1
|
Ruan C, Shang T, Zhang S, Ru W, Yang Y, Shen Y. RIOK1: A Novel Oncogenic Driver in Hepatocellular Carcinoma. Cancer Med 2025; 14:e70597. [PMID: 39865406 PMCID: PMC11761428 DOI: 10.1002/cam4.70597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown. METHODS Changes in RIOK1 expression in HCC and patient prognosis were evaluated using HCC tissues and public databases. The functional role of RIOK1 in HCC was analyzed by RTCA assay, clonogenic assay, and flow cytometry in vitro, and by mouse tumor xenograft model in vivo. Potential mechanism studies were performed using multi-omics analysis, public database screening, and qRT-PCR assay. RESULTS In this study, we found that RIOK1 was elevated in HCC tissues and correlated with poor prognosis. Functional assays demonstrated that RIOK1 knockdown suppressed HCC cell proliferation, survival, and tumor growth in vivo, while RIOK1 overexpression enhanced these oncogenic phenotypes. Meanwhile, RIOK1 knockdown affected cell cycle progression and the expression of cyclin A2 and cyclin B1. Furthermore, integrated transcriptomic and proteomic analysis revealed that RIOK1 may promote HCC cell proliferation by affecting the cell cycle and DNA repair pathways. Moreover, we identified five potential effectors regulated by RIOK1: PMS1, SPDL1, RAD18, BARD1, and SMARCA5, which were highly expressed in HCC tissues and negatively correlated with the overall survival of HCC patients. CONCLUSION Our findings suggest that RIOK1 is a novel oncogenic driver that may serve as a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chunyan Ruan
- Centre for Medical ResearchNingbo No.2 HospitalNingboChina
| | - Tianyu Shang
- Guoke Ningbo Life Science and Health Industry Research InstituteNingboChina
| | - Sijia Zhang
- Centre for Medical ResearchNingbo No.2 HospitalNingboChina
| | - Wenhong Ru
- Centre for Medical ResearchNingbo No.2 HospitalNingboChina
| | - Yuefeng Yang
- Centre for Medical ResearchNingbo No.2 HospitalNingboChina
| | - Yi Shen
- Centre for Medical ResearchNingbo No.2 HospitalNingboChina
| |
Collapse
|
2
|
Underkofler KA, Ring KL. Updates in gynecologic care for individuals with lynch syndrome. Front Oncol 2023; 13:1127683. [PMID: 36937421 PMCID: PMC10014618 DOI: 10.3389/fonc.2023.1127683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Lynch syndrome is an autosomal dominant hereditary cancer syndrome caused by germline pathogenic variants (PVs) in DNA mismatch repair genes (MLH1, MSH2, PMS2, MSH6) or the EPCAM gene. It is estimated to affect 1 in 300 individuals and confers a lifetime risk of cancer of 10-90%, depending on the specific variant and type of cancer. Lynch syndrome is the most common cause of inherited colorectal cancer, but for women, endometrial cancer is more likely to be the sentinel cancer. There is also evidence that certain PVs causing Lynch syndrome confer an increased risk of ovarian cancer, while the risk of ovarian cancer in others is not well defined. Given this, it is essential for the practicing gynecologist and gynecologic oncologist to remain up to date on the latest techniques in identification and diagnosis of individuals with Lynch syndrome as well as evidence-based screening and risk reduction recommendations for those impacted. Furthermore, as the landscape of gynecologic cancer treatment shifts towards treatment based on molecular classification of tumors, knowledge of targeted therapies well-suited for mismatch repair deficient Lynch tumors will be crucial. The objective of this review is to highlight recent updates in the literature regarding identification and management of individuals with Lynch syndrome as it pertains to endometrial and ovarian cancers to allow gynecologic providers the opportunity to both prevent and identify Lynch-associated cancers earlier, thereby reducing the morbidity and mortality of the syndrome.
