1
|
Korhonen J, Siiskonen H, Haimakainen S, Harvima RJ, Harvima IT. Expression of mast cell tryptase and immunoglobulin E is increased in cutaneous photodamage: implications for carcinogenesis. J DERMATOL TREAT 2024; 35:2307488. [PMID: 38291602 DOI: 10.1080/09546634.2024.2307488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Purpose: Mast cells, their serine proteinase tryptase, and immunoglobulin E (IgE) can be involved in cutaneous carcinogenesis.Materials and methods: To study the association of tryptase+ and IgE+ cells with photodamage and skin cancers 385 adult patients (201 males, 184 females, 75 with immunosuppression) at risk of any type of skin cancer were examined. Skin biopsies were taken from the sun-protected medial arm and from the photodamaged dorsal forearm skin followed by immunohistochemical staining for tryptase and IgE.Results: The results show that tryptase+ and IgE+ cells are significantly higher in number in the photodamaged than sun-protected skin, both in immunocompetent and -compromised subjects, and there is a strong correlation between tryptase+ and IgE+ cells. The numbers of forearm tryptase+ and especially IgE+ cells associated significantly with the forearm photodamage severity. In the logistic regression analysis, the forearm to upper arm ratio of IgE+ cells produced a univariate odds ratio of 1.521 (p = .010) and a multivariate one of 3.875 (p = .047) for the history of squamous cell carcinoma. The serum level of total IgE correlated significantly to the IgE to tryptase ratio in both skin sites.Conclusions: Therefore, IgE+ mast cells participate in photodamage and carcinogenesis, though it is unclear whether they are tumor-protective or -causative.
Collapse
Affiliation(s)
- Jenni Korhonen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Salla Haimakainen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Rauno J Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Jo JY, Chae SJ, Ryu HJ. Update on Melasma Treatments. Ann Dermatol 2024; 36:125-134. [PMID: 38816973 PMCID: PMC11148313 DOI: 10.5021/ad.23.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 06/01/2024] Open
Abstract
Melasma is a prevalent hyperpigmentation condition known for its challenging treatment due to its resemblance to photoaged skin disorders. Numerous studies have shed light on the intricate nature of melasma, which often bears similarity to photoaging disorders. Various therapeutic approaches, encompassing topical and systemic treatments, chemical peeling, and laser therapy, have exhibited efficacy in managing melasma in previous research. However, melasma often reoccurs despite successful treatment, primarily due to its inherent photoaged properties. Given that melasma shares features with photoaging disorders, including disruptions in the basement membrane, solar elastosis, angiogenesis, and mast cell infiltration in the dermal layer, a comprehensive treatment strategy is imperative. Such an approach might involve addressing epidermal hyperpigmentation while concurrently restoring dermal components. In this article, we provide a comprehensive review of conventional treatment methods frequently employed in clinical practice, as well as innovative treatments currently under development for melasma management. Additionally, we offer an extensive overview of the pathogenesis of melasma.
Collapse
Affiliation(s)
- Ju Young Jo
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea
| | - Su Ji Chae
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea
| | - Hwa Jung Ryu
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
3
|
Ghasemiyeh P, Fazlinejad R, Kiafar MR, Rasekh S, Mokhtarzadegan M, Mohammadi-Samani S. Different therapeutic approaches in melasma: advances and limitations. Front Pharmacol 2024; 15:1337282. [PMID: 38628650 PMCID: PMC11019021 DOI: 10.3389/fphar.2024.1337282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Melasma is a chronic hyperpigmentation skin disorder that is more common in the female gender. Although melasma is a multifactorial skin disorder, however, sun-exposure and genetic predisposition are considered as the main etiologic factors in melasma occurrence. Although numerous topical and systemic therapeutic agents and also non-pharmacologic procedural treatments have been considered in melasma management, however, the commonly available therapeutic options have several limitations including the lack of sufficient clinical effectiveness, risk of relapse, and high rate of unwanted adverse drug reactions. Recruitment of nanotechnology for topical drug delivery in melasma management can lead to enhanced skin penetration, targeted drug delivery to the site of action, longer deposition at the targeted area, and limit systemic absorption and therefore systemic availability and adverse drug reactions. In the current review, first of all, the etiology, pathophysiology, and severity classification of melasma have been considered. Then, various pharmacologic and procedural therapeutic options in melasma treatment have been discussed. Afterward, the usage of various types of nanoparticles for the purpose of topical drug delivery for melasma management was considered. In the end, numerous clinical studies and controlled clinical trials on the assessment of the effectiveness of these novel topical formulations in melasma management are summarized.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Kiafar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Bazargan AS, Shemshadi M, Ziaeifar E, Taheri A, Roohaninasab M, Goodarzi A, Mirhashemi M. Evaluation of effectiveness of tranexamic acid as mesotherapy in improvement of periorbital wrinkling in a trial study. J Cosmet Dermatol 2023; 22:2548-2552. [PMID: 36987386 DOI: 10.1111/jocd.15744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Tranexamic acid is used to treat pigmented disorder in dermatology for a long time however there are limited data for effectiveness of tranexamic acid for rejuvenation and improvement of wrinkle. Here we want to find the effectiveness of tranexamic acid as mesotherapy in improvement of periorbital wrinkle in a clinical trial study. METHODS Patients with melasma who were treated with 4 session of tranexamic acid mesotherapy at intervals on 1 week were evaluated with Visioface device before starting and 1 month after last course of treatment. The outcomes including volume, area, area percent, and depth were measured by Visioface device. RESULTS Mean of periorbital wrinkles volume before and after procedure were 89 271 and 74 639 pixel3 (px3 ), respectively. Very significant difference with p-value of <0.001 was detected at volume of patient wrinkles before and after treatment. Moreover, the mean of area (and area percent) of their periorbital wrinkles before and after therapeutic method were 8481 Px3 (1.131%) and 7184 Px3 (0.646%), respectively, with significant differences (both have p-value of <0.001).Mean of periorbital wrinkles depth at before and after treatment were 9.8 and 9.6, respectively, without remarkable difference (p-value was 0.257). CONCLUSION Tranexamic acid mesotherapy significantly leads to reduced volume and area of wrinkles. Injection of tranexamic acid as mesotherapy seems to be effective in improvement of periorbital wrinkling.
Collapse
Affiliation(s)
| | - Mahsa Shemshadi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Ziaeifar
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirmasoud Taheri
- General Practitioner, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Masoumeh Roohaninasab
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahta Mirhashemi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Park JY, Lee JY, Kim Y, Kang CH. Latilactobacillus sakei Wikim0066 Protects Skin through MMP Regulation on UVB-Irradiated In Vitro and In Vivo Model. Nutrients 2023; 15:nu15030726. [PMID: 36771432 PMCID: PMC9919521 DOI: 10.3390/nu15030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet (UV) B exposure induces wrinkle formation, collagen fiber breakdown, and transepidermal water loss (TEWL). UVB irradiation induces the expression of mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor kappa B (NF-κB), which affect the expression of matrix metalloproteinases (MMP). We confirmed the effects of Latilactobacillus sakei wikim0066 (wikim0066) on UVB-irradiated Hs68 cells and HR-1 hairless mice cells. wikim0066 restored the production of type I procollagen by regulating the expression of MMP-1 and -3, MAPK, AP-1, and NF-κB in UVB-irradiated Hs68 cells and HR-1 mice. Oral administration of wikim0066 alleviates wrinkle formation, epidermal thickness, and TEWL in UVB-irradiated HR-1 hairless mice. These results indicated that wikim0066 has the potential to prevent UVB-induced wrinkle formation.
