1
|
Sysoev YI, Shkorbatova PY, Prikhodko VA, Kalinina DS, Bazhenova EY, Okovityi SV, Bader M, Alenina N, Gainetdinov RR, Musienko PE. Central Serotonin Deficiency Impairs Recovery of Sensorimotor Abilities After Spinal Cord Injury in Rats. Int J Mol Sci 2025; 26:2761. [PMID: 40141402 PMCID: PMC11942851 DOI: 10.3390/ijms26062761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Spinal cord injury (SCI) affects millions of people worldwide. One of the main challenges of rehabilitation strategies is re-training and enhancing the plasticity of the spinal circuitry that was preserved or rebuilt after the injury. The serotonergic system appears to be crucial in these processes, since recent studies have reported the capability of serotonergic (5-HT) axons for axonal sprouting and regeneration in response to central nervous system (CNS) trauma or neurodegeneration. We took advantage of tryptophan hydroxylase 2 knockout (TPH2 KO) rats, lacking serotonin specifically in the brain and spinal cord, to study the role of the serotonergic system in the recovery of sensorimotor function after SCI. In the present work, we compared the rate of sensorimotor recovery of TPH2 KO and wild-type (WT) female rats after SCI (lateral hemisection at the T8 spinal level). SCI caused severe motor impairments in the ipsilateral left hindlimb, the most pronounced in the first week after the hemisection with gradual functional recovery during the following 3 weeks. The results demonstrate that TPH2 KO rats have less potential to recover motor functions since the degree of sensorimotor deficit in the tapered beam walking test (TBW) and ladder walking test (LW) was significantly higher in the TPH2 KO group in comparison to the WT animals in the 3rd and 4th weeks after SCI. The recovery dynamics of the hindlimb muscle tone and voluntary movements was in agreement with the restoration of motor performance in TBW and LW. Compound muscle action potential analysis in the gastrocnemius (GM) and tibialis (TA) muscles of both hindlimbs after electrical stimulation of the sciatic nerve or lumbar region (L5-L6) of the spinal cord indicated slower recovery of sensorimotor pathways in the TPH2 KO group versus their WT counterparts. In general, the observed results confirm the significance of central serotonergic mechanisms in the recovery of sensorimotor functions in rats and the relevance of the TPH2 KO rat model in studying the role of the 5-HT system in neurorehabilitation.
Collapse
Affiliation(s)
- Yuri I. Sysoev
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
| | - Polina Y. Shkorbatova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Daria S. Kalinina
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint Petersburg 194223, Russia
| | - Elena Y. Bazhenova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Pavel E. Musienko
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Federal Center of Brain Research and Neurotechnologies, Moscow 199330, Russia
- Life Improvement by Future Technologies Center, Moscow 143025, Russia
| |
Collapse
|
2
|
Moskaliuk VS, Kozhemyakina RV, Khomenko TM, Volcho KP, Salakhutdinov NF, Kulikov AV, Naumenko VS, Kulikova EA. Key Enzymes of the Serotonergic System - Tryptophan Hydroxylase 2 and Monoamine Oxidase A - In the Brain of Rats Selectively Bred for a Reaction toward Humans: Effects of Benzopentathiepin TC-2153. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1109-1121. [PMID: 38981704 DOI: 10.1134/s0006297924060105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/11/2024]
Abstract
At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.
