1
|
Lewis F, Ward MP, Saadeh FA, O'Gorman C, Maguire PJ, Beirne JP, Kamran W, Ibrahim E, Norris L, Kelly T, Hurley S, Henderson B, Kanjuga M, O'Driscoll L, Gately K, Oner E, Saini VM, Cadoo K, Martin C, O'Leary JJ, O'Toole SA. A pilot study evaluating the feasibility of enriching and detecting circulating tumour cells from peripheral and ovarian veins in rare epithelial ovarian carcinomas. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109721. [PMID: 40348476 DOI: 10.1016/j.ejso.2025.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Studies on circulating tumour cells (CTCs) in rare epithelial ovarian carcinomas (EOC) are limited, despite their potential as a minimally invasive biomarker for monitoring cancer progression and predicting outcomes. This pilot study aimed to assess the feasibility of enriching and detecting CTCs from both peripheral and ovarian vein blood samples in rare EOC subtypes. MATERIALS AND METHODS Blood samples were collected from the peripheral and ovarian veins of 20 patients with rare EOC. Among the 20 patients, 12 had early-stage disease (I-II), while 8 had advanced disease (III-IV). CTCs were enriched using the Parsortix® system and immunophenotyped via immunofluorescence targeting epithelial markers (EpCAM/pan-cytokeratin) and Hoechst for positive selection, and CD45 for negative selection. CTC status (positive versus negative) was correlated with clinicopathological data. RESULTS CTCs were successfully detected in 45 % (1-19 CTCs) of baseline peripheral samples and 55 % (1-4776 CTCs) of ovarian vein samples. CTC doublets and clusters were detected in ovarian vein samples (3/11), but not in peripheral samples (0/20). A higher proportion of deaths were observed in CTC+ patients compared to CTC- patients (p = 0.0088). CONCLUSION Here we demonstrate the feasibility of enriching and detecting CTCs from both peripheral and ovarian vein blood in patients with rare EOC. The higher CTC yield in ovarian vein blood suggests that tumour-draining blood may play a role in improving CTC detection. This pilot study paves the way for larger studies to investigate the prognostic utility of CTCs and refine their clinical value in these rare understudied EOC.
Collapse
Affiliation(s)
- Faye Lewis
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| | - Mark P Ward
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Feras Abu Saadeh
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Catherine O'Gorman
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Patrick J Maguire
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - James P Beirne
- Blackrock Health Hermitage Clinic, Old Lucan Road, Dublin, Ireland
| | - Waseem Kamran
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Elzahra Ibrahim
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Tanya Kelly
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Hurley
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Brian Henderson
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Marika Kanjuga
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kathy Gately
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Ezgi Oner
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Volga M Saini
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Karen Cadoo
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; The Haematology, Oncology and Palliative Care (HOPe) Directorate, St James's Hospital, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Sharon A O'Toole
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Zhang Y, Guan Y, Xiao X, Xu S, Zhu S, Cao D, Yu M, Peng P, Wang J, Wang Y, Yin R, Guo J, Gao W, Li P, Bai J, Gong Y, Xia X, Yi X, Yang L, Xiang Y. Circulating tumor DNA detection improves relapse prediction in epithelial ovarian cancer. BMC Cancer 2024; 24:1565. [PMID: 39710659 DOI: 10.1186/s12885-024-13222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a lethal form of gynecological malignancy. Some EOC patients experience relapse after standard primary debulking surgery (PDS) and adjuvant chemotherapy (ACT). Identifying molecular residual disease (MRD) by circulating tumor DNA (ctDNA) detection can timely signal the potential for relapse. However, research on the usage of ctDNA for MRD detection in EOC is limited. METHODS Fifty-one EOC patients who received standard PDS and ACT were included. Targeted sequencing based on a panel of 1021 cancer-related genes, along with further validation using Enrich-rare-mutation sequencing, was performed on tumor tissues acquired during PDS and on plasma samples collected before and after PDS/ACT to identify variants reflecting tumor signals. RESULTS Post-surgery MRD was associated with relapse (Log-rank p = 0.0006) and was identified as an independent prognostic factor (HR, 3.4; 95% CI, 1.02-11.42; p = 0.047). The negative and positive predictive values were 0.83 and 0.62 respectively. Additionally, post-surgery MRD outperformed CA125 in predicting relapse, and integrating both parameters could provide more accurate risk stratification. Post-ACT MRD detection identified the patients with ctDNA clearance who were still at risk of relapse. Furthermore, baseline ctDNA detection could help determine patients who are not suitable for further tests after surgery. CONCLUSIONS Post-surgery MRD is superior to CA125 in predicting relapse in EOC. Patients exhibiting transient ctDNA clearance, as evaluated by post-ACT MRD, may require longitudinal monitoring. Baseline ctDNA detection could help determine whether post-surgery ctDNA monitoring should be performed.