Collapse
|
7
|
Ma C, Li H, Lu S, Li X, Wang S, Wang W. Tryptase and Exogenous Trypsin: Mechanisms and Ophthalmic Applications. J Inflamm Res 2023; 16:927-939. [PMID: 36891173 PMCID: PMC9987324 DOI: 10.2147/jir.s402900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ocular injuries caused by inflammation, surgery or accidents are subject to a physiological healing process that ultimately restores the structure and function of the damaged tissue. Tryptase and trypsin are essential component of this process and they play a role in promoting and reducing the inflammatory response of tissues, respectively. Following injury, tryptase is endogenously produced by mast cells and can exacerbate the inflammatory response both by stimulating neutrophil secretion, and through its agonist action on proteinase-activated receptor 2 (PAR2). In contrast, exogenously introduced trypsin promotes wound healing by attenuating inflammatory responses, reducing oedema and protecting against infection. Thus, trypsin may help resolve ocular inflammatory symptoms and promote faster recovery from acute tissue injury associated with ophthalmic diseases. This article describes the roles of tryptase and exogenous trypsin in affected tissues after onset of ocular injury, and the clinical applications of trypsin injection.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.,Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People's Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Shuai Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenzhan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
8
|
Park JY, Lee JY, Kim Y, Kang CH. Lactic Acid Bacteria Improve the Photoprotective Effect via MAPK/AP-1/MMP Signaling Pathway on Skin Fibroblasts. Microorganisms 2022; 10:2481. [PMID: 36557732 PMCID: PMC9782026 DOI: 10.3390/microorganisms10122481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet B (UVB) exposure causes a breakdown of collagen, oxidative stress, and inflammation. UVB activates mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and matrix metalloproteinases (MMPs). In this study, we evaluated 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging activity and the photoprotective effect of lactic acid bacteria LAB strains, including Lactobacillus, Bifidobacterium, and Streptococcus genera in UVB-exposed skin fibroblasts. Nine LAB strains displayed antioxidant activity by regulating superoxide dismutase in UVB-exposed skin fibroblasts. Four LAB strains (MG4684, MG5368, MG4511, and MG5140) recovered type I procollagen level by inhibiting MMPs, MAPK, and AP-1 protein expression. Additionally, these four strains reduced the expression of proinflammatory cytokines by inhibiting oxidative stress. Therefore, L. fermentum MG4684, MG5368, L. rhamnosus MG4511, and S. thermophilus MG5140 are potentially photoprotective.
Collapse
Affiliation(s)
| | | | | | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
9
|
Piętowska Z, Nowicka D, Szepietowski JC. Understanding Melasma-How Can Pharmacology and Cosmetology Procedures and Prevention Help to Achieve Optimal Treatment Results? A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912084. [PMID: 36231404 PMCID: PMC9564742 DOI: 10.3390/ijerph191912084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/06/2023]
Abstract
Melasma is a chronic skin condition that involves the overproduction of melanin in areas exposed to ultraviolet radiation. Melasma treatment is long-term and complicated with recurrence and resistance to treatment. The pathogenesis of melasma is highly complex with multiple pathologies occurring outside of the skin pigment cells. It includes photoaging, excessive melanogenesis, an increased number of mast cells, increased vascularization, and basement membrane damage. In addition, skin lesions related to melasma and their surrounding skin have nearly 300 genes differentially expressed from healthy skin. Traditionally, melasma was treated with topical agents, including hydroquinone, tretinoin, glucocorticosteroids and various formulations; however, the current approach includes the topical application of a variety of substances, chemical peels, laser and light treatments, mesotherapy, microneedling and/or the use of systemic therapy. The treatment plan for patients with melasma begins with the elimination of risk factors, strict protection against ultraviolet radiation, and the topical use of lightening agents. Hyperpigmentation treatment alone can be ineffective unless combined with regenerative methods and photoprotection. In this review, we show that in-depth knowledge associated with proper communication and the establishment of a relationship with the patient help to achieve good adherence and compliance in this long-term, time-consuming and difficult procedure.
Collapse
Affiliation(s)
- Zuzanna Piętowska
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
- Correspondence:
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
| |
Collapse
|
10
|
Horikawa T, Hiramoto K, Tanaka S, Ooi K. Skin dryness induced in the KK-Ay/TaJcl type 2 diabetes mouse model deteriorates following dapagliflozin administration. Biol Pharm Bull 2022; 45:934-939. [PMID: 35584962 DOI: 10.1248/bpb.b22-00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various diabetic drugs have been developed as the number of patients with type 2 diabetes has increased. Sodium-glucose cotransporter (SGLT)-2 inhibitors have been developed as novel therapeutic agents. However, SGLT-2 inhibitors cause skin dryness. The mechanism through which SGLT-2 inhibitors cause skin dryness is unknown. The purpose of this study was to investigate the mechanism through which dapagliflozin, a SGLT-2 inhibitor, induces skin dryness. Specific pathogen-free KK-Ay/TaJcl (type 2 diabetes model) mice were orally administered with SGLT-2 inhibitor (dapagliflozin) daily for 4 weeks at a dose of 1 mg/kg/day. Skin dryness induced in KK-Ay/TaJcl mice became severe after dapagliflozin administration. Dapagliflozin treatment decreased collagen type I and hyaluronic acid levels in mice; additionally, it affected the TGF-β/hyaluronan synthase pathway, further reducing hyaluronic acid levels. The results indicate that the reduction in hyaluronic acid levels plays an important role in the occurrence of dry skin in diabetes.
Collapse
Affiliation(s)
- Tsuneki Horikawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Shota Tanaka
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
11
|
M1 Polarized Macrophages Persist in Skin of Post-Bariatric Patients after 2 Years. Aesthetic Plast Surg 2022; 46:287-296. [PMID: 34750657 DOI: 10.1007/s00266-021-02649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Obesity is considered a condition of systemic chronic inflammation. Under this condition, adipose tissue macrophages switch from an M2 (anti-inflammatory) activation pattern to an M1 (proinflammatory) activation pattern. OBJECTIVE The study aimed to verify the profile of skin macrophage activation after bariatric surgery as well as the role of MMP-1 in extracellular tissue remodeling. METHODS This is a prospective, controlled and comparative study with 20 individuals split into two groups according to their skin condition: post-bariatric and eutrophic patients. Histological and morphometric analyses based on hematoxylin-eosin, picrosirius red (collagen), orcein (elastic fiber systems), and alcian blue (mast cells)-stained sections and immunohistochemical analysis (CD68, iNOS, and mannose receptor) for macrophages and metalloproteinase-1 were performed. RESULTS Post-bariatric skin showed an increase in inflammation, angiogenesis, CD68, M1 macrophages (P< 0.001), and mast cells (P< 0.01); a decrease in M2 macrophages (P< 0.01); and a significant decrease in the collagen fiber network (P< 0.001). MMP-1 was increased in the papillary dermis of post-bariatric skin and decreased in the epidermis compared to eutrophic skin (P< 0.05). CONCLUSION This study shows that post-bariatric skin maintains inflammatory characteristics for two years. Mast cells and M1 macrophages maintain and enhance the remodeling of the dermal extracellular matrix initiated during obesity in part due to the presence of MMP-1 in the papillary dermis. EBM LEVEL IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
12
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
13
|
Phansuk K, Vachiramon V, Jurairattanaporn N, Chanprapaph K, Rattananukrom T. Dermal Pathology in Melasma: An Update Review. Clin Cosmet Investig Dermatol 2022; 15:11-19. [PMID: 35023942 PMCID: PMC8747646 DOI: 10.2147/ccid.s343332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Melasma is a complex and multipathophysiological condition that is challenging to treat. The roles of each element in the dermis were highlighted in this recent year due to targeting it with emerging therapies. Although some studies have demonstrated abnormal findings in the dermis of melasma lesions, there are no integrated data regarding these findings. PURPOSE This article aims to discuss each finding in the dermis of melasma lesions and to provide some ideas about treatment options. METHODS An Internet search was completed using the MEDLINE, Embase, Scopus, and Google Scholar databases for relevant literature through June 2021 and reference lists of respective articles. Only the articles published in English language were included. RESULTS Several studies have focused on the dermal changes in melasma. Common findings included basement membrane disruption, pendulous melanocytes, marked solar elastosis, increased melanophages, increased mast cells, and neovascularization. In addition, each of them had the specified mechanism that may relate with the others. CONCLUSION Several changes in the dermis of melasma lesion may be connected with pathological changes in the epidermis. This may serve as a potential target treatment for melasma, which requires a multimodal approach.