Collapse
Affiliation(s)
| | - Kari L. Ring
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Berg HF, Engerud H, Myrvold M, Lien HE, Hjelmeland ME, Halle MK, Woie K, Hoivik EA, Haldorsen IS, Vintermyr O, Trovik J, Krakstad C. Mismatch repair markers in preoperative and operative endometrial cancer samples; expression concordance and prognostic value. Br J Cancer 2023; 128:647-655. [PMID: 36482191 PMCID: PMC9938259 DOI: 10.1038/s41416-022-02063-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The endometrial cancer mismatch repair (MMR) deficient subgroup is defined by loss of MSH6, MSH2, PMS2 or MLH1. We compare MMR status in paired preoperative and operative samples and investigate the prognostic impact of differential MMR protein expression levels. METHODS Tumour lesions from 1058 endometrial cancer patients were immunohistochemically stained for MSH6, MSH2, PMS2 and MLH1. MMR protein expression was evaluated as loss or intact to determine MMR status, or by staining index to evaluate the prognostic potential of differential expression. Gene expression data from a local (n = 235) and the TCGA (n = 524) endometrial cancer cohorts was used for validation. RESULTS We identified a substantial agreement in MMR status between paired curettage and hysterectomy samples. Individual high expression of all four MMR markers associated with non-endometrioid subtype, and high MSH6 or MSH2 strongly associated with several aggressive disease characteristics including high tumour grade and FIGO stage, and for MSH6, with lymph node metastasis. In multivariate Cox analysis, MSH6 remained an independent prognostic marker, also within the endometrioid low-grade subgroup (P < 0.001). CONCLUSION We demonstrate that in addition to determine MMR status, MMR protein expression levels, particularly MSH6, may add prognostic information in endometrial cancer.
Collapse
Affiliation(s)
- Hege F Berg
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Hilde Engerud
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Myrvold
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Hilde E Lien
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Marta Espevold Hjelmeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Mari K Halle
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S Haldorsen
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olav Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jone Trovik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
Seborova K, Hlavac V, Holy P, Bjørklund SS, Fleischer T, Rob L, Hruda M, Bouda J, Mrhalova M, Allah MMKAO, Vodicka P, Fiala O, Soucek P, Kristensen VN, Vodickova L, Vaclavikova R. Complex molecular profile of DNA repair genes in epithelial ovarian carcinoma patients with different sensitivity to platinum-based therapy. Front Oncol 2022; 12:1016958. [PMID: 36531044 PMCID: PMC9755737 DOI: 10.3389/fonc.2022.1016958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2024] Open
Abstract
Epithelial ovarian carcinoma (EOC) is known for high mortality due to diagnosis at advanced stages and frequent therapy resistance. Previous findings suggested that the DNA repair system is involved in the therapeutic response of cancer patients and DNA repair genes are promising targets for novel therapies. This study aimed to address complex inter-relations among gene expression levels, methylation profiles, and somatic mutations in DNA repair genes and EOC prognosis and therapy resistance status. We found significant associations of DUT expression with the presence of peritoneal metastases in EOC patients. The high-grade serous EOC subtype was enriched with TP53 mutations compared to other subtypes. Furthermore, somatic mutations in XPC and PRKDC were significantly associated with worse overall survival of EOC patients, and higher FAAP20 expression in platinum-resistant than platinum-sensitive patients was observed. We found higher methylation of RAD50 in platinum-resistant than in platinum-sensitive patients. Somatic mutations in BRCA1 and RAD9A were significantly associated with higher RBBP8 methylation in platinum-sensitive compared to platinum-resistant EOC patients. In conclusion, we discovered associations of several candidate genes from the DNA repair pathway with the prognosis and platinum resistance status of EOC patients, which deserve further validation as potential predictive biomarkers.