Collapse
MESH Headings
- Humans
- Female
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Carcinoma, Ovarian Epithelial/blood
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/surgery
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/blood
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/surgery
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Prognosis
- Cytoreduction Surgical Procedures
- Adult
- Chemotherapy, Adjuvant
Collapse
Affiliation(s)
- Ying Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Xiao
- Genomics Institute, Geneplus-Shenzhen, Shenzhen, 518118, China
| | - Sicong Xu
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Shan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Gynecology Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongjun Wang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Jianting Guo
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Wei Gao
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Pansong Li
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ling Yang
- Geneplus-Beijing Institute, Peking University Medical Industrial, 9th Floor, No.6 Building, Park, Zhongguancun Life Science Park, Beijing, China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lewis F, Beirne J, Henderson B, Norris L, Cadoo K, Kelly T, Martin C, Hurley S, Kanjuga M, O'Driscoll L, Gately K, Oner E, Saini VM, Brooks D, Selemidis S, Kamran W, Haughey N, Maguire P, O'Gorman C, Saadeh FA, Ward MP, O'Leary JJ, O'Toole SA. Unravelling the biological and clinical challenges of circulating tumour cells in epithelial ovarian carcinoma. Cancer Lett 2024; 605:217279. [PMID: 39341451 DOI: 10.1016/j.canlet.2024.217279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Epithelial ovarian carcinoma (EOC) is the eighth most common cancer in women and the leading cause of gynaecological cancer death, predominantly due to the absence of effective screening tools, advanced stage at diagnosis, and high rates of recurrence. Circulating tumour cells (CTCs), a rare subset of tumour cells that disseminate from a tumour and migrate into the circulation, play a pivotal role in the metastatic cascade, and therefore hold promise as biomarkers for disease monitoring and prognostication. Exploring CTCs from liquid biopsies is an appealing approach for research and clinical practice, given it is minimally invasive, facilitates serial sampling and enables the capture of the entire spectrum of cancer cells circulating in the blood. The prognostic utility of CTC enumeration has been FDA-approved for clinical use in metastatic breast, prostate, and colorectal cancers. However, the unique biology of EOC, discussed herein, compounds the detection and characterisation complexities already inherent in CTC research, consequently hindering progress towards clinical applications. The aim of this review is to provide an overview of both the biological and clinical challenges encountered in harnessing the power of CTCs in EOC.
Collapse
Affiliation(s)
- Faye Lewis
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - James Beirne
- Blackrock Health Hermitage Clinic, Old Lucan Road, Dublin, Ireland
| | - Brian Henderson
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Karen Cadoo
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; The Haematology, Oncology and Palliative Care (HOPe) Directorate, St James's Hospital, Dublin, Ireland
| | - Tanya Kelly
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Hurley
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Marika Kanjuga
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kathy Gately
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Ezgi Oner
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Volga M Saini
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Doug Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Victoria, 3083, Bundoora, Australia
| | - Waseem Kamran
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Niamh Haughey
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Patrick Maguire
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Catherine O'Gorman
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Feras Abu Saadeh
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Mark P Ward
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| | - John J O'Leary
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| | - Sharon A O'Toole
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
5
|
Obermayr E, Mohr T, Schuster E, Braicu EI, Taube E, Sehouli J, Vergote I, Pujade-Lauraine E, Ray-Coquard I, Harter P, Wimberger P, Joly-Lobbedez F, Mahner S, Moll UM, Concin N, Zeillinger R. Gene expression markers in peripheral blood and outcome in patients with platinum-resistant ovarian cancer: A study of the European GANNET53 consortium. Int J Cancer 2024; 155:1128-1138. [PMID: 38676430 DOI: 10.1002/ijc.34978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Disease progression is a major problem in ovarian cancer. There are very few treatment options for patients with platinum-resistant ovarian cancer (PROC), and therefore, these patients have a particularly poor prognosis. The aim of the present study was to identify markers for monitoring the response of 123 PROC patients enrolled in the Phase I/II GANNET53 clinical trial, which evaluated the efficacy of Ganetespib in combination with standard chemotherapy versus standard chemotherapy alone. In total, 474 blood samples were collected, comprising baseline samples taken before the first administration of the study drugs and serial samples taken during treatment until further disease progression (PD). After microfluidic enrichment, 27 gene transcripts were analyzed using quantitative polymerase chain reaction and their utility for disease monitoring was evaluated. At baseline, ERCC1 was associated with an increased risk of PD (hazard ratio [HR] 1.75, 95% confidence interval [CI]: 1.20-2.55; p = 0.005), while baseline CDH1 and ESR1 may have a risk-reducing effect (CDH1 HR 0.66, 95% CI: 0.46-0.96; p = 0.024; ESR1 HR 0.58, 95% CI: 0.39-0.86; p = 0.002). ERCC1 was observed significantly more often (72.7% vs. 53.9%; p = 0.032) and ESR1 significantly less frequently (59.1% vs. 78.3%; p = 0.018) in blood samples taken at radiologically confirmed PD than at controlled disease. At any time during treatment, ERCC1-presence and ESR1-absence were associated with short PFS and with higher odds of PD within 6 months (odds ratio 12.77, 95% CI: 4.08-39.97; p < 0.001). Our study demonstrates the clinical relevance of ESR1 and ERCC1 and may encourage the analysis of liquid biopsy samples for the management of PROC patients.