Collapse
Affiliation(s)
- Kachanat Phansuk
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasanop Vachiramon
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natthachat Jurairattanaporn
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumutnart Chanprapaph
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Rattananukrom
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Maruyama K, Goto K, Hiramoto K, Tanaka S, Ooi K. Indomethacin, a non-steroidal anti-inflammatory drug, induces skin dryness via PPARγ in mice. Biol Pharm Bull 2021; 45:77-85. [PMID: 34719578 DOI: 10.1248/bpb.b21-00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclooxygenase (COX)-1-selective inhibitors have side effects such as itching and dryness of the skin. In this study, the degree of skin dryness and the onset mechanism of this condition were investigated by comparing the effects of three non-steroidal anti-inflammatory drugs (NSAIDs) in mice. Mice were orally administered either indomethacin, loxoprofen sodium, or celecoxib (n = 5 per group) once daily for four consecutive days, and blood samples as well as skin and jejunal tissues were isolated on day 5. In the mice treated with indomethacin, transepidermal water loss was significantly increased, and dry skin was observed. In addition, the expression of matrix metalloproteinase (MMP)-I, mast cells, CD163, CD23, CD21, histamine, and peroxisome proliferation-activated receptor (PPAR)γ in the skin and jejunum was increased, and the blood levels of interleukin-10 and immunoglobulin E were also increased. In contrast, the expression of collagen type I in the skin was decreased. These results show that indomethacin activates PPARγ in the skin and jejunum, changes the polarity of macrophages, increases the secretion of MMP-1 from mast cells, and decomposes collagen type I, leading to dry skin.
Collapse
Affiliation(s)
- Kiyoko Maruyama
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kenji Goto
- Research Laboratories, Nichinichi Pharmaceutical Co., Ltd
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Shota Tanaka
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
15
|
Artzi O, Horovitz T, Bar-Ilan E, Shehadeh W, Koren A, Zusmanovitch L, Mehrabi JN, Salameh F, Isman Nelkenbaum G, Zur E, Sprecher E, Mashiah J. The pathogenesis of melasma and implications for treatment. J Cosmet Dermatol 2021; 20:3432-3445. [PMID: 34411403 DOI: 10.1111/jocd.14382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Melasma is a complex and poorly understood disorder, with high rates of treatment failure and recurrences. OBJECTIVES We aimed to review the current knowledge of the pathogenesis of melasma and apply this knowledge to clinical implications on relevant therapeutic interventions. METHODS A systematic PubMed search was performed using the search term "((melasma[Text Word]) OR facial melanosis[Text Word]) AND (pathogenesis OR causality[MeSH Terms])" for articles published between 1990 and 2020. Included articles were then evaluated by two authors and assessed for relevant pathomechanistic pathways, after which they were divided into groups with minimal overlap. We then reviewed current treatment modalities for melasma and divided them according to the involved pathomechanistic pathway. RESULTS A total of 309 search results were retrieved among which 76 relevant articles were identified and reviewed. Five main pathomechanisms observed in melasma were identified: (1) melanocyte inappropriate activation; (2) aggregation of melanin and melanosomes in dermis and epidermis; (3a) increased mast cell count and (3b) solar elastosis; (4) altered basement membrane; and (5) increased vascularization. Treatment modalities were then divided based on these five pathways and detailed in 6 relevant tables. CONCLUSION The pathophysiology of melasma is multifactorial, resulting in treatment resistance and high recurrence rates. This wide variety of pathomechanisms should ideally be addressed separately in the treatment regimen in order to maximize results.
Collapse
Affiliation(s)
- Ofir Artzi
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Horovitz
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Bar-Ilan
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Waseem Shehadeh
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Koren
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Zusmanovitch
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph N Mehrabi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fares Salameh
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gila Isman Nelkenbaum
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Zur
- Compounding Solutions, a Pharmaceutical Consultancy Company, Tel-Mond, Israel
| | - Eli Sprecher
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Mashiah
- Division of Dermatology and Venereology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Dermatology Unit, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Weckmann M, Bahmer T, Bülow Sand JM, Rank Rønnow S, Pech M, Vermeulen C, Faiz A, Leeming DJ, Karsdal MA, Lunding L, Oliver BGG, Wegmann M, Ulrich-Merzenich G, Juergens UR, Duhn J, Laumonnier Y, Danov O, Sewald K, Zissler U, Jonker M, König I, Hansen G, von Mutius E, Fuchs O, Dittrich AM, Schaub B, Happle C, Rabe KF, van de Berge M, Burgess JK, Kopp MV. COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy. Eur Respir J 2021; 58:13993003.03969-2020. [PMID: 34326188 DOI: 10.1183/13993003.03969-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/28/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (pediatric cases/controls: 134/35; adult cases/controls: 149/31). Exacerbation of allergic airway disease in mice was induced by sensitising to OVA, challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor, Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (CF, n=14) and CF with allergic broncho-pulmonary aspergillosis (ABPA, n=9) as well as severe allergic, uncontrolled asthmatics (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed by the Asthma Control Test. RESULTS Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in CF plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic odds ratio 31.5). CONCLUSION C4Ma3 level depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response.
Collapse
Affiliation(s)
- Markus Weckmann
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Bahmer
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | | | - Sarah Rank Rønnow
- Nordic Bioscience A/S, Herlev, Denmark.,The Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Martin Pech
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Cornelis Vermeulen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Alen Faiz
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | - Lars Lunding
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | - Brian George G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Michael Wegmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | | | - Uwe R Juergens
- Department of Pneumonology, Medical Clinic II, University Hospital Bonn
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marnix Jonker
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Inke König
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Erika von Mutius
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Oliver Fuchs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Bianca Schaub
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Klaus F Rabe
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Maarten van de Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Janette Kay Burgess
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | | |
Collapse
|
17
|
Baswan SM, Klosner AE, Weir C, Salter-Venzon D, Gellenbeck KW, Leverett J, Krutmann J. Role of ingestible carotenoids in skin protection: A review of clinical evidence. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:490-504. [PMID: 33955073 DOI: 10.1111/phpp.12690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/05/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Carotenoids, a class of phytonutrients, have been well established to boost skin's innate resistance against ultraviolet (UV) B-induced erythema (sunburn). Many of the published clinical studies thus far have focused on the measurement of erythema as the primary clinical indicator of skin protection against UVB radiation. More recent studies have shown that carotenoid supplementation provides even more skin protection than previously shown as new clinical and molecular endpoints beyond UVB-induced erythema have been reported. These recent studies have demonstrated that carotenoids also provide photoprotection against UVA-induced pigmentation and inhibit molecular markers of oxidative stress such as intercellular adhesion molecule 1, heme oxygenase-1, and matrix metalloproteinases 1 and 9. This article provides a comprehensive review of the published clinical evidence on skin benefits of carotenoids in the last five decades and indicates new perspectives on the role of ingestible carotenoids in skin protection.
Collapse
Affiliation(s)
| | - Allison E Klosner
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | - Cathy Weir
- Innovation and Science, Amway Corporation, Ada, MI, USA
| | - Dawna Salter-Venzon
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | - Kevin W Gellenbeck
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
18
|
Mast cell tryptases in allergic inflammation and immediate hypersensitivity. Curr Opin Immunol 2021; 72:94-106. [PMID: 33932709 DOI: 10.1016/j.coi.2021.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated mast cell-mediated inflammation and/or activation have been linked to a number of human diseases, including asthma, anaphylaxis, chronic spontaneous urticaria, and mast cell activation syndromes. As a major mast cell granule protein, tryptase is a biomarker commonly used in clinical practice to diagnose mast cell-associated disorders and -mediated reactions, but its mechanistic roles in disease pathogenesis remains incompletely understood. Here, we summarize recent advances in the understanding of human tryptase genetics and the effects that different genetic composition may have on the quaternary structure of tetrameric mature tryptases. We also discuss how these differences may impact clinical phenotypes including allergic inflammation, immediate hypersensitivity, and others seen in patients with mast cell-associated disorders. With the increased application of next-generation sequencing, we foresee that human genetic approaches will be a major focus of understanding human tryptase functions in various human mast cell disorders and in new therapeutic development.