Collapse
Affiliation(s)
- Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Viktor Hlavac
- Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Petr Holy
- Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Sunniva S. Bjørklund
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Marcela Mrhalova
- Department of Pathology and Molecular Medicine, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czechia
| | | | - Pavel Vodicka
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ondrej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine in Pilsen and University Hospital, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ludmila Vodickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
5
|
Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C, Pavlidis N. BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers (Basel) 2022; 14:cancers14163888. [PMID: 36010882 PMCID: PMC9405840 DOI: 10.3390/cancers14163888] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary DNA damage is one of the hallmarks of cancer. Epithelial ovarian cancer (EOC) —especially the high-grade serous subtype—harbors a defect in at least one DNA damage response (DDR) pathway. Defective DDR results from a variety of lesions affecting homologous recombination (HR) and nonhomologous end joining (NHEJ) for double strand breaks, base excision repair (BER), and nucleotide excision repair (NER) for single strand breaks and mismatch repair (MMR). Apart from the EOC, mutations in the DDR genes, such as BRCA1 and BRCA2, are common in prostate cancer as well. Among them, BRCA2 lesions are found in 12% of metastatic castration-resistant prostate cancers, but very rarely in primary prostate cancer. Better understanding of the DDR pathways is essential in order to optimize the therapeutic choices, and has led to the design of biomarker-driven clinical trials. Poly(ADP-ribose) polymerase (PARP) inhibitors are now a standard therapy for EOC patients, and more recently have been approved for the metastatic castration-resistant prostate cancer with alterations in DDR genes. They are particularly effective in tumours with HR deficiency. Abstract DNA damage repair (DDR) defects are common in different cancer types, and these alterations can be exploited therapeutically. Epithelial ovarian cancer (EOC) is among the tumours with the highest percentage of hereditary cases. BRCA1 and BRCA2 predisposing pathogenic variants (PVs) were the first to be associated with EOC, whereas additional genes comprising the homologous recombination (HR) pathway have been discovered with DNA sequencing technologies. The incidence of DDR alterations among patients with metastatic prostate cancer is much higher compared to those with localized disease. Genetic testing is playing an increasingly important role in the treatment of patients with ovarian and prostate cancer. The development of poly (ADP-ribose) polymerase (PARP) inhibitors offers a therapeutic strategy for patients with EOC. One of the mechanisms of PARP inhibitors exploits the concept of synthetic lethality. Tumours with BRCA1 or BRCA2 mutations are highly sensitive to PARP inhibitors. Moreover, the synthetic lethal interaction may be exploited beyond germline BRCA mutations in the context of HR deficiency, and this is an area of ongoing research. PARP inhibitors are in advanced stages of development as a treatment for metastatic castration-resistant prostate cancer. However, there is a major concern regarding the need to identify reliable biomarkers predictive of treatment response. In this review, we explore the mechanisms of DDR, the potential for genomic analysis of ovarian and prostate cancer, and therapeutics of PARP inhibitors, along with predictive biomarkers.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Michele Moschetta
- Novartis Institutes for BioMedical Research, CH 4033 Basel, Switzerland
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London E1 1BB, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Sola Adeleke
- High Dimensional Neurology Group, UCL Queen’s Square Institute of Neurology, London WC1N 3BG, UK
- Department of Oncology, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Cyrus Chargari
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Stefanou DT, Souliotis VL, Zakopoulou R, Liontos M, Bamias A. DNA Damage Repair: Predictor of Platinum Efficacy in Ovarian Cancer? Biomedicines 2021; 10:82. [PMID: 35052761 PMCID: PMC8773153 DOI: 10.3390/biomedicines10010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.
Collapse
Affiliation(s)
- Dimitra T. Stefanou
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
7
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore S, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Litzi TJ, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Robinson EL, Odunsi K, Sood AK, Casablanca Y, Darcy KM, Shriver CD, Petricoin EF, Rao UN, Maxwell GL, Conrads TP. Extensive three-dimensional intratumor proteomic heterogeneity revealed by multiregion sampling in high-grade serous ovarian tumor specimens. iScience 2021; 24:102757. [PMID: 34278265 PMCID: PMC8264160 DOI: 10.1016/j.isci.2021.102757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Enriched tumor epithelium, tumor-associated stroma, and whole tissue were collected by laser microdissection from thin sections across spatially separated levels of ten high-grade serous ovarian carcinomas (HGSOCs) and analyzed by mass spectrometry, reverse phase protein arrays, and RNA sequencing. Unsupervised analyses of protein abundance data revealed independent clustering of an enriched stroma and enriched tumor epithelium, with whole tumor tissue clustering driven by overall tumor "purity." Comparing these data to previously defined prognostic HGSOC molecular subtypes revealed protein and transcript expression from tumor epithelium correlated with the differentiated subtype, whereas stromal proteins (and transcripts) correlated with the mesenchymal subtype. Protein and transcript abundance in the tumor epithelium and stroma exhibited decreased correlation in samples collected just hundreds of microns apart. These data reveal substantial tumor microenvironment protein heterogeneity that directly bears on prognostic signatures, biomarker discovery, and cancer pathophysiology and underscore the need to enrich cellular subpopulations for expression profiling.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Sasha Makohon-Moore