Collapse
Affiliation(s)
- Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus 3 Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Eliane Taube
- Institute of Pathology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus 3 Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Philipp Harter
- Department of Gyneacologic Oncology, Kliniken Essen Mitte, Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany and National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | | | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, AGO, Hamburg, Germany
| | - Ute Martha Moll
- Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Kuo YC, Chuang CH, Kuo HC, Lin CT, Chao A, Huang HJ, Wang HM, Hsieh JCH, Chou HH. Circulating tumor cells help differentiate benign ovarian lesions from cancer before surgery: A literature review and proof of concept study using flow cytometry with fluorescence imaging. Oncol Lett 2024; 27:234. [PMID: 38596263 PMCID: PMC11003220 DOI: 10.3892/ol.2024.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Current tools are insufficient for distinguishing patients with ovarian cancer from those with benign ovarian lesions before extensive surgery. The present study utilized a readily accessible platform employing a negative selection strategy, followed by flow cytometry, to enumerate circulating tumor cells (CTCs) in patients with ovarian cancer. These counts were compared with those from patients with benign ovarian lesions. CTC counts at baseline, before and after anticancer therapy, and across various clinical scenarios involving ovarian lesions were assessed. A negative-selection protocol we proposed was applied to patients with suspected ovarian cancer and prospectively utilized in those subsequently confirmed to have malignancy. The protocol was implemented before anticancer therapy and at months 3, 6, 9 and 12 post-treatment. A cut-off value for CTC number at 4.75 cells/ml was established to distinguish ovarian malignancy from benign lesions, with an area under the curve of 0.900 (P<0.001). In patients with ovarian cancer, multivariate Cox regression analysis revealed that baseline CTC counts and the decline in CTCs within the first three months post-therapy were significant predictors of prolonged progression-free survival. Additionally, baseline CTC counts independently prognosticated overall survival. CTC counts obtained with the proposed platform, used in the present study, suggest that pre-operative CTC testing may be able to differentiate between malignant and benign tumors. Moreover, CTC counts may indicate oncologic outcomes in patients with ovarian cancer who have undergone cancer therapies.
Collapse
Affiliation(s)
- Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chi-Hsi Chuang
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan, R.O.C
| | - Hsuan-Chih Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Cheng-Tao Lin
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Angel Chao
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Huei-Jean Huang
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Hsueh Chou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, R.O.C
| |
Collapse
|
7
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
8
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
9
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
10
|
Singh S, Kumar U. Diagnostic and prognostic value of circulating tumor cells in Indian women with suspected ovarian cancer. J Cancer Res Ther 2023; 19:S268-S271. [PMID: 37148003 DOI: 10.4103/jcrt.jcrt_1401_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Background "Liquid biopsy," where body fluids are screened for biomarkers, is gathering substantial research. We aimed to examine women with suspected ovarian cancer for the presence of circulating tumor cells (CTCs) and study its role in prediction of chemoresistance and survival. Methods Magnetic powder labeled monoclonal antibodies for epithelial cell adhesion molecule (EpCAM), mucin 1 cell surface associated, mucin 16 cell surface associated, or carbohydrate antigen 125 (CA125), were prepared according to the manufacturer's protocol. Expression of three ovarian cancer related genes was detected in CTCs using multiplex reverse transcriptase-polymerase chain reaction. CTCs and serum CA125 were measured in 100 patients with suspected ovarian cancer. Correlations with clinicopathological parameters and treatment were analyzed. Results CTCs were detected in 18/70 (25.7%) of women with malignancy compared to 0/30 (0.0%) in those with benign gynecologic diseases (P = 0.001). The sensitivity and specificity of the CTC test for predicting a malignant histology in pelvic masses were 27.7% (95% CI: 16.3%, 37.7%) and 100% (95% CI: 85.8%, 100%), respectively. The number of CTCs correlated with stage of ovarian cancer (P = 0.030). The presence of EpCAM + CTC at primary diagnosis in ovarian cancer was found to be an independent predictor of a poor progression free survival (HR, 3.3; 95% CI, 1.3-8.4; P = 0.010), overall survival (HR, 2.6; 95% CI,1.1-5.6; P = 0.019), and resistance to chemotherapy (OR 8.6; 95% CI, 1.8-43.7; P = 0.009). Conclusion Expression of EpCAM + CTC in ovarian cancer predicts platinum resistance and poor prognosis. This information could be further used in investigating anti-EpCAM-targeted therapies in ovarian cancer.