Collapse
|
19
|
Davis KU, Sheats MK. Differential gene expression and Ingenuity Pathway Analysis of bronchoalveolar lavage cells from horses with mild/moderate neutrophilic or mastocytic inflammation on BAL cytology. Vet Immunol Immunopathol 2021; 234:110195. [PMID: 33588285 DOI: 10.1016/j.vetimm.2021.110195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 01/21/2023]
Abstract
Mild to moderate equine asthma syndrome (mEAS) affects horses of all ages and breeds. To date, the etiology and pathophysiology of mEAS are active areas of research, and it remains incompletely understood whether mEAS horses with different immune cell 'signatures' on BAL cytology represent different phenotypes, distinct pathobiological mechanisms (endotypes), varied environmental conditions, disease severity, genetic predispositions, or all of the above. In this descriptive study, we compared gene expression data from BAL cells isolated from horses with normal BALF cytology (n = 5), to those isolated from horses with mild/moderate neutrophilic inflammation (n = 5), or mild/moderate mastocytic inflammation (n = 5). BAL cell protein lysates were analyzed for cytokine/chemokine levels using Multiplex Bead Immunoassay, and for select proteins using immunoblot. The transcriptome, determined by RNA-seq and analyzed with DEseq2, contained 20, 63, and 102 significantly differentially expressed genes in horses with normal vs. neutrophilic, normal vs. mastocytic, and neutrophilic vs. mastocytic BALF cytology, respectively. Pathway analyses revealed that BAL-isolated cells from horses with neutrophilic vs. normal cytology showed enrichment in inflammation pathways, and horses with mastocytic vs. normal cytology showed enrichment in pathways involved in fibrosis and allergic reaction. BAL cells from horses with mastocytic mEAS, compared to neutrophilic mEAS, showed enrichment in pathways involved in alteration of tissue structures. Cytokine analysis determined that IL-1β was significantly different in the lysates from horses with neutrophilic inflammation compared to those with normal or mastocytic BAL cytology. Immunoblot revealed significant difference in the relative level of MMP2 in horses with neutrophilic vs. mastocytic mEAS. Upregulation of mRNA transcripts involved in the IL-1 family cytokine signaling axis (IL1a, IL1b, and IL1R2) in neutrophilic mEAS, as well as KIT mRNA in mastocytic mEAS, are novel, potentially clinically relevant, findings of this study. These findings further inform our understanding of inflammatory cell subtypes in mEAS.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, United States; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, United States
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, United States; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, United States.
| |
Collapse
|
20
|
Raina N, Rani R, Gupta M. Angiogenesis: Aspects in wound healing. ENDOTHELIAL SIGNALING IN VASCULAR DYSFUNCTION AND DISEASE 2021:77-90. [DOI: 10.1016/b978-0-12-816196-8.00010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Ogura S, Baldeosingh R, Bhutto IA, Kambhampati SP, Scott McLeod D, Edwards MM, Rais R, Schubert W, Lutty GA. A role for mast cells in geographic atrophy. FASEB J 2020; 34:10117-10131. [PMID: 32525594 DOI: 10.1096/fj.202000807r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.
Collapse
Affiliation(s)
- Shuntaro Ogura
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Imran A Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Siva P Kambhampati
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Donald Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Malia M Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
22
|
Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell 2020; 179:417-431.e19. [PMID: 31585081 DOI: 10.1016/j.cell.2019.09.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active β-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human β-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a β-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Collapse
Affiliation(s)
- Henry R Maun
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy L Staton
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Dressen
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin T Walters
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Neil N Trivedi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley Morando
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Depratment of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz D Orozco
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin Christensen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Q Hang
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Magda Babina
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rahul Ahuja
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - George H Caughey
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Aija Kusi
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kathila R Alatsis
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Espósito ACC, Brianezi G, de Souza NP, Miot LDB, Miot HA. Exploratory Study of Epidermis, Basement Membrane Zone, Upper Dermis Alterations and Wnt Pathway Activation in Melasma Compared to Adjacent and Retroauricular Skin. Ann Dermatol 2020; 32:101-108. [PMID: 33911720 PMCID: PMC7992552 DOI: 10.5021/ad.2020.32.2.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Melasma is a chronic acquired focal hypermelanosis which pathogenesis has not been fully elucidated. Classical pathophysiologic studies have analysed the affected and perilesional areas, but little is known about the status of sun-protected skin, which is subjected to the same endogenous and genetic factors. OBJECTIVE To assess the histological characteristics of melasma compared to adjacent and retroauricular skin. METHODS Skin samples were collected from 10 female from: melasma, perilesional area and retroauricular. The samples were stained (haematoxylin-eosin, periodic acid-Schiff, Fontana-Masson, picrosirius red, toluidine blue and Verhoeff), immunolabelled for CD34 and Wnt1. The data from the skin sites were analysed simultaneously by a multivariate model. RESULTS Melasma skin exhibited noteworthy stratum corneum compaction, greater collagen heterogeneity, solar elastosis, higher number of mast cells, basement membrane zone (BMZ) damage, Wnt1 expression, pendulum melanocytes, higher cellularity and vascular proliferation at the superficial dermis. Stratum corneum compaction, collagen heterogeneity and BMZ abnormalities were variables associated to melasma that not follow a continuum through retroauricular to adjacent skin. Mast cell count was the variable that disclosed correlation with the most other abnormalities as well as had the greater contribution in the multivariate model. CONCLUSION In addition to melanocyte hyperactivity, melasma skin exhibits alterations in the epidermal barrier, upper dermis and BMZ, which differ from the adjacent sun-exposed skin and retroauricular skin, indicating a distinct phenotype, rather than a mere extension of photoageing or intrinsic ageing. Mast cells appear to play a central role in the physiopathology of melasma.
Collapse
Affiliation(s)
| | - Gabrielli Brianezi
- Department of Dermatology and Radioterapy, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil
| | - Nathália Pereira de Souza
- Department of Dermatology and Radioterapy, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil
| | - Luciane Donida Bartoli Miot
- Department of Dermatology and Radioterapy, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radioterapy, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
24
|
Santana T, Nagata G, Saturno JL, Trierveiler M. Histopathological features of photodamage and mast cell infiltrate in actinic cheilitis with different grades of epithelial dysplasia. J Cutan Pathol 2020; 47:592-600. [PMID: 32133685 DOI: 10.1111/cup.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Actinic cheilitis is induced by chronic exposure to ultraviolet radiation and shows solar elastosis, a feature that has been associated with mast cell infiltrates. This study aimed to investigate the area of solar elastosis, collagen loss, and mast cell infiltrates in a series of actinic cheilitis. METHODS We evaluated the epithelial dysplasia in 52 cases of actinic cheilitis and the solar elastosis with Weigert's resorcin-fuchsin. Collagen loss was evaluated with Picrosirius red, analyzed under polarized microscopy, and scored from 1 to 3. Elastosis proportionate area (EPA) was calculated with image software. Mast cells were highlighted with toluidine blue stain. RESULTS EPA varied from 2% to 45%, with a mean of 17.1% in the cases, with no differences among epithelial dysplasia degrees. Most cases presented collagen loss scores of 2 or 3, and higher loss of type I collagen was associated with older age. Mast cell density was higher in severe epithelial dysplasia (P = 0.002) and in high-risk cases (P = 0.01). CONCLUSION Actinic cheilitis presented variable EPA and marked loss of type I collagen; however, these features were not associated with the degrees of epithelial dysplasia. Besides, mast cell density increased with epithelial dysplasia worsening and this was not associated with elastosis area or collagen loss.