Collapse
Affiliation(s)
- Vitalii S Moskaliuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Rimma V Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatyana M Khomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Konstantin P Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexander V Kulikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elizabeth A Kulikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Liu X, Li S, Yu Y, Hu J, Xu Y. Changes in Plasma TPH2, GDNF, Trk-b, BDNF, and proBDNF in People Who Died by Suicide. Brain Sci 2023; 13:1096. [PMID: 37509026 PMCID: PMC10377529 DOI: 10.3390/brainsci13071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have shown that neuropeptides and neurotrophic factors may be involved in the pathophysiological mechanisms of suicide. However, the current research on this aspect is still insufficient. Our study aimed to explore the biological patterns of suicide deaths, including levels of BDNF, proBDNF, BDNF/proBDNF, Trk-b, GDNF, and TPH2. The researchers selected 25 normal control patients matched by age with 30 suicide deaths. We used enzyme-linked immunosorbent assays to detect the levels of BDNF, proBDNF, BDNF/proBDNF, Trk-b, GDNF, and TPH2 in the plasma of suicide and control subjects. proBDNF, BDNF/proBDNF, Trk-b, GDNF, and TPH2 levels are shown as the median (25th-75th percentile). BDNF levels are shown as the mean (standard error of the mean). (1) The levels of plasma TPH2 and proBDNF in people who died by suicide were significantly higher than those in the control group. (2) The plasma levels of GDNF and BDNF/proBDNF in the suicide group were obviously lower than those in the control group. (3) There was no significant difference in plasma BDNF or Trk-b concentrations between the suicide group and the control group.Plasma TPH2, GDNF, and proBDNF levels are related to suicide. Plasma neurotrophic factor markers may predict suicide risk.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yueran Yu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou 310003, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zijingang Campus of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zijingang Campus of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| |
Collapse
|
4
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Rojas M, Ariza D, Ortega Á, Riaño-Garzón ME, Chávez-Castillo M, Pérez JL, Cudris-Torres L, Bautista MJ, Medina-Ortiz O, Rojas-Quintero J, Bermúdez V. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine-Immune Therapeutic Mechanisms and Clinical Implications. Int J Mol Sci 2022; 23:6918. [PMID: 35805923 PMCID: PMC9266340 DOI: 10.3390/ijms23136918] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
Electroconvulsive therapy (ECT) is based on conducting an electrical current through the brain to stimulate it and trigger generalized convulsion activity with therapeutic ends. Due to the efficient use of ECT during the last years, interest in the molecular bases involved in its mechanism of action has increased. Therefore, different hypotheses have emerged. In this context, the goal of this review is to describe the neurobiological, endocrine, and immune mechanisms involved in ECT and to detail its clinical efficacy in different psychiatric pathologies. This is a narrative review in which an extensive literature search was performed on the Scopus, Embase, PubMed, ISI Web of Science, and Google Scholar databases from inception to February 2022. The terms "electroconvulsive therapy", "neurobiological effects of electroconvulsive therapy", "molecular mechanisms in electroconvulsive therapy", and "psychiatric disorders" were among the keywords used in the search. The mechanisms of action of ECT include neurobiological function modifications and endocrine and immune changes that take place after ECT. Among these, the decrease in neural network hyperconnectivity, neuroinflammation reduction, neurogenesis promotion, modulation of different monoaminergic systems, and hypothalamus-hypophysis-adrenal and hypothalamus-hypophysis-thyroid axes normalization have been described. The majority of these elements are physiopathological components and therapeutic targets in different mental illnesses. Likewise, the use of ECT has recently expanded, with evidence of its use for other pathologies, such as Parkinson's disease psychosis, malignant neuroleptic syndrome, post-traumatic stress disorder, and obsessive-compulsive disorder. In conclusion, there is sufficient evidence to support the efficacy of ECT in the treatment of different psychiatric disorders, potentially through immune, endocrine, and neurobiological systems.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Manuel E. Riaño-Garzón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
- Psychiatric Hospital of Maracaibo, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina, Valledupar 200001, Colombia;
| | - María Judith Bautista
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Oscar Medina-Ortiz