Collapse
Affiliation(s)
- Swarnima Singh
- Department of Biochemistry, Netaji Subhas Medical College and Hospital, Bihta, Patna, Bihar, India
| | - Uday Kumar
- Department of Biochemistry, Netaji Subhas Medical College and Hospital, Bihta, Patna, Bihar, India
| |
Collapse
|
11
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
12
|
Szczerba A, Śliwa A, Pieta PP, Jankowska A. The Role of Circulating Tumor Cells in Ovarian Cancer Dissemination. Cancers (Basel) 2022; 14:cancers14246030. [PMID: 36551515 PMCID: PMC9775737 DOI: 10.3390/cancers14246030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic ovarian cancer is the main reason for treatment failures and consequent deaths. Ovarian cancer is predisposed to intraperitoneal dissemination. In comparison to the transcoelomic route, distant metastasis via lymph vessels and blood is less common. The mechanisms related to these two modes of cancer spread are poorly understood. Nevertheless, the presence of tumor cells circulating in the blood of OC patients is a well-established phenomenon confirming the significant role of lymphatic and hematogenous metastasis. Thus, the detection of CTCs may provide a minimally invasive tool for the identification of ovarian cancer, monitoring disease progression, and treatment effectiveness. This review focuses on the biology of ovarian CTCs and the role they may play in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Pawel P. Pieta
- Department of Bionic and Experimental Medical Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
- Correspondence: ; Tel.: +48-618-547-190
| |
Collapse
|
13
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
15
|
He X, Li S, Ni Y, Jin M, Fu X. A meta-analysis of the prognostic value of circulating tumor cells in ovarian cancer. Am J Transl Res 2022; 14:3574-3583. [PMID: 35836887 PMCID: PMC9274549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the prognostic value of circulating tumor cells (CTCs) in ovarian cancer. METHODS Chinese databases (Wanfang, Cqvip, CNKI) and English databases (PubMed, Web of Science, Embase, SinoMed, Cochrane Library) were retrieved to collect relevant studies on CTCs evaluation of ovarian cancer prognosis. Data were extracted to analyze the effect of CTCs on the overall survival (OS) and progression-free survival (PFS) of patients, and a meta-analysis was performed using Stata 15 software. RESULTS Nineteen studies were included in this meta-analysis. The results showed that ovarian cancer patients with positive CTCs had a shorter OS and higher death rate, (HR=1.57, 95% CI: 1.30, 1.84), a shorter PFS and an increased risk of disease progression (HR=1.29, 95% CI: 1.04, 1.54) compared with patients with negative CTCs. Subgroup analysis showed that the HRs for death and disease progression were higher in CTCs-positive patients after treatment than those patients with negative CTCs (P<0.05). CONCLUSION CTCs detection has a high application value in the prognosis assessment of ovarian cancer.
Collapse
Affiliation(s)
- Xiaodan He
- No. 1 Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110801, Liaoning, China
| | - Shenjie Li
- No. 1 Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110801, Liaoning, China
| | - Yali Ni
- No. 1 Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110801, Liaoning, China
| | - Ming Jin
- No. 1 Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110801, Liaoning, China
| | - Xin Fu
- Department of Breast Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110801, Liaoning, China
| |
Collapse
|
16
|
Jou HJ, Ling PY, Hsu HT. Circulating tumor cells as a "real-time liquid biopsy": Recent advances and the application in ovarian cancer. Taiwan J Obstet Gynecol 2022; 61:34-39. [PMID: 35181043 DOI: 10.1016/j.tjog.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 10/19/2022] Open
Abstract
Even with the latest advances in technology, the treatment of ovarian cancer remains a big challenge because it is typically diagnosed at advanced stage, is prone to early relapse in spite of aggressive treatment and has an extremely poor prognosis. Circulating tumor cells (CTCs) can be used as a non-invasive "real-time liquid biopsy", which has shown the value of diagnosis, assessment of prognosis and chemoresistance, and detection of small residual tumors on ovarian cancer. This review article provides an overview on recent research on CTCs in ovarian cancer, with special focus on the clinical application of CTC tests.