Collapse
Affiliation(s)
- Thalita Santana
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo - USP, São Paulo, Brazil
| | - Gabriela Nagata
- School of Dentistry, Hermínio Ometto University Center, UNIARARAS, Araras, Brazil
| | - Juvani Lago Saturno
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo - USP, São Paulo, Brazil
| | - Marília Trierveiler
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
25
|
Therapeutic Effects of Cold-Pressed Perilla Oil Mainly Consisting of Linolenic acid, Oleic Acid and Linoleic Acid on UV-Induced Photoaging in NHDF Cells and SKH-1 Hairless Mice. Molecules 2020; 25:molecules25040989. [PMID: 32098445 PMCID: PMC7071085 DOI: 10.3390/molecules25040989] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Positive physiological benefits of several plant oils on the UV-induced photoaging have been reported in some cell lines and model mice, but perilla oil collected from the seeds of Perilla frutescens L. has not been investigated in this context. To study the therapeutic effects of cold-pressed perilla oil (CPO) on UV-induced photoaging in vitro and in vivo, UV-induced cellular damage and cutaneous photoaging were assessed in normal human dermal fibroblasts (NHDFs) and HR-1 hairless mice. CPO contained five major fatty acids including linolenic acid (64.11%), oleic acid (16.34%), linoleic acid (11.87%), palmitic acid (5.06%), and stearic acid (2.48%). UV-induced reductions in NHDF cell viability, ROS production, SOD activity, and G2/M cell cycle arrest were remarkably improved in UV + CPO treated NHDF cells as compared with UV + Vehicle treated controls. Also, UV-induced increases in MMP-1 protein and galactosidase levels were remarkably suppressed by CPO. In UV-radiated hairless mice, topical application of CPO inhibited an increase in wrinkle formation, transepidermal water loss (TEWL), erythema value, hydration and melanin index on dorsal skin of UVB-irradiated hairless mice. CPO was observed to similarly suppress UV-induced increases in epidermal thickness, mast cell numbers, and galactosidase and MMP-3 mRNA levels. These results suggest CPO has therapeutic potential in terms of protecting against skin photoaging by regulating skin morphology, histopathology and oxidative status.
Collapse
|
26
|
Yoshida H, Aoki M, Komiya A, Endo Y, Kawabata K, Nakamura T, Sakai S, Sayo T, Okada Y, Takahashi Y. HYBID (alias KIAA1199/CEMIP) and hyaluronan synthase coordinately regulate hyaluronan metabolism in histamine-stimulated skin fibroblasts. J Biol Chem 2020; 295:2483-2494. [PMID: 31949043 DOI: 10.1074/jbc.ra119.010457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Indexed: 11/06/2022] Open
Abstract
The immune-regulatory compound histamine is involved in the metabolism of the essential skin component hyaluronan (HA). We previously reported that histamine up-regulates the expression of HYBID (hyaluronan-binding protein involved in hyaluronan depolymerization, also called CEMIP or KIAA1199), which plays a key role in HA degradation. However, no information is available about histamine's effects on HA synthase (HAS) expression, the molecular sizes of HA species produced, and histamine receptors and their signaling pathways in skin fibroblasts. Moreover, histamine's effects on photoaged skin remain elusive. Here, we show that histamine increases HA degradation by up-regulating HYBID and down-regulating HAS2 in human skin fibroblasts in a dose- and time-dependent manner and thereby decreases the total amounts and sizes of newly produced HA. Histamine H1 blocker abrogated the histamine effects on HYBID up-regulation, HAS2 suppression, and HA degradation. Histamine H1 agonist exhibited effects on HA levels, composition, and breakdown similar to those of histamine. Of note, blockade of protein kinase Cδ or PI3K-Akt signaling abolished histamine-mediated HYBID stimulation and HAS2 suppression, respectively. Immunohistochemical experiments revealed a significant ∼2-fold increase in tryptase-positive mast cells in photoaged skin, where HYBID and HAS2 expression levels were increased and decreased, respectively, compared with photoprotected skin. These results indicate that histamine controls HA metabolism by up-regulating HYBID and down-regulating HAS2 via distinct signaling pathways downstream of histamine receptor H1. They further suggest that histamine may contribute to photoaged skin damage by skewing HA metabolism toward degradation.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan.
| | - Mika Aoki
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Aya Komiya
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Yoko Endo
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Keigo Kawabata
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Tomomi Nakamura
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Shingo Sakai
- Department of Health Beauty Products Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Tetsuya Sayo
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, 113-8421 Japan.
| | - Yoshito Takahashi
- Department of Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, 250-0002 Japan
| |
Collapse
|
27
|
Sarkar R, Bansal A, Ailawadi P. Future therapies in melasma: What lies ahead? Indian J Dermatol Venereol Leprol 2020; 86:8-17. [DOI: 10.4103/ijdvl.ijdvl_633_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Ooi K. [Protection of the Skin Barrier Function in Inflammatory Disease]. YAKUGAKU ZASSHI 2019; 139:1553-1556. [PMID: 31787644 DOI: 10.1248/yakushi.19-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The skin is the largest human organ, comprising the epidermis that is composed of epithelial tissue, the dermis composed of connective tissue, and the innermost subcutaneous tissue. Generally, skin conditions are due to aging and the influence of the external environment, but empirically patients with gastrointestinal diseases are more prone to pruritus and inflammation caused by dry skin. A decrease in the skin barrier function, involving immunocompetent mast cells and oxidative stress, was noted in indomethacin-induced small intestine inflammation, dextran sodium sulfate (DSS)-induced ulcerative colitis, and azoxymethane+DSS-induced colorectal cancer. A possible correlation was found to exist between inflammatory gastrointestinal diseases and the skin, and this correlation was investigated using a rheumatoid arthritis model as representative of inflammatory diseases. Similar to previously reported results, deterioration of the skin barrier function was observed, and new information was obtained by analyzing changes in inflammatory markers in the blood and skin tissues. Understanding the underlying mechanism of decreased skin barrier function will help in establishing effective prophylaxis and treatment methods and clarify the importance of crosstalk between organs. It will also help accelerate drug development.
Collapse
Affiliation(s)
- Kazuya Ooi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
29
|
Dos Reis CA, de Miranda Soares MA, Gomes JR. Expression of the matrix metalloproteinases 2 and 9 in the rat small intestine during intrauterine and postnatal life. Anat Rec (Hoboken) 2019; 303:2839-2846. [PMID: 31680487 DOI: 10.1002/ar.24314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 11/06/2022]
Abstract
The expressions of matrix metalloproteinases 2 and 9 have been described during the development, as an example in heart and tooth but not in the small intestine yet. In this context, this study aimed to evaluate the expressions of MMP-2 and MMP-9 in the small intestine of Wistar rats during intrauterine (IU) and postnatal (PN) life. Expressions were determined on the 15th and 18th days of IU life and the 3rd, 10th, 17th, 25th, and 32nd days of PN life. Intestinal samples obtained from six animals were submitted to zymography, immunohistochemistry, and staining with Masson's trichrome. The results showed that MMP-2 and MMP-9 were not expressed during IU life; however, after birth, MMP-9 was immunolocalized in the goblet and mast cells. In conclusion, our results showed that MMP-2 and MMP-9 were not expressed in absorptive epithelial cells during the IU period of the small intestine but after birth, MMP-9 was expressed in the goblet cells, and mast cells present in the lamina propria.
Collapse
Affiliation(s)
- Camila Audrey Dos Reis
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - José Rosa Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
30
|
Age related changes in the dermal mast cells and the associated changes in the dermal collagen and cells: A histological and electron microscopy study. Acta Histochem 2019; 121:619-627. [PMID: 31126613 DOI: 10.1016/j.acthis.2019.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
Mast cells are widely distributed bone marrow cells. They have a crucial role in the dermal aging process. The aim of the present study was to describe the biochemical and the histological changes that occur in the aged dermal mast cells and to demonstrate the associated changes in the dermal cells and fibers as well. Sixteen male albino rats were used and divided into two groups; the control group (8-10 weeks) and the aged group (20-22 weeks). The rats were decapitated then processed for further biochemical and histological studies. The mean area fraction for collagen fibers was measured. In the aged group, there was a significant increase in the skin histamine and heparin levels if compared with the control one. Furthermore, there was an apparent increase in intact and degranulated dermal mast cells if compared with the control one. The dermal collagen bundles were apparently decreased and appeared distorted with wide spacing. Additionally, there were apparently large sized eosinophils with more cytoplasmic granules. Direct contact between mast, fibroblast, and macrophage cells was noticed. The average area fraction of collagen fibers was significantly increased in the aged group if compared with the control one. It could be concluded that the secretory activity of dermal mast cells was significantly increased in the aged skin group. Also, this study demonstrated the implicated role of mast cell in aged skin changes. Further long-term studies are needed to validate the prophylactic or therapeutic potential by intentional hindering of mast cell degranulation in aged skin.