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emma L. Robinson
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Uma N.M. Rao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| |
Collapse
|
8
|
Falzone L, Scandurra G, Lombardo V, Gattuso G, Lavoro A, Distefano AB, Scibilia G, Scollo P. A multidisciplinary approach remains the best strategy to improve and strengthen the management of ovarian cancer (Review). Int J Oncol 2021; 59:53. [PMID: 34132354 PMCID: PMC8208622 DOI: 10.3892/ijo.2021.5233] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer represents one of the most aggressive female tumors worldwide. Over the decades, the therapeutic options for the treatment of ovarian cancer have been improved significantly through the advancement of surgical techniques as well as the availability of novel effective drugs able to extend the life expectancy of patients. However, due to its clinical, biological and molecular complexity, ovarian cancer is still considered one of the most difficult tumors to manage. In this context, several studies have highlighted how a multidisciplinary approach to this pathology improves the prognosis and survival of patients with ovarian cancer. On these bases, the aim of the present review is to present recent advantages in the diagnosis, staging and treatment of ovarian cancer highlighting the benefits of a patient‑centered care approach and on the importance of a multidisciplinary team for the management of ovarian cancer.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | | | | | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | | | - Giuseppe Scibilia
- Unit of Obstetrics and Gynecology, Cannizzaro Hospital, I‑95126 Catania, Italy
| | - Paolo Scollo
- Unit of Obstetrics and Gynecology, Cannizzaro Hospital, I‑95126 Catania, Italy
| |
Collapse
|
9
|
Banerjee S, Raman K, Ravindran B. Sequence Neighborhoods Enable Reliable Prediction of Pathogenic Mutations in Cancer Genomes. Cancers (Basel) 2021; 13:cancers13102366. [PMID: 34068918 PMCID: PMC8156421 DOI: 10.3390/cancers13102366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer is caused by the accumulation of somatic mutations, some of which are responsible for the disease’s progression (drivers) while others are functionally neutral (passengers). Although several methods have been developed to distinguish between the two classes of mutations, very few have concentrated on using the neighborhood nucleotide sequences as potential discrimination features. In this study, we show that driver mutations’ neighborhood is significantly different from that of passengers. We further develop a novel machine learning tool, NBDriver, which is highly efficient at identifying pathogenic variants from multiple independent test datasets. Efficient and accurate identification of novel pathogenic variants from sequenced cancer genomes would help facilitate more effective therapies tailored to patients’ mutational profiles. Abstract Identifying cancer-causing mutations from sequenced cancer genomes hold much promise for targeted therapy and precision medicine. “Driver” mutations are primarily responsible for cancer progression, while “passengers” are functionally neutral. Although several computational approaches have been developed for distinguishing between driver and passenger mutations, very few have concentrated on using the raw nucleotide sequences surrounding a particular mutation as potential features for building predictive models. Using experimentally validated cancer mutation data in this study, we explored various string-based feature representation techniques to incorporate information on the neighborhood bases immediately 5′ and 3′ from each mutated position. Density estimation methods showed significant distributional differences between the neighborhood bases surrounding driver and passenger mutations. Binary classification models derived using repeated cross-validation experiments provided comparable performances across all window sizes. Integrating sequence features derived from raw nucleotide sequences with other genomic, structural, and evolutionary features resulted in the development of a pan-cancer mutation effect prediction tool, NBDriver, which was highly efficient in identifying pathogenic variants from five independent validation datasets. An ensemble predictor obtained by combining the predictions from NBDriver with three other commonly used driver prediction tools (FATHMM (cancer), CONDEL, and MutationTaster) significantly outperformed existing pan-cancer models in prioritizing a literature-curated list of driver and passenger mutations. Using the list of true positive mutation predictions derived from NBDriver, we identified a list of 138 known driver genes with functional evidence from various sources. Overall, our study underscores the efficacy of using raw nucleotide sequences as features to distinguish between driver and passenger mutations from sequenced cancer genomes.
Collapse
Affiliation(s)
- Shayantan Banerjee
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India;
- Initiative for Biological Systems Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India;
- Initiative for Biological Systems Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Correspondence: (K.R.); (B.R.)
| | - Balaraman Ravindran
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India;
- Initiative for Biological Systems Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Correspondence: (K.R.); (B.R.)