Collapse
Affiliation(s)
- Hei-Jen Jou
- Department of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; School of Nursing, National Taipei University of Nursing and Health Science, Taipei, Taiwan.
| | - Pei-Ying Ling
- Department of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Heng-Tung Hsu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
17
|
Yang J, Cheng S, Zhang N, Jin Y, Wang Y. Liquid biopsy for ovarian cancer using circulating tumor cells: Recent advances on the path to precision medicine. Biochim Biophys Acta Rev Cancer 2021; 1877:188660. [PMID: 34800546 DOI: 10.1016/j.bbcan.2021.188660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignance worldwide. Considering its metastasis nature, oncologists shift focus towards circulating tumor cells (CTCs), a progenitor that originates from primary tumor and undergoes morphologic/genetic alterations to enter bloodstream and invade nearby tissues. Mountains of evidence suggested that CTCs could provide deep insights into genomic, transcriptomic, and proteomic profiling of OC metastatic cascades. To pave the way for precision medicine, researchers exert great efforts to develop isolation/detection methodologies and construct CTCs-derived propagation platforms, including traditional cell cultures, patient-derived xenografts (PDXs), and organoids. From bench to bedside, CTCs provide minimally-invasive means to inform early diagnosis, predict prognosis, and guide treatment decisions. This review shined a spotlight on biology, detection technologies, and propagation platforms for CTCs. Of note, we also reviewed clinical applications of CTCs in liquid biopsy-based personalized cancer treatment and critically appraised limitations in routine clinical practice on the path to precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
18
|
Openshaw MR, McVeigh TP. Non-invasive Technology Advances in Cancer-A Review of the Advances in the Liquid Biopsy for Endometrial and Ovarian Cancers. Front Digit Health 2021; 2:573010. [PMID: 34713045 PMCID: PMC8521848 DOI: 10.3389/fdgth.2020.573010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Improving cancer survival rates globally requires improvements in disease detection and monitoring, with the aim of improving early diagnosis and prediction of disease relapse. Traditional means of detecting and monitoring cancers rely largely on imaging and, where possible, blood-based protein biomarkers, many of which are non-specific. Treatments are being improved by identification of inherited and acquired genomic aberrations in tumors, some of which can be targeted by newly developed therapeutic interventions. Treatment of gynecological malignancy is progressively moving toward personalized therapy, as exemplified by application of PARP-inhibition for patients with BRCA-deficient tubo-ovarian cancers, or checkpoint inhibition in patients with mismatch repair-deficient disease. However, the more recent discovery of a group of biomarkers described under the umbrella term of “liquid biopsy” promises significant improvement in our ability to detect and monitor cancers. The term “liquid biopsy” is used to describe an array of tumor-derived material found in blood plasma and other bodily fluids such as ascites, pleural fluid, saliva, and urine. It includes circulating tumors cells (CTCs), circulating nucleic acids including DNA, messenger RNA and micro RNAs, and extracellular vesicles (EVs). In this review, we discuss recent advancements in liquid biopsy for biomarker detection to help in diagnosis, prognosis, and planning of treatment of ovarian and endometrial cancer.
Collapse
Affiliation(s)
- Mark R Openshaw
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Terri P McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Záveský L, Jandáková E, Weinberger V, Hanzíková V, Slanař O, Kohoutová M. Ascites in ovarian cancer: MicroRNA deregulations and their potential roles in ovarian carcinogenesis. Cancer Biomark 2021; 33:1-16. [PMID: 34511487 DOI: 10.3233/cbm-210219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian cancer comprises the most lethal gynecologic malignancy and is accompanied by the high potential for the incidence of metastasis, recurrence and chemotherapy resistance, often associated with a formation of ascitic fluid. The differentially expressed ascites-derived microRNAs may be linked to ovarian carcinogenesis. The article focuses on a number of miRNAs that share a common expression pattern as determined by independent studies using ascites samples and with regard to their functions and outcomes in experimental and clinical investigations.Let-7b and miR-143 have featured as tumor suppressors in ovarian cancer, which is in