Collapse
|
31
|
Sato T, Morishita S, Horie T, Fukumoto M, Kida T, Oku H, Nakamura K, Takai S, Jin D, Ikeda T. Involvement of premacular mast cells in the pathogenesis of macular diseases. PLoS One 2019; 14:e0211438. [PMID: 30794552 PMCID: PMC6386310 DOI: 10.1371/journal.pone.0211438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported on the elevated intravitreal activities of tryptase and chymase in association with idiopathic epiretinal membrane (ERM) and idiopathic macular hole (MH). In this present study, we investigated the potential intraocular production of these serine proteases, and measured and compared tryptase and chymase activities in the vitreous body and serum in ERM, MH, proliferative diabetic retinopathy (PDR), and rhegmatogenous retinal detachment (RRD) patients. In addition, nuclear staining with hematoxylin and eosin (H&E) and mast-cell staining with toluidine blue were performed on samples of the vitreous core and bursa premacularis (BPM) of MH. We also performed immunostaining on the above two regions of vitreous samples for MH with anti-tryptase antibody, anti-chymase antibody, anti-podoplanin antibody, anti-lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) antibody, and anti-fibroblast antibody. Moreover, we performed immunostaining with anti-tryptase antibody and anti-chymase antibody on ERMs collected intraoperatively. Tryptase activity in the vitreous body was significantly higher in ERM and MH than in PDR. However, no significant differences were observed in the tryptase activity in the serum among these four diseases. Chymase activity in the vitreous body was significantly higher in MH than in the other three diseases, yet chymase activity in the serum was below detection limit in any of the diseases. Nuclear staining with H&E revealed an abundance of nuclei in the BPM region, but few in the surrounding area. Mast-cell staining with toluidine blue revealed that the BPM showed metachromatic staining. In immunostaining with anti-fibroblasts antibody, anti-tryptase antibody, anti-chymase antibody, anti-podoplanin antibody, and anti-LYVE-1 antibody, the BPM stained more strongly than the vitreous core. Tryptase and chymase-positive cells were also observed in ERM. These findings revealed that the presence of mast cells in the BPM potentially represent the source of these serine proteases. Moreover, the BPM, as a lymphatic tissue, may play an important role in the pathogenesis of macular disease.
Collapse
Affiliation(s)
- Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Seita Morishita
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | | | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
- * E-mail:
| |
Collapse
|
32
|
Kwon SH, Na JI, Choi JY, Park KC. Melasma: Updates and perspectives. Exp Dermatol 2018; 28:704-708. [PMID: 30422338 DOI: 10.1111/exd.13844] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
Management of melasma is highly challenging due to inconsistent treatment results and frequent relapses. However, recent studies revealed that melasma may not only be a disease of melanocytes, but also a photoaging skin disorder. Herein, we attempt to validate that melasma is indeed a photoaging disorder by presenting the histopathologic findings of melasma: solar elastosis, altered basement membrane, increased vascularization and increased mast cell count. We also provide some therapeutic implications based on these findings and a discussion on the latest updates and perspectives regarding treatment.
Collapse
Affiliation(s)
- Soon-Hyo Kwon
- College of Medicine, Seoul National University Bundang Hospital, Seoul National University, Gyeonggi, Korea
| | - Jung-Im Na
- College of Medicine, Seoul National University Bundang Hospital, Seoul National University, Gyeonggi, Korea
| | - Ji-Young Choi
- College of Medicine, Seoul National University Bundang Hospital, Seoul National University, Gyeonggi, Korea
| | - Kyoung-Chan Park
- College of Medicine, Seoul National University Bundang Hospital, Seoul National University, Gyeonggi, Korea
| |
Collapse
|
33
|
An integrated molecular modeling approach for the tryptase monomer-curcuminoid recognition analysis: conformational and bioenergetic features. J Bioenerg Biomembr 2018; 50:447-459. [PMID: 30415460 DOI: 10.1007/s10863-018-9777-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Human mast cell tryptase has been shown as an activating enzyme in matrix degradation process. The previous study suggest that tryptase either alone or in joining with activation of metalloproteinases, can associate in extra cellular matrix damage and the possible destruction of the basement membrane resulting in photoaging. Therefore the inhibition of tryptase activity is one of the most important therapeutic strategies against the photoaging. Curcumin has been shown to be a potential agent for preventing and/or treating the photoaging induced by UV radiation. However, the protective effect of curcumin against the photoaging through the tryptase inhibition is still inadequately understood. In this work, computational methods to characterize the structural framework and define the atomistic details of the determinants for the tryptase inhibition mechanism by curcuminoids were performed. By molecular docking, three putative binding models able to efficiently bind all curcuminoids were identified. Analysis of molecular dynamics simulations revealed that cyclocurcumin, curcumin glucuronide, and curcumin, the most effective inhibitors from the three models, modified significant tryptase monomer rigidity by binding in all the possible sites. The result of these binding events is the suppression of the functional enzymatic motions involving the binding of substrates to the catalytic site. On the basis of this finding may thus be beneficial for the development of new natural inhibitors for the therapeutic remedy of photoaging, targeting and modulating the activity of tryptase.
Collapse
|
34
|
Sekijima H, Goto K, Hiramoto K, Komori R, Ooi K. Characterization of dry skin associating with type 2 diabetes mellitus using a KK-Ay/TaJcl mouse model. Cutan Ocul Toxicol 2018; 37:391-395. [DOI: 10.1080/15569527.2018.1490746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hidehisa Sekijima
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Kenji Goto
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Rio Komori
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Kazuya Ooi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
35
|
McLeod DS, Bhutto I, Edwards MM, Gedam M, Baldeosingh R, Lutty GA. Mast Cell-Derived Tryptase in Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:5887-5896. [PMID: 29164232 PMCID: PMC5699534 DOI: 10.1167/iovs.17-22989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Our previous study demonstrated significantly more degranulating mast cells (MCs) in choroids from subjects with age-related macular degeneration compared to aged controls. This study examined the immunolocalization of tryptase, the most abundant MC secretory granule-derived serine protease, in aged control eyes and eyes with geographic atrophy (GA). Methods Postmortem human eyes with and without GA were obtained from the National Disease Research Interchange. Tissue was fixed, cryopreserved, sectioned, and immunostained with a monoclonal antibody against tryptase. Sections were imaged on a Zeiss 710 Confocal Microscope. Results In the posterior pole of all aged control eyes, tryptase was confined to choroidal MCs, which were located primarily in Sattler's layer. In eyes with GA, many MCs were located in the inner choroid near choriocapillaris and Bruch's membrane (BM). Tryptase was found not only in MCs but also diffusely around them in stroma, suggesting they had degranulated. In contrast with aged control eyes, eyes with GA also had strong tryptase staining in BM. Tryptase was observed within BM in regions of RPE atrophy, at the border of atrophy, and extending well into the nonatrophic region. Conclusions Our results demonstrate that tryptase, released during choroidal MC degranulation, binds to BM in GA in advance of RPE atrophy. Tryptase activates MMPs that can degrade extracellular matrix (ECM) and basement membrane components found in BM. ECM modifications are likely to have a profound effect on the function and health of RPE and choroidal thinning in GA.
Collapse
Affiliation(s)
- D. Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Imran Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Malia M. Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Manasee Gedam
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Rajkumar Baldeosingh
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Gerard A. Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| |
Collapse
|
36
|
Matsuda K, Okamoto N, Kondo M, Arkwright PD, Karasawa K, Ishizaka S, Yokota S, Matsuda A, Jung K, Oida K, Amagai Y, Jang H, Noda E, Kakinuma R, Yasui K, Kaku U, Mori Y, Onai N, Ohteki T, Tanaka A, Matsuda H. Mast cell hyperactivity underpins the development of oxygen-induced retinopathy. J Clin Invest 2017; 127:3987-4000. [PMID: 28990934 PMCID: PMC5663365 DOI: 10.1172/jci89893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Mast cells are classically thought to play an important role in protection against helminth infections and in the induction of allergic diseases; however, recent studies indicate that these cells also contribute to neovascularization, which is critical for tissue remodeling, chronic inflammation, and carcinogenesis. Here, we demonstrate that mast cells are essential for sprouting angiogenesis in a murine model of oxygen-induced retinopathy (OIR). Although mouse strains lacking mast cells did not exhibit retinal neovascularization following hypoxia, these mice developed OIR following infusion of mast cells or after injection of mast cell tryptase (MCT). Relative hypoxia stimulated mast cell degranulation via transient receptor potential ankyrin 1. Subsequent surges in MCT stimulated retinal endothelial cells to produce monocyte chemotactic protein-1 (MCP1) and angiogenic factors, leading to sprouting angiogenesis. Mast cell stabilizers as well as specific tryptase and MCP1 inhibitors prevented the development of OIR in WT mice. Preterm infants with early retinopathy of prematurity had markedly higher plasma MCT levels than age-matched infants without disease, suggesting mast cells contribute to human disease. Together, these results suggest therapies that suppress mast cell activity should be further explored as a potential option for preventing eye diseases and subsequent blindness induced by neovascularization.