- Facultad de Medicina, Universidad de Santander, Cúcuta 540003, Colombia;
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 77054, USA;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
6
|
Sidorova M, Kronenberg G, Matthes S, Petermann M, Hellweg R, Tuchina O, Bader M, Alenina N, Klempin F. Enduring Effects of Conditional Brain Serotonin Knockdown, Followed by Recovery, on Adult Rat Neurogenesis and Behavior. Cells 2021; 10:3240. [PMID: 34831469 PMCID: PMC8618971 DOI: 10.3390/cells10113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/31/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a crucial signal in the neurogenic niche of the hippocampus, where it is involved in antidepressant action. Here, we utilized a new transgenic rat model (TetO-shTPH2), where brain 5-HT levels can be acutely altered based on doxycycline (Dox)-inducible shRNA-expression. On/off stimulations of 5-HT concentrations might uniquely mirror the clinical course of major depression (e.g., relapse after discontinuation of antidepressants) in humans. Specifically, we measured 5-HT levels, and 5-HT metabolite 5-HIAA, in various brain areas following acute tryptophan hydroxylase 2 (Tph2) knockdown, and replenishment, and examined behavior and proliferation and survival of newly generated cells in the dentate gyrus. We found that decreased 5-HT levels in the prefrontal cortex and raphe nuclei, but not in the hippocampus of TetO-shTPH2 rats, lead to an enduring anxious phenotype. Surprisingly, the reduction in 5-HT synthesis is associated with increased numbers of BrdU-labeled cells in the dentate gyrus. At 3 weeks of Tph2 replenishment, 5-HT levels return to baseline and survival of newly generated cells is unaffected. We speculate that the acutely induced decrease in 5-HT concentrations and increased neurogenesis might represent a compensatory mechanism.
Collapse
Affiliation(s)
- Maria Sidorova
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Golo Kronenberg
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatrische Universitätsklinik, 8032 Zürich, Switzerland;
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| | - Susann Matthes
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Markus Petermann
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University, 06120 Halle, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| | - Oksana Tuchina
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Friederike Klempin
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (M.S.); (O.T.)
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; (S.M.); (M.P.); (M.B.); (N.A.)
- Department of Psychiatry and Psychotherapy, Charité University Medicine, 10117 Berlin, Germany;
| |
Collapse
|
7
|
Ghasemzadeh Z, Seddighfar M, Alijanpour S, Rezayof A. Ventral tegmental area serotonin 5-HT 1A receptors and corticolimbic cFos/BDNF/GFAP signaling pathways mediate dextromethorphan/morphine anti-allodynia. Physiol Behav 2021; 239:113522. [PMID: 34242672 DOI: 10.1016/j.physbeh.2021.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
AIMS The present study examined the role of ventral tegmental area (VTA) serotonergic 5HT1A receptors in dextromethorphan/morphine-induced anti-allodynia and the possible changes of corticolimbic cFos, brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) following the treatments. MATERIALS AND METHODS The VTA cannulation and the chronic constriction of the sciatic nerve were performed in male Wistar rats. Flexion withdrawal thresholds to mechanical stimulation in the hind-limb were determined using von Frey hairs. The expressions of cFos, BDNF, and GFAP were evaluated using the Western blotting technique. KEY FINDINGS BDNF (in the hippocampus), and GFAP (in the targeted sites) levels were increased following neuropathic pain. Morphine administration induced an anti-allodynic effect with a decrease in the amygdala BDNF level. Dextromethorphan/morphine-induced anti-allodynia was accompanied by the decrease of hippocampus/amygdala/PFC GFAP and amygdala cFos expressions. The PFC BDNF expression level was increased in dextromethorphan/morphine-treated rats. Intra-VTA microinjection of (S)-WAY100135 (1 µg/rat), a selective 5-HT1A receptor antagonist, inhibited the anti-allodynic effect of dextromethorphan/morphine. This treatment increased the cFos level in the hippocampus and the amygdala while decreased the PFC level of cFos. The hippocampal BDNF expression was significantly increased, while the amygdala and the PFC expressions of BDNF were decreased under treatment. (S)-WAY100135 plus dextromethorphan/morphine increased the hippocampal/amygdala and PFC levels of GFAP. SIGNIFICANCE These findings indicate that dextromethorphan could potentiate the analgesic effect of morphine via the implication of the VTA serotonin 5-HT1A receptors. It seems that the changes in the corticolimbic cFos/BDNF/GFAP signaling pathway may be involved in the observed anti-allodynic effect.