line with data on other types of cancer. Although two miRNAs, i.e. miR-26a-5p and miR-145-5p, act principally as tumor suppressor miRNAs, they occasionally exhibit oncogenic roles. The performance of miR-95-3p, upregulated in ascites, is open to debate given the current lack of supportive data on ovarian cancer; however, data on other cancers indicates its probable oncogenic role. Different findings have been reported for miR-182-5p and miR-200c-3p; in addition to their presumed oncogenic roles, contrasting findings have indicated their ambivalent functions. Further research is required for the identification and evaluation of the potential of specific miRNAs in the diagnosis, prediction, treatment and outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic.,Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Veronika Hanzíková
- Faculty Transfusion Center, General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| |
Collapse
|
20
|
The Detection of Stem-Like Circulating Tumor Cells Could Increase the Clinical Applicability of Liquid Biopsy in Ovarian Cancer. Life (Basel) 2021; 11:life11080815. [PMID: 34440558 PMCID: PMC8401116 DOI: 10.3390/life11080815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Stem properties allow circulating tumor cells (CTCs) to survive in the bloodstream and initiate cancer progression. We aimed to assess the numbers of stem-like CTCs in patients with ovarian cancer (OC) before treatment and during first-line chemotherapy (CT). Flow cytometry was performed (Cytoflex S (Beckman Coulter, CA, USA)) using antibodies against CD45; epithelial markers EpCAM and cytokeratin (CK) 8,18; mesenchymal vimentin (vim); and stem-like CD44, CD133 and ALDH. This study included 38 stage I-IV OC patients (median age 66 (Q1-Q3 53-70)). The CK+vim- counts were higher (p = 0.012) and the CD133+ALDHhigh counts were lower (p = 0.010) before treatment in the neoadjuvant CT group than in the adjuvant group. The patients with ascites had more CK+vim- cells before treatment (p = 0.009) and less EpCAM-vim+ cells during treatment (p = 0.018) than the patients without ascites. All the CTC counts did not differ significantly in paired samples. Correlations were found between the CK-vim+ and CD133+ALDHhigh (r = 0.505, p = 0.027) and EpCAM-vim+ and ALDHhigh (r = 0.597, p = 0.004) cells before but not during treatment. Multivariate Cox regression analysis showed that progression-free survival was longer with the presence of surgical treatment (HR 0.06 95% CI 0.01-0.48, p = 0.009) and fewer CD133+ALDHveryhigh cells (HR 1.06 95% CI 1.02-1.12, p = 0.010). Thus, CD133+ALDH+ CTCs have the greatest prognostic potential in OC among the phenotypes studied.
Collapse
|
21
|
O GS, R DD, V AT, I AI, P GT. The Plasticity of Circulating Tumor Cells in Ovarian Cancer During Platinum-containing Chemotherapy. Curr Cancer Drug Targets 2021; 21:965-974. [PMID: 34288839 DOI: 10.2174/1568009621666210720141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) are a potential source of metastases and relapses. The data on the ovarian cancer (OC) CTCs molecular characteristics are limited. OBJECTIVE To assess the TGFβ, CXCL2, VEGFA and ERCC1 expression in two OC CTC subpopulations before and during chemotherapy (CT), and its relation to clinical characteristics. METHODS Two CTCs subpopulations (EpCAM+CK18+E-cadherin+; EpCAM+CK18+Vimentin+) were enriched using immunomagnetic separation before treatment and after 3 cycles of platinum-containing CT. Expression of mRNA was assessed using RT-qPCR. RESULTS The study included 31 I-IV stage OC patients. During CT, TGFβ levels increased in both fractions (p=0.054) compared with the initial levels. ERCC1 expression in E-cadherin+ CTCs was higher during neoadjuvant than adjuvant CT (p=0.004). CXCL2 level in E-cadherin+ CTCs increased (p=0.038) during neoadjuvant CT compared with the initial. TGF-β expression in vimentin+ CTCs during CT was negatively correlated to disease stage (p=0.003). Principal component analysis before CT revealed a component combining VEGFA, TGFβ, CXCL2, and a component with ERCC1 and VEGFA; during CT, component 1 contained ERCC1 and VEGFA, component 2 - TGFβ and CXCL2 in both fractions. Increased ERCC1 expression in E-cadherin+ CTCs during CT was associated with decreased progression-free survival (PFS) (HR 1.11 (95% CI 1.03-1.21, p=0.009) in multivariate analysis. CONCLUSION EpCAM+ OC CTCs are phenotypically heterogeneous, which may reflect variability in their metastatic potential. CT changes the molecular characteristics of CTCs. Expression of TGFβ in EpCAM+ CTCs increases during CT. High ERCC1 expression in EpCAM+CK18+E-cadherin+ CTCs during CT is associated with decreased PFS in OC.