Collapse
Affiliation(s)
- Kenshiro Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Noriko Okamoto
- Laboratory of Veterinary Molecular Pathology and Therapeutics, and Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Kondo
- Department of Neonatology and Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Peter D Arkwright
- Institute of Inflammation and Repair, University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Kaoru Karasawa
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saori Ishizaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shinichi Yokota
- Laboratory of Veterinary Molecular Pathology and Therapeutics, and Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akira Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, and Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kyungsook Jung
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kumiko Oida
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yosuke Amagai
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Tokyo Biomarker Innovation Research Association, Tokyo, Japan
| | - Hyosun Jang
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Eiichiro Noda
- Department of Ophthalmology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Ryota Kakinuma
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koujirou Yasui
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Uiko Kaku
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Nobuyuki Onai
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Laboratory of Veterinary Molecular Pathology and Therapeutics, and Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
37
|
The Clinical and Histological Effect of a Low-Fluence Q-Switched 1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser for the Treatment of Melasma and Solar Lentigenes in Asians: Prospective, Randomized, and Split-Face Comparative Study. Dermatol Surg 2017; 43:1120-1133. [DOI: 10.1097/dss.0000000000001120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Abstract
Skin is the largest organ of the body with a complex network of multitude of cell types that perform plastic and dynamic cellular communication to maintain several vital processes such as inflammation, immune response including induction of tolerance and disease prevention, wound healing, and angiogenesis. Of paramount importance are immunological functions of the skin that protect from harmful exposure coming from external and internal environments. Awareness of skin immunity can provide a better comprehension of inflammation, autoimmunity, cancer, graft-versus-host disease, vaccination, and immunotherapy approaches. This paper will update on what we currently know about immune sentinels contributing to skin immunity.
Collapse
Affiliation(s)
- Agata Matejuk
- Faculty of Health Science, Wroclaw Medical University, Wrocław, Poland. .,Faculty of Science and Technology, Karkonosze College, Jelenia Góra, Poland.
| |
Collapse
|
39
|
Goto K, Hiramoto K, Kita H, Ooi K. Role of mast cells in the induction of dry skin in a mouse model of rheumatoid arthritis. Cutan Ocul Toxicol 2017; 37:61-70. [PMID: 28573874 DOI: 10.1080/15569527.2017.1337784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is known to induce dry skin as an extra-articular symptom. However, the mechanisms behind the induction are unclear. In this study, we utilized an arthritis mouse model to simulate RA to reveal the relationship between arthritis and dry skin. MATERIALS AND METHODS DBA/1JJmsSlc control mice (n = 5) and DBA/1JJmsSlc collagen-induced arthritis mouse model (arthritis mice; n = 5) were used. We measured transepidermal water loss (TEWL) and capacitance to reveal the effect of arthritis on skin barrier function. In addition, we measured the expression of biomarkers of skin barrier function. RESULTS We found that the hind limb volume of the arthritis mice was higher than that of the control mice. Our results showed that the arthritis mice had higher TEWL and lower capacitance when compared to the control mice. When compared to that of the control mice, the skin of the arthritis mice was thicker with more leukocyte infiltration. In the skin of arthritis mice, we observed lower expression of type I and IV collagens, but higher expression of matrix metalloproteinases (MMP)-1 and -9 when compared to that of the control mice. The levels of mast cells, histamine, substance P, and tryptase were higher in the arthritis mice than in the control mice. This study showed that the arthritis mice exhibited a disruption of skin barrier function (i.e. dry skin), which was improved following treatment with a mast cell inhibitor. CONCLUSIONS Our results on mast cells suggested that an improvement of dry skin is important for RA management.
Collapse
Affiliation(s)
- Kenji Goto
- a Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Science , Suzuka University of Medical Science , Suzuka , Japan
| | - Keiichi Hiramoto
- b Laboratory of Pathophysiology and Pharmacotherapy, Faculty of Pharmaceutical Science , Suzuka University of Medical Science , Suzuka , Japan
| | - Hijiri Kita
- a Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Science , Suzuka University of Medical Science , Suzuka , Japan
| | - Kazuya Ooi
- a Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Science , Suzuka University of Medical Science , Suzuka , Japan
| |
Collapse
|
40
|
Takai Y, Hiramoto K, Nishimura Y, Ooi K. Relationship between biochemical factors and skin symptoms in chronic venous disease. Arch Dermatol Res 2017; 309:253-258. [DOI: 10.1007/s00403-017-1721-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
41
|
Chen CYO, Smith A, Liu Y, Du P, Blumberg JB, Garlick J. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model. Int J Food Sci Nutr 2017; 68:712-718. [DOI: 10.1080/09637486.2017.1282437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Avi Smith
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, MA, USA
| | - Yuntao Liu
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Peng Du
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- The Institute of Aviation Medicine, Airforce, Beijing, China
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Jonathan Garlick
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
42
|
Jiang R, Suzuki YA, Du X, Lönnerdal B. Lactoferrin and the lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression. Biochem Cell Biol 2016; 95:110-118. [PMID: 28169552 DOI: 10.1139/bcb-2016-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding multifunctional protein, mainly present in external secretions. Lf is known to penetrate skin and may thus exert its multiple functions in skin. Sophorolipids (SLs) are glycolipid biosurfactants, which have been shown to enhance absorption of commercial bovine Lf (CbLf) in model skin via forming an assembly with CbLf. In this study, uptake and post-internalization localization of bovine Lf (bLf), CbLf, and human Lf (hLf) with or without forming assemblies with SLs in human dermal fibroblasts (HDFn) were determined using 125I-labeled Lfs and confocal microscopy, respectively. Our results show that all 3 Lfs were internalized by HDFn; although SLs did not significantly affect the uptake of Lfs, it changed Lf localization by accumulating Lfs in the perinuclear region. Furthermore, microarrays were used to investigate transcriptional profiling in HDFn in response to CbLf, SLs, or CbLf-SLs-assembly treatments. Transcriptome profiling indicates that CbLf may play roles in the protection of skin from oxidative stress, immunomodulatory activities, and enhancement of wound healing. The assembly had similar effects but dramatically modulated the transcription of some genes. SLs alone modified signaling pathways related to lipid metabolism, as well as synthesis of sex hormones and vitamins. Thus, CbLf may exert beneficial effects on skin, and these effects may be modulated by SLs.
Collapse
Affiliation(s)
- Rulan Jiang
- a Department of Nutrition, University of California, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Yasushi A Suzuki
- b Biochemical Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka 582-0028, Japan
| | - Xiaogu Du
- a Department of Nutrition, University of California, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616-5270, USA
| | - Bo Lönnerdal
- a Department of Nutrition, University of California, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616-5270, USA
| |
Collapse
|
43
|
Heterogeneous Pathology of Melasma and Its Clinical Implications. Int J Mol Sci 2016; 17:ijms17060824. [PMID: 27240341 PMCID: PMC4926358 DOI: 10.3390/ijms17060824] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/14/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022] Open
Abstract
Melasma is a commonly acquired hypermelanosis that affects sun-exposed areas of the skin, with frequent facial involvement. Its histologic manifestations are evident in the epidermis, extracellular matrix, and dermis. In addition to epidermal pigmentation, pathologic findings of melasma include extracellular matrix abnormality, especially solar elastosis. The disrupted basement membrane has been described in melasma with variable incidences. In the dermis, an increase in vascularity and an increase in the number of mast cells were observed, indicating that dermal factors have critical roles in the pathogenesis of melasma, despite the fact that melasma is characterized by epidermal hyperpigmentation. This review discusses such histologic characteristics of melasma, with consideration to their implications for melasma treatment.
