicine, CHEO Genetics Diagnostic Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Summa S, Ittiwut C, Kulsirichawaroj P, Paprad T, Likasitwattanakul S, Sanmaneechai O, Boonsimma P, Suphapeetiporn K, Shotelersuk V. Utilisation of exome sequencing for muscular disorders in Thai paediatric patients: diagnostic yield and mutational spectrum. Sci Rep 2023; 13:1376. [PMID: 36697461 PMCID: PMC9876991 DOI: 10.1038/s41598-023-28405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Muscular dystrophies and congenital myopathies are heterogeneous groups of inherited muscular disorders. An accurate diagnosis is challenging due to their complex clinical presentations and genetic heterogeneity. This study aimed to determine the utilisation of exome sequencing (ES) for Thai paediatric patients with muscular disorders. Of 176 paediatric patients suspected of genetic/inherited myopathies, 133 patients received a molecular diagnosis after performing conventional investigations, single gene testing, and gene panels. The remaining 43 patients from 42 families could be classified into three groups: Group 1, MLPA-negative Duchenne muscular dystrophy (DMD) with 9 patients (9/43; 21%), Group 2, other muscular dystrophies (MD) with 18 patients (18/43; 42%) and Group 3, congenital myopathies (CM) with 16 patients (16/43; 37%). All underwent exome sequencing which could identify pathogenic variants in 8/9 (89%), 14/18 (78%), and 8/16 (50%), for each Group, respectively. Overall, the diagnostic yield of ES was 70% (30/43) and 36 pathogenic/likely pathogenic variants in 14 genes were identified. 18 variants have never been previously reported. Molecular diagnoses provided by ES changed management in 22/30 (73%) of the patients. Our study demonstrates the clinical utility and implications of ES in inherited myopathies.
Collapse
Affiliation(s)
- Sarinya Summa
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Paediatrics, Samutprakan Hospital, Samutprakan, 10270, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Pimchanok Kulsirichawaroj
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Paediatrics, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Tanitnun Paprad
- Division of Neurology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surachai Likasitwattanakul
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Oranee Sanmaneechai
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
31
|
Liu Z, Zhao X, Wang R, Tang X, Zhao Y, Zhong G, Peng X, Zhang C. Heterogeneous pattern of gene expression driven by TTN mutation is involved in the construction of a prognosis model of lung squamous cell carcinoma. Front Oncol 2023; 13:916568. [PMID: 37035196 PMCID: PMC10080394 DOI: 10.3389/fonc.2023.916568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/09/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To investigate the impact that TTN mutation had on the gene heterogeneity expression and prognosis in patients with lung adenocarcinoma. Methods In this study, the Cancer Genome Atlas (TCGA) dataset was used to analyze the TTN mutations in lung adenocarcinoma. Lung adenocarcinoma data was collected from the TCGA database, clinical information of patients was analyzed, and bioinformatics statistical methods were applied for mutation analysis and prognosis survival analysis. The results were verified using the GEO dataset. Results The incidence of TTN mutations in lung adenocarcinoma was found to be 73%, and it was related to the prognosis of lung adenocarcinoma. Ten genes were screened with significant contributions to prognosis. A prognosis model was constructed and verified by LASSO COX analysis in the TCGA and GEO datasets based on these ten beneficial factors. The independent prognostic factor H2BC9 for TTN mutation-driven gene heterogeneity expression was screened through multi-factor COX regression analysis. Conclusion Our data showed that the gene heterogeneity expression, which was driven by TTN mutations, prolonged the survival of lung adenocarcinoma patients and provided valuable clues for the prognosis of TTN gene mutations in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhao Liu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Xiaowen Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ruihong Wang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiangyue Tang
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Yuxiang Zhao
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Guanghui Zhong
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Chunlin Zhang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| |
Collapse
|
32
|
Lin MR, Chou PH, Huang KJ, Ting J, Liu CY, Chou WH, Lin GH, Chang JG, Ikegawa S, Wang ST, Chang WC. Whole-Exome Sequencing Identifies Genetic Variants for Severe Adolescent Idiopathic Scoliosis in a Taiwanese Population. J Pers Med 2022; 13:jpm13010032. [PMID: 36675693 PMCID: PMC9865588 DOI: 10.3390/jpm13010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal curvature deformity that appears in the adolescent period. In this study, we performed whole-exome sequencing on 11 unrelated Taiwanese patients with a Cobb's angle greater than 40 degrees. Our results identified more than 200 potential pathogenic rare variants, however, most of which were carried only by one individual. By in silico pathogenicity annotation studies, we found that TTN, CLCN1, and SOX8 were the most important genes, as multiple pathogenic variants were within these genes. Furthermore, biological functional annotation indicated critical roles of these AIS candidate genes in the skeletal muscle. Importantly, a pathogenic variant on SOX8 was shared by over 35% of the patients. These results highlighted TTN, CLCN1, and SOX8 as the most likely susceptibility genes for severe AIS.