Collapse
Affiliation(s)
- Gening Snezhanna O
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Dolgova Dinara R
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Abakumova Tatyana V
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| | - Antoneeva Inna I
- Department of Gynecology, Regional Clinical Oncology Center, Ulyanovsk, Russian Federation
| | - Gening Tatyana P
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian Federation
| |
Collapse
|
22
|
Circulating Tumor Cells from Enumeration to Analysis: Current Challenges and Future Opportunities. Cancers (Basel) 2021; 13:cancers13112723. [PMID: 34072844 PMCID: PMC8198976 DOI: 10.3390/cancers13112723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary With estimated numbers of 1–10 per mL of blood, circulating tumor cells (CTCs) are extremely rare compared to white (a few million) or red (billions) blood cells. Given their critical role in metastasis, CTCs have enormous potential as a biomarker for cancer diagnosis, prognosis, and monitoring of treatment response. There are now efforts to characterize CTCs more precisely through molecular and functional analysis, expanding the CTC effort from one of diagnosis and prognosis to now include the use of CTCs to specifically target cancers and discover therapeutic solutions, establishing CTCs as critical in precision medicine. This article summarizes current knowledge about CTC isolation technologies and discusses the translational benefits of different types of downstream analysis approaches, including single-CTC analysis, ex vivo expansion of CTCs, and characterization of CTC-associated cells. Abstract Circulating tumor cells (CTCs) have been recognized as a major contributor to distant metastasis. Their unique role as metastatic seeds renders them a potential marker in the circulation for early cancer diagnosis and prognosis as well as monitoring of therapeutic response. In the past decade, researchers mainly focused on the development of isolation techniques for improving the recovery rate and purity of CTCs. These developed techniques have significantly increased the detection sensitivity and enumeration accuracy of CTCs. Currently, significant efforts have been made toward comprehensive molecular characterization, ex vivo expansion of CTCs, and understanding the interactions between CTCs and their associated cells (e.g., immune cells and stromal cells) in the circulation. In this review, we briefly summarize existing CTC isolation technologies and specifically focus on advances in downstream analysis of CTCs and their potential applications in precision medicine. We also discuss the current challenges and future opportunities in their clinical utilization.
Collapse
|
23
|
An Automatic Platform Based on Nanostructured Microfluidic Chip for Isolating and Identification of Circulating Tumor Cells. MICROMACHINES 2021; 12:mi12050473. [PMID: 33919456 PMCID: PMC8143501 DOI: 10.3390/mi12050473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Circulating tumor cell (CTC) test is currently used as a biomarker in cancer treatment. Unfortunately, the poor reproducibility and limited sensitivity with the CTC detection have limited its potential impact on clinical application. A reliable automated CTC detection system is therefore needed. We have designed an automated microfluidic chip-based CTC detection system and hypothesize this novel system can reliably detect CTC from clinical specimens. SKOV3 ovarian cancer cell line was used first to test the reliability of our system. Ten healthy volunteers, 5 patients with benign ovarian tumors, and 8 patients with epithelial ovarian cancer (EOC) were recruited to validate the CTC capturing efficacy in the peripheral blood. The capture rates for spiking test in SKOV3 cells were 48.3% and 89.6% by using anti-EpCAM antibody alone and a combination of anti-EpCAM antibody and anti-N-cadherin antibody, respectively. The system was sensitive to detection of low cell count and showed a linear relationship with the cell counts in our test range. The sensitivity and specificity were 62.5% and 100% when CTC was used as a biomarker for EOC. Our results demonstrated that this automatic CTC platform has a high capture rate and is feasible for detection of CTCs in EOC.
Collapse
|
24
|
Klotz DM, Link T, Wimberger P, Kuhlmann JD. Prognostic relevance of longitudinal HGF levels in serum of patients with ovarian cancer. Mol Oncol 2021; 15:3626-3638. [PMID: 33738970 PMCID: PMC8637578 DOI: 10.1002/1878-0261.12949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pleiotropic protein hepatocyte growth factor (HGF) is the only known ligand of the tyrosine kinase mesenchymal–epithelial transition (cMET) receptor. The HGF/cMET pathway mediates invasion and migration of ovarian cancer cells, and upregulation of HGF/cMET pathway components has been associated with poor prognosis. This study investigated the clinical relevance of circulating HGF in serum of patients with ovarian cancer. Serum HGF (sHGF) was determined by enzyme‐linked immunosorbent assay in a total of 471 serum samples from 82 healthy controls and 113 patients with ovarian cancer (88.5% with ≥ FIGO III). Patient samples were collected at primary diagnosis and at four follow‐up time points throughout treatment and at disease recurrence. Patients with ovarian cancer showed elevated median sHGF levels at primary diagnosis, and sHGF levels transiently increased after surgery and normalized in the course of chemotherapy, even dropping below initial baseline. Higher levels of sHGF were an independent predictor for shorter overall survival (OS) (a) at primary diagnosis (HR = 0.41, 95% CI: 0.22–0.78, P = 0.006), (b) at longitudinal follow‐up time points (after surgery and before/during/after chemotherapy), (c) along the patients’ individual dynamics (HR = 0.21, 95% CI: 0.07–0.63, P = 0.005), and (d) among a subgroup analysis of patients with BRCA1/2 wild‐type ovarian cancer. This is the first study proposing sHGF as an independent prognostic biomarker for ovarian cancer at primary diagnosis and in the course of platinum‐based chemotherapy, irrespective of the postoperative residual disease after surgical debulking. sHGF could be implemented into clinical diagnostics as a CA125 auxiliary tumor marker for individualized prognosis stratification and sHGF‐guided therapy monitoring.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