| |
Collapse
|
10
|
Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1703. [PMID: 33490215 PMCID: PMC7812194 DOI: 10.21037/atm-20-1422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer (EOC) is probably the tumor type with the highest percentage of hereditary cases observed, irrespectively of selection criteria. A fourth to a fifth of unselected epithelial EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA repair pathways. BRCA1 and BRCA2 predisposing PVs were the first to be associated to ovarian cancer, with the advent in DNA sequencing technologies leading to the discovery and association of additional genes which compromise the homologous recombination (HR) pathway. In addition, PVs genes involved in mismatch repair (MMR) pathway, account for 10–15% of hereditary EOC. The identification of women with HR deficient ovarian cancers has significant clinical implications concerning chemotherapy regimen planning and development and use of targeted therapies as well. More specifically, in patients with BRCA1/2 PVs or HR deficiency maintenance treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, either in the first line setting or in recurrent disease, improves the progression-free survival. But also patients with HR proficient tumors show a benefit. Therefore, genetic testing in ovarian cancer has a prognostic and predictive value. In this review, we discuss which ovarian cancer patients should be referred for genetic counseling and how to perform genetic testing. We also discuss the timing of genetic testing and its clinical relevance to BRCA status.
Collapse
Affiliation(s)
- Florentia Fostira
- InRaSTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
11
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
12
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
13
|
Thomas SN, Friedrich B, Schnaubelt M, Chan DW, Zhang H, Aebersold R. Orthogonal Proteomic Platforms and Their Implications for the Stable Classification of High-Grade Serous Ovarian Cancer Subtypes. iScience 2020; 23:101079. [PMID: 32534439 PMCID: PMC7298555 DOI: 10.1016/j.isci.2020.101079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/19/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) established a harmonized method for large-scale clinical proteomic studies. SWATH-MS, an instance of data-independent acquisition (DIA) proteomic methods, is an alternate proteomic approach. In this study, we used SWATH-MS to analyze remnant peptides from the original retrospective TCGA samples generated for the CPTAC ovarian cancer proteogenomic study. The SWATH-MS results recapitulated the confident identification of differentially expressed proteins in enriched pathways associated with the robust Mesenchymal high-grade serous ovarian cancer subtype and the homologous recombination deficient tumors. Hence, SWATH/DIA-MS presents a promising complementary or orthogonal alternative to the CPTAC proteomic workflow, with the advantages of simpler and faster workflows and lower sample consumption, albeit with shallower proteome coverage. In summary, both analytical methods are suitable to characterize clinical samples, providing proteomic workflow alternatives for cancer researchers depending on the context-specific goals of the studies. SWATH-MS and iTRAQ-DDA are used to classify 103 high-grade serous ovarian cancer SWATH-MS re-capitulates differentially expressed proteins in ovarian cancer subtypes SWATH-MS is a robust proteomic approach for large-scale clinical proteomic studies
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Michael Schnaubelt
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel W Chan
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Gzil A, Jaworski D, Antosik P, Zarębska I, Durślewicz J, Dominiak J, Kasperska A, Neska-Długosz I, Grzanka D, Szylberg Ł. The impact of TP53BP1 and MLH1 on metastatic capability in cases of locally advanced prostate cancer and their usefulness in clinical practice. Urol Oncol 2020; 38:600.e17-600.e26. [PMID: 32280038 DOI: 10.1016/j.urolonc.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lymph node (LN) metastases increase the risk of death from prostate cancer (CaP). The dysfunction of factors responsible for DNA injury detection may promote the evolution of localized primary tumors into the metastatic form. METHODS In this study, 52 cases of CaP were analyzed. The cases were divided into groups of CaP without metastases (N0), with metastases to the LNs (N+), and metastatic LN tissue. Immunohistochemical examinations were performed with antibodies against MDC1, TP53BP1, MLH1, MSH2, MSH6, and PMS2. RESULTS Statistical analysis showed lower nuclear expression of TP53BP1 in N+ cases than in N0 cases (P = 0.026). Nuclear TP53BP1 expression was lower in LN cases than in N+ cases (P = 0.019). Statistical analysis showed lower nuclear expression of MLH1 in N+ cases than in to N0 cases (P = 0.003). CONCLUSION Decreased expression of both MLH1 and TP53B1 were demonstrated in N+ cases of CaP. This observation could help to determine the risk of nodal metastasis, and to select appropriate treatment modalities for patients with locally advanced CaP.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland.