Collapse
|
44
|
Tan AWM, Sen P, Chua SH, Goh BK. Oral tranexamic acid lightens refractory melasma. Australas J Dermatol 2016; 58:e105-e108. [DOI: 10.1111/ajd.12474] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/31/2016] [Indexed: 12/17/2022]
|
45
|
Yokoyama S, Hiramoto K, Koyama M, Ooi K. Skin disruption is associated with indomethacin-induced small intestinal injury in mice. Exp Dermatol 2016; 23:659-63. [PMID: 25041031 DOI: 10.1111/exd.12499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2014] [Indexed: 01/12/2023]
Abstract
One mechanism by which non-steroidal anti-inflammatory drugs (NSAIDs) cause intestinal injury is by inducing matrix metalloproteinases (MMPs) that degrade and remodel the extracellular matrix. In addition to the intestinal mucosa, MMPs are expressed in the skin and can be activated by mast cell-secreted tryptase. We therefore investigated whether intestinal injury resulting from treatment with the NSAID indomethacin induced MMPs in the skin of mice and caused an associated disruption of skin function. Hairless mice and mast cell-deficient mice were administered indomethacin, after which damage to the jejuna and skin was assessed with immunohistochemistry and Western blotting. The plasma concentration of inflammatory mediators was assessed to evaluate potential pathways for signalling skin disruption in response to intestinal injury. In hairless mice with intestinal injury, transepidermal water loss (TEWL) was higher and skin hydration was lower than in control mice. The expression levels of mast cells, tryptase, MMP-1 and MMP-9 were also increased, with concurrent degradation of types I and IV collagen. In contrast, no changes in skin TEWL or skin hydration were observed in mast cell-deficient mice with indomethacin-induced intestinal injury. In all mice evaluated, the plasma concentrations of IgE, IgA, histamine and TNF-α were increased in response to indomethacin treatment. Skin disruption was strongly associated with indomethacin-induced small intestinal injury, and the activation of mast cells and induction of tryptase, MMP-1 and MMP-9 are critical to this association.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | | | | | | |
Collapse
|
46
|
Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA. Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 2016; 100:720-6. [PMID: 26931413 DOI: 10.1136/bjophthalmol-2015-308290] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/08/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Inflammation has been implicated in age-related macular degeneration (AMD). This study investigates the association of mast cells (MCs), a resident choroidal inflammatory cell, with pathological changes in AMD. METHODS Human donor eyes included aged controls (n=10), clinically diagnosed with early AMD (n=8), geographic atrophy (GA, n=4) and exudative AMD (n=11). The choroids were excised and incubated for alkaline phosphatase (APase; blood vessels) and non-specific esterase activities (MCs). Degranulated (DG) and non-degranulated MCs in four areas of posterior choroid (nasal, non-macular, paramacular and submacular) were counted in flat mounts (4-6 fields/area). Choroids were subsequently embedded in JB-4 and sectioned for histological analyses. RESULTS The number of MCs was significantly increased in all choroidal areas in early AMD (p=0.0006) and in paramacular area in exudative AMD (139.44±55.3 cells/mm(2); p=0.0091) and GA (199.08±82.0 cells/mm(2); p=0.0019) compared with the aged controls. DG MCs were also increased in paramacular (p=0.001) and submacular choroid (p=0.02) in all forms of AMD. Areas with the greatest numbers of DG MCs had loss of choriocapillaris (CC). Sections revealed that the MCs were widely distributed in Sattler's and Haller's layer in the choroidal stroma in aged controls, whereas MCs were frequently found in close proximity with CC in GA and exudative AMD and in choroidal neovascularisation (CNV). CONCLUSION Increased MC numbers and degranulation were observed in all AMD choroids. These results suggest that MC degranulation may contribute to the pathogenesis of AMD: death of CC and retinal pigment epithelial and CNV formation. The proteolytic enzymes released from MC granules may result in thinning of AMD choroid.
Collapse
Affiliation(s)
- Imran A Bhutto
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Tian Jing
- Biostatistics Consulting Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janet S Sunness
- Hoover Low Vision Rehabilitation Services, Greater Baltimore Medical Center, Baltimore, Maryland, USA Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna M Seddon
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Boston, Massachusetts, USA Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Vangansewinkel T, Geurts N, Quanten K, Nelissen S, Lemmens S, Geboes L, Dooley D, Vidal PM, Pejler G, Hendrix S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6. FASEB J 2016; 30:2040-57. [PMID: 26917739 DOI: 10.1096/fj.201500114r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
Abstract
An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kirsten Quanten
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sofie Nelissen
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lies Geboes
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pia M Vidal
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; and Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium;
| |
Collapse
|
48
|
Chung JY, Lee JH, Lee JH. Topical tranexamic acid as an adjuvant treatment in melasma: Side-by-side comparison clinical study. J DERMATOL TREAT 2015; 27:373-7. [DOI: 10.3109/09546634.2015.1115812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Alpay Kanıtez N, Erer B, Doğan Ö, Büyükbabani N, Baykal C, Sindel D, Tanakol R, Yavuz AS. Osteoporosis and osteopathy markers in patients with mastocytosis. Turk J Haematol 2015; 32:43-50. [PMID: 25805674 PMCID: PMC4439906 DOI: 10.4274/tjh.2013.0170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: Osteoporosis, osteosclerosis, and lytic bone lesions have been observed in patients with systemic mastocytosis (SM). We examined bone mineral density (BMD) biochemical turnover markers and serum tryptase levels in SM, which is considered a rare disease. Materials and Methods: Seventeen adult patients (5 females, 12 males; median age: 33 years, range: 20-64) with mastocytosis were included in this study. We investigated the value of quantitative ultrasound (QUS) of the calcaneus in the assessment of BMD in SM patients, as well as BMD of the lumbar spine (L1-L4), femoral neck, and distal radius using dual energy x-ray absorptiometry (DXA) and plasma tryptase levels, biochemical markers of bone turnover. Results: At lumbar spine L1-L4, the femoral neck, and the distal radius or as calcaneus stiffness, 12 of 17 patients had T-scores of less than -1 at least at 1 site, reflecting osteopenia. Three of 17 patients had T-scores showing osteoporosis (T-score <-2.5). There was no relationship between DXA and bone lesion severity. We also found a significant positive correlation between tryptase levels and disease severity, as well as between disease severity and pyridinoline (p<0.01 by Spearman’s test). Conclusion: DXA and calcaneal QUS may not be appropriate techniques to assess bone involvement in SM patients because of the effects of osteosclerosis. This study further shows that the osteoclastic marker pyridinoline is helpful in patients with severe disease activity and sclerotic bone lesions to show bone demineralization.
Collapse
Affiliation(s)
- Nilüfer Alpay Kanıtez
- İstanbul University İstanbul Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, İstanbul, Turkey. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Melanin production through novel processing of proopiomelanocortin in the extracellular compartment of the auricular skin of C57BL/6 mice after UV-irradiation. Sci Rep 2015; 5:14579. [PMID: 26417724 PMCID: PMC4586518 DOI: 10.1038/srep14579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 11/08/2022] Open
Abstract
The production of melanin is regulated by α-melanocyte-stimulating hormone (α-MSH), which is produced from proopiomelanocortin (POMC). Keratinocytes release POMC along with lower levels of α-MSH and ACTH. To clarify the mechanism of melanogenesis after ultraviolet (UV)-irradiation, this study focused on the expression of POMC and POMC-derived peptides after UV-irradiation. Western blot analysis and immunoassays indicated that both POMC and α-MSH-like immunoreactivity (α-MSH-LI) increased after UV-irradiation. However, other POMC-derived products were very low. In hypophysectomized mice, α-MSH-LI increased to the same level as in control mice after UV-irradiation. Structural analysis revealed that the major α-MSH-LI product was ACTH(1–8). Furthermore, ACTH(1–8) competed with [125I]-α-MSH for receptor binding and increased melanin production via a melanocortin-1 receptor. These results suggested that melanin was produced through ACTH(1–8) after UV-irradiation. Trypsin-like enzymatic activity, which is responsible for POMC activation, increased after UV-irradiation and was identified as tryptase. In mast cell-deficient mice, which do not produce tryptase, α-MSH-LI levels were unchanged after UV-irradiation. The present study demonstrates the production of ACTH(1–8) from POMC by tryptase, which is a novel peptide-processing mechanism in the extracellular compartment of the skin.
Collapse
|