25
|
Huang C, Lin X, He J, Liu N. Enrichment and detection method for the prognostic value of circulating tumor cells in ovarian cancer: A meta-analysis. Gynecol Oncol 2021; 161:613-620. [PMID: 33674144 DOI: 10.1016/j.ygyno.2021.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Recent studies have revealed that circulating tumor cells (CTCs) might predict bad prognosis, but the results were conflicting. Sampling time, treatment, enrichment method and detection method also varied. We aimed to evaluate whether patients with CTCs in peripheral blood have bad survival outcomes with consideration of the above four aspects. METHODS Relevant studies were searched on Pubmed, Embase and the Cochrane Library. Studies of CTCs involving survival data available were identified for a systematic review and meta-analysis. HRs and 95% CIs for PFS and OS were extracted directly or from the Kaplan-Meier survival curves by the Engauge Digitizer v4.1. Subgroup analyses were performed to evaluate the effect of sampling time, treatment, enrichment method and detection method. RESULTS Two clinical trials and thirteen retrospective studies with a total of 1285 patients were included. CTCs significantly correlated with OS (HR = 1.77, 95%CI:1.42-2.21, p < 0.00001 and PFS (HR = 1.53, 95%CI:1.26-1.86, p < 0.0001). Subgroup analyses showed that CTCs were significant associated with OS in the "Pre-therapy" subgroup (HR = 1.79, 95%CI:1.43-2.24, p < 0.00001), the "Surgery" group (HR = 1.82, 95%CI:1.42-2.33, p < 0.00001), and the "RT-PCR"subgroup (HR = 2.29, 95%CI:1.53-3.42, p < 0.0001). While for enrichment method, CTCs significantly correlated with OS in the"Physical method" subgroup (HR = 1.94, 95%CI:1.21-3.09, p = 0.006) and the "Immunological method" subgroup (HR = 1.84, 95%CI:1.37-2.48, p < 0.0001). CONCLUSIONS The presence of CTCs prior to the treatment indicated worse OS and PFS and CTCs might be predictive biomarker for ovarian cancer patients . CTCs detected using RT-PCR seem to be associated with poorer OS and PFS in patients with ovarian cancer.
Collapse
Affiliation(s)
- Chengying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Lin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinmei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Takakura M, Takata E, Sasagawa T. A Novel Liquid Biopsy Strategy to Detect Small Amounts of Cancer Cells Using Cancer-Specific Replication Adenoviruses. J Clin Med 2020; 9:jcm9124044. [PMID: 33327605 PMCID: PMC7765046 DOI: 10.3390/jcm9124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising source of clinical and biological cancer information and can be a material for liquid biopsy. However, detecting and capturing these cells remains a challenge. Various biological factors (e.g., cell surface proteins, cell size, deformability, or dielectrophoresis) have been applied to detect CTCs. Cancer cells dramatically change their characteristics during tumorigenesis and metastasis. Hence, defining a cell as malignant using such a parameter is difficult. Moreover, immortality is an essential characteristic of cancer cells. Telomerase elongates telomeres and plays a critical role in cellular immortality and is specifically activated in cancer cells. Thus, the activation of telomerase can be a good fingerprint for cancer cells. Telomerase cannot be recognized by antibodies in living cells because it is a nuclear enzyme. Therefore, telomerase-specific replication adenovirus, which expresses the green fluorescent protein, has been applied to detect CTCs. This review explores the overview of this novel technology and its application in gynecological cancers.
Collapse
|
27
|
Bhardwaj BK, Thankachan S, Venkatesh T, Suresh PS. Liquid biopsy in ovarian cancer. Clin Chim Acta 2020; 510:28-34. [PMID: 32622965 DOI: 10.1016/j.cca.2020.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is typically diagnosed at an advanced stage and poses a significant challenge to treatment and recovery. Relapsed ovarian cancer and chemoresistance of ovarian tumor cells are other clinical challenges. Liquid biopsy is an essential non-invasive diagnostic test that evaluates circulating tumor cells and tumor DNA, as well as other blood markers that may be useful in guiding precision medicine. Although liquid biopsy is not a routinely used diagnostic test, the potential applications in the diagnosis and prognosis in ovarian cancer are rapidly growing. This review explores recent studies examining the clinical potential of circulating tumor cells, cell-free microRNA, exosomes, tumor DNA, and other analytes as a source of liquid biopsy biomarkers in ovarian cancer diagnosis, prognosis and response to treatment.
Collapse
Affiliation(s)
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Thejaswini Venkatesh
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod 671316, Kerala, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|