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Dominiak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof., Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
15
|
Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int J Mol Sci 2020; 21:E1128. [PMID: 32046255 PMCID: PMC7038038 DOI: 10.3390/ijms21031128] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Breast and ovarian cancers are some of the most common tumors in females, and the genetic predisposition is emerging as one of the key risk factors in the development of these two malignancies. BRCA1 and BRCA2 are the best-known genes associated with hereditary breast and ovarian cancer. However, recent advances in molecular techniques, Next-Generation Sequencing in particular, have led to the identification of many new genes involved in the predisposition to breast and/or ovarian cancer, with different penetrance estimates. TP53, PTEN, STK11, and CDH1 have been identified as high penetrance genes for the risk of breast/ovarian cancers. Besides them, PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C, RAD51D and mismatch repair genes have been recognized as moderate and low penetrance genes, along with other genes encoding proteins involved in the same pathways, possibly associated with breast/ovarian cancer risk. In this review, we summarize the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and the associated genetic disorders. Furthermore, we discuss the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Davide Angeli
- Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| |
Collapse
|
16
|
Gao X, Zhong S, Tong Y, Liang Y, Feng G, Zhou X, Zhang Z, Huang G. Alteration and prognostic values of collagen gene expression in patients with gastric cancer under different treatments. Pathol Res Pract 2020; 216:152831. [PMID: 32005407 DOI: 10.1016/j.prp.2020.152831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Collagen (COL) genes participate in tumor extracellular matrix (ECM)-receptor interactions and focal adhesion pathways, which play a crucial role in tumor invasion and metastasis. The prognostic value of COL genes has been shown for several malignancies. In the present study, we analyzed multiple microarray datasets using the Oncomine database to identify alterations of COL genes in gastric cancer (GC). Gene expression levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) in GC tissues and matched adjacent tissues. The prognostic value of differentially expressed COL genes in GC was evaluated by Kaplan-Meier survival analysis based on the complete mRNA transcriptomics data from The Cancer Genome Atlas (TCGA). We found that seven COL genes (COL1A2, COL4A1, COL4A2, COL6A1, COL6A2, COL6A3, and COL11A1) were elevated in GC. Among them, stepwise multivariate Cox regression was applied, and it was determined that COL4A1 and COL4A2 were signature and independent prognostic biomarkers in GC patients with obviously different overall survival (OS). High expression of COL4A1, COL4A2, COL6A1, COL6A2, and COL6A3 was correlated with poorer prognosis of GC patients treated by surgery only, while higher expression of COL4A1 and COL11A1 correlated with poorer survival of patients treated by 5-fluorouracil-based adjuvant therapy. Our results indicate that overexpression of COL genes might be utilized as novel prognostic markers for GC and assist with therapy selection.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Suhua Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yan Tong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yushan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guofei Feng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Zhe Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China.
| |
Collapse
|
17
|
Si W, Kang S, Sun H, Chen J, Cao S, Li Y. Genetic polymorphisms in hMSH2 and hMLH1 genes are associated with prognosis in epithelial ovarian cancer patients. Int J Gynecol Cancer 2019; 29:1148-1155. [PMID: 31273068 DOI: 10.1136/ijgc-2019-000368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE DNA mismatch repair deficiency is not only thought to promote tumorigenesis but is also suggested to be associated with platinum-based chemotherapy treatment. In this study, we investigated the effects of two genetic polymorphisms in the hMSH2 and hMLH1 genes on the risk of epithelial ovarian cancer and the clinical outcome of patients treated with platinum-based chemotherapy. METHODS A case-control study was performed in 536 epithelial ovarian cancer patients and 532 control women. Genotypes of two polymorphisms were determined by the polymerase chain reaction/ligase detection reaction method. Pearson Chi-square test was used to evaluate genotype distributions and allele frequencies in the patients and controls. Kaplan-Meier survival curves, and univariate and multivariate Cox regression models were used to analyze the effect of polymorphisms on patients' prognoses. RESULTS The genotype and allele frequencies of the rs2303428 and rs1800734 polymorphisms were not significantly different between the case and control groups. Compared with wild homozygous genotype, the presence of variant alleles (heterozygous and variant homozygous genotypes) did not affect the risk of developing epithelial ovarian cancer. However, survival analysis showed that the rs2303428 polymorphism was related to the prognosis of epithelial ovarian cancer patients. Compared with the TT genotype, patients carrying the C allele had a shorter progression-free survival during the 3- and 5-year follow-up (HR 1.41, 95% CI 1.07 to 1.87 and HR 1.56, 95% CI 1.12 to 2.16, respectively). For the rs1800734 polymorphism, the A allele may significantly increase patients' progression-free survival compared with the GG genotype in the 5-year follow-up (HR 0.66, 95% CI 0.44 to 0.98). CONCLUSION Our research suggests that genetic polymorphisms in hMSH2 and hMLH1 may indicate the clinical progression of epithelial ovarian cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Wengang Si