Collapse
Affiliation(s)
- Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Hsin Chou
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kuei-Jung Huang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Ying Liu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Gan-Hong Lin
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Shiro Ikegawa
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo 108-8639, Japan
| | - Shih-Tien Wang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Kinmen Hospital, Ministry of Health and Welfare, Kinmen 891, Taiwan
- Correspondence: (S.-T.W.); (W.-C.C.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Integrative Research Center in Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: (S.-T.W.); (W.-C.C.)
| |
Collapse
|
33
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
36
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
37
|
In Vitro Fertilization Using Preimplantation Genetic Testing in a Romanian Couple Carrier of Mutations in the TTN Gene: A Case Report and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11122328. [PMID: 34943567 PMCID: PMC8699826 DOI: 10.3390/diagnostics11122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/04/2022] Open
Abstract
Severe congenital myopathy with fatal cardiomyopathy (EOMFC) is a rare genetic neuromuscular disorder inherited in an autosomal recessive manner. Here we presented a successful pregnancy obtained by in vitro fertilization (IVF) using preimplantation genetic testing (PGT) in one young Romanian carrier couple that already lost mutation(s) within the TNN gene and whose first baby passed away due to multiple complications. It was delivered via emergency C-section at 36 weeks and fully dependent on artificial ventilation for a couple of months, weighing 2200 g and an APGAR score of 3. The aCGH + SNP analysis revealed an abnormal profile of the first newborn; three areas associated with loss of heterozygosity on chromosome 1 (q25.1–q25.3) of 6115 kb, 5 (p15.2–p15.1) of 2589 kb and 8 (q11.21–q11.23) of 4830 kb, a duplication of 1104 kb on chromosome 10 in the position q11.22, and duplication of 1193 kb on chromosome 16 in the position p11.2p11.1. Subsequently, we proceeded to test the parents and showed that both parents are carriers; confirmed by Sanger and NGS sequencing—father—on Chr2(GRCh37):g.179396832_179396833del—TTN variant c.104509_104510del p.(Leu34837Glufs*12)—exon 358 and mother—on Chr2(GRCh37):g.179479653G>C—TTN variant c.48681C>G p.(Tyr16227*)—exon 260. Their first child died shortly after birth due to multiple organ failures, possessing both parent’s mutations; weighing 2200 g at birth and received an APGAR score of 3 following premature delivery via emergency C-section at 36 weeks. Two embryos were obtained following the IVF protocol; one possessed the mother’s mutation, and the other had no mutations and was normal (WT). In contrast with the first birth, the second one was uneventful. A healthy female baby weighing 2990 g was delivered by C-section at 38 weeks, receiving an APGAR score of 9.
Collapse
|
38
|
Gómez-Andrés D, Oulhissane A, Quijano-Roy S. Two decades of advances in muscle imaging in children: from pattern recognition of muscle diseases to quantification and machine learning approaches. Neuromuscul Disord 2021; 31:1038-1050. [PMID: 34736625 DOI: 10.1016/j.nmd.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Muscle imaging has progressively gained popularity in the neuromuscular field. Together with detailed clinical examination and muscle biopsy, it has become one of the main tools for deep phenotyping and orientation of etiological diagnosis. Even in the current era of powerful new generation sequencing, muscle MRI has arisen as a tool for prioritization of certain genetic entities, supporting the pathogenicity of variants of unknown significance and facilitating diagnosis in cases with an initially inconclusive genetic study. Although the utility of muscle imaging is increasingly clear, it has not reached its full potential in clinical practice. Pattern recognition is known for a number of diseases and will certainly be enhanced by the use of machine learning approaches. For instance, MRI heatmap representations might be confronted with molecular results by obtaining a probabilistic diagnosis based in each disease "MRI fingerprints". Muscle ultrasound as a screening tool and quantified techniques such as Dixon MRI seem still underdeveloped. In this paper, we aim to appraise the advances in recent years in pediatric muscle imaging and try to define areas of uncertainty and potential advances that might become standardized to be widely used in the future.