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Haiyan Sun
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Juan Chen
- Department of Obstetrics and Gynaecology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Shiru Cao
- Department of Molecular Biology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| |
Collapse
|
18
|
Determination of Mismatch Repair Status in Human Cancer and Its Clinical Significance: Does One Size Fit All? Adv Anat Pathol 2019; 26:270-279. [PMID: 30932972 DOI: 10.1097/pap.0000000000000234] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clinical management of cancers has progressed rapidly into the immunopathology era, with the unprecedented histology-agnostic approval of pembrolizumab in mismatch repair (MMR) deficient tumors. Despite the significant recent achievements in the treatment of these patients, however, the identification of clinically relevant subclasses of cancers based on the MMR status remains a major challenge. Many investigations have assessed the role of different diagnostic tools, including immunohistochemistry, microsatellite instability, and tumor mutational burden in both prognostic and therapeutic settings, with heterogenous results. To date, there are no tumor-specific guidelines or companion diagnostic tests for MMR assessment, and this analysis is often performed with locally developed methods. In this review, we provide a comprehensive overview of the current state-of-knowledge of MMR alterations in syndromic and sporadic tumors and discuss the available armamentarium for MMR pathologic characterization, from morphology to high-throughput molecular tools.
Collapse
|
19
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
20
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin Genet 2019; 97:54-63. [PMID: 31099061 PMCID: PMC7017781 DOI: 10.1111/cge.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the fourth most common cause of cancer-related death in women in the developed world, and one of the most heritable cancers. One of the most significant risk factors for epithelial ovarian cancer (EOC) is a family history of breast and/or ovarian cancer. Combined risk factors can be used in models to stratify risk of EOC, and aid in decisions regarding risk-reduction strategies. Germline pathogenic variants in EOC susceptibility genes including those involved in homologous recombination and mismatch repair pathways are present in approximately 22% to 25% of EOC. These genes are associated with an estimated lifetime risk of EOC of 13% to 60% for BRCA1 variants and 10% to 25% for BRCA2 variants, with lower risks associated with remaining genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) thought to explain an additional 6.4% of the familial risk of ovarian cancer, with 34 susceptibility loci identified to date. However, an unknown proportion of the genetic component of EOC risk remains unexplained. This review comprises an overview of individual genes and SNPs suspected to contribute to risk of EOC, and discusses use of a polygenic risk score to predict individual cancer risk more accurately.
Collapse
Affiliation(s)
- Nicola Flaum
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dafydd G Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Prevention Breast Cancer Centre and Nightingale Breast Screening Centre, University Hospital of South Manchester, Manchester, UK.,Department of Cancer Genetics, The Christie NHS Foundation Trust, Manchester, UK.,Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Herreros-Villanueva M, Chen CC, Tsai EM, Er TK. Endometriosis-associated ovarian cancer: What have we learned so far? Clin Chim Acta 2019; 493:63-72. [PMID: 30776361 DOI: 10.1016/j.cca.2019.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Endometriosis is defined as the presence of ectopic endometrial tissue outside of the uterine cavity, most commonly in the ovaries and peritoneum. It is a complex disease that is influenced by multiple factors. It is also a common gynecological disorder and affects approximately 10-15% of all women of reproductive age. Recent molecular and pathological studies indicate that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), particularly endometrioid and clear cell ovarian cancers. Although histological and epidemiological studies have demonstrated that endometriosis has a malignant potential, the molecular mechanism that underlies the malignant transformation of endometriosis is still controversial, and the precise mechanism of carcinogenesis must be fully elucidated. Currently, the development and improvement of a new sequencing technology, next-generation sequencing (NGS), has been increasingly relevant in cancer genomics research. Recently, NGS has also been utilized in clinical oncology to advance the personalized treatment of cancer. In addition, the sensitivity, speed, and cost make NGS a highly attractive platform compared to other sequencing modalities. For this reason, NGS may lead to the identification of driver mutations and underlying pathways associated with EAOC. Here, we present an overview of the molecular pathways that have led to the current opinions on the relationship between endometriosis and ovarian cancer.
Collapse
Affiliation(s)
- M Herreros-Villanueva
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Deparment of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan; Deparment of Biotechnology, Asia University, Taichung, Taiwan; Deparment of Nursing, Asia University, Taichung, Taiwan.
| |
Collapse
|