Collapse
Affiliation(s)
- David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, ERN-RND - EURO-NMD, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; European Network for Reference Centers on Neuromuscular Disorders (Euro-NMD ERN)
| | - Amal Oulhissane
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France
| | - Susana Quijano-Roy
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France; UMR 1179, Laboratoire handicap neuromusculaire: physiopathologie biothérapie pharmacologie appliquées (END-ICAP), UFR Simone Veil, Montigny Le Bretonneux, France; French Network of Neuromuscular Reference Centers (FILNEMUS), France.
| |
Collapse
|
39
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
40
|
Suay-Corredera C, Pricolo MR, Herrero-Galán E, Velázquez-Carreras D, Sánchez-Ortiz D, García-Giustiniani D, Delgado J, Galano-Frutos JJ, García-Cebollada H, Vilches S, Domínguez F, Molina MS, Barriales-Villa R, Frisso G, Sancho J, Serrano L, García-Pavía P, Monserrat L, Alegre-Cebollada J. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem 2021; 297:100854. [PMID: 34097875 PMCID: PMC8260873 DOI: 10.1016/j.jbc.2021.100854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan José Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Helena García-Cebollada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Sabater Molina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Hospital C. Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, scarl, Naples, Italy
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
41
|
Solution NMR Structure of Titin N2A Region Ig Domain I83 and Its Interaction with Metal Ions. J Mol Biol 2021; 433:166977. [PMID: 33811919 DOI: 10.1016/j.jmb.2021.166977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Titin, the largest single chain protein known so far, has long been known to play a critical role in passive muscle function but recent studies have highlighted titin's role in active muscle function. One of the key elements in this role is the Ca2+-dependent interaction between titin's N2A region and the thin filament. An important element in this interaction is I83, the terminal immunoglobulin domain in the N2A region. There is limited structural information about this domain, but experimental evidence suggests that it plays a critical role in the N2A-actin binding interaction. We now report the solution NMR structure of I83 and characterize its dynamics and metal binding properties in detail. Its structure shows interesting relationships to other I-band Ig domains. Metal binding and dynamics data point towards the way the domain is evolutionarily optimized to interact with neighbouring domains. We also identify a calcium binding site on the N-terminal side of I83, which is expected to impact the interdomain interaction with the I82 domain. Together these results provide a first step towards a better understanding of the physiological effects associated with deletion of most of the I83 domain, as occurs in the mdm mouse model, as well as for future investigations of the N2A region.
Collapse
|
42
|
Fukuzawa A, Koch D, Grover S, Rees M, Gautel M. When is an obscurin variant pathogenic? The impact of Arg4344Gln and Arg4444Trp variants on protein-protein interactions and protein stability. Hum Mol Genet 2021; 30:1131-1141. [PMID: 33438037 PMCID: PMC8188405 DOI: 10.1093/hmg/ddab010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Obscurin is a giant muscle protein that connects the sarcomere with the sarcoplasmic reticulum, and has poorly understood structural and signalling functions. Increasingly, obscurin variants are implicated in the pathophysiology of cardiovascular diseases. The Arg4344Gln variant (R4344Q) in obscurin domain Ig58, initially discovered in a patient with hypertrophic cardiomyopathy, has been reported to reduce binding to titin domains Z8-Z9, impairing obscurin’s Z-disc localization. An R4344Q knock-in mouse developed a cardiomyopathy-like phenotype with abnormal Ca2+-handling and arrhythmias, which were attributed to an enhanced affinity of a putative interaction between obscurin Ig58 and phospholamban (PLN) due to the R4344Q variant. However, the R4344Q variant is found in 15% of African Americans, arguing against its pathogenicity. To resolve this apparent paradox, we quantified the influence of the R4344Q variant (alongside another potentially pathogenic variant: Arg4444Trp (R4444W)) on binding to titin Z8-Z9, novex-3 and PLN using pull-down assays and microscale thermophoresis and characterized the influence on domain stability using differential scanning fluorimetry. We found no changes in titin binding and thermostability for both variants and modestly increased affinities of PLN for R4344Q and R4444W. While we could not confirm the novex-3/obscurin interaction, the PLN/obscurin interaction relies on the transmembrane region of PLN and is not reproducible in mammalian cells, suggesting it is an in vitro artefact. Without clear clinical evidence for disease involvement, we advise against classifying these obscurin variants as pathogenic.
Collapse
Affiliation(s)
- Atsushi Fukuzawa
- Randall Centre for Cell & Molecular Biophysics, King's College London, 18-20 Newcomen Street, SE1 1UL, UK
| | - Daniel Koch
- Randall Centre for Cell & Molecular Biophysics, King's College London, 18-20 Newcomen Street, SE1 1UL, UK
| | - Sarah Grover
- Randall Centre for Cell & Molecular Biophysics, King's College London, 18-20 Newcomen Street, SE1 1UL, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, 18-20 Newcomen Street, SE1 1UL, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, 18-20 Newcomen Street, SE1 1UL, UK
| |
Collapse
|