Collapse
Affiliation(s)
- Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Seddighfar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Petermann M, Kronenberg G, Mosienko V, Bader M, Alenina N, Hellweg R, Klempin F. Alterations in BDNF Protein Concentrations in the Hippocampus do not Explain the Pro-Neurogenic Effect of Citalopram on Adult Neurogenesis. PHARMACOPSYCHIATRY 2020; 54:101-105. [PMID: 33197939 DOI: 10.1055/a-1291-8079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has been implicated in the pro-neurogenic effect of selective serotonin reuptake inhibitors. In this study, we used Tph2 -/- mice lacking brain serotonin to dissect the interplay between BDNF and the serotonin system in mediating the effects of antidepressant pharmacotherapy on adult neurogenesis in the hippocampus. METHODS Besides citalopram (CIT), we tested tianeptine (TIA), an antidepressant whose mechanism of action is not well understood. Specifically, we examined cell survival and endogenous concentrations of BDNF following daily injection of the drugs. RESULTS Twenty-one days of CIT, but not of TIA, led to a significant increase in the survival of newly generated cells in the dentate gyrus of wild-type mice, without a significant effect on BDNF protein levels by either treatment. In Tph2 -/- mice, adult neurogenesis was consistently increased. Furthermore, Tph2 -/- mice showed increased BDNF protein levels, which were not affected by TIA but were significantly reduced by CIT. DISCUSSION We conclude that the effects of CIT on adult neurogenesis are not explained by changes in BDNF protein concentrations in the hippocampus.
Collapse
Affiliation(s)
- Markus Petermann
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Golo Kronenberg
- University of Leicester and Leicestershire Partnership NHS Trust, Leicester, UK.,Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,current address: University of Exeter, College of Medicine and Health, EX4 4PS, Exeter, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Charité-University Medicine Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Friederike Klempin
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
9
|
Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol 2020; 18:e3000585. [PMID: 31905199 PMCID: PMC6964913 DOI: 10.1371/journal.pbio.3000585] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/16/2020] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
It was recently suggested that supplying the brain with new neurons could counteract Alzheimer’s disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains. Here, by performing single-cell transcriptomics, we found that amyloid toxicity-induced interleukin-4 (IL4) promotes NSC proliferation and neurogenesis by suppressing the tryptophan metabolism and reducing the production of serotonin. NSC proliferation was suppressed by serotonin via down-regulation of brain-derived neurotrophic factor (BDNF)-expression in serotonin-responsive periventricular neurons. BDNF enhances NSC plasticity and neurogenesis via nerve growth factor receptor A (NGFRA)/ nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFkB) signaling in zebrafish but not in rodents. Collectively, our results suggest a complex neuron-glia interaction that regulates regenerative neurogenesis after AD conditions in zebrafish. Can regeneration of lost neurons counteract neurodegenerative disease? This study shows that serotonergic neurons alter neural stem cell proliferation and neurogenesis via a complex neuron-glia interaction involving interleukin-4, BDNF and NGF receptor in a zebrafish model of Alzheimer's disease.
Collapse
|
10
|
Foltran RB, Stefani KM, Bonafina A, Resasco A, Diaz SL. Differential Hippocampal Expression of BDNF Isoforms and Their Receptors Under Diverse Configurations of the Serotonergic System in a Mice Model of Increased Neuronal Survival. Front Cell Neurosci 2019; 13:384. [PMID: 31555094 PMCID: PMC6712164 DOI: 10.3389/fncel.2019.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.
Collapse
Affiliation(s)
- Rocío Beatriz Foltran
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karen Melany Stefani
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Bonafina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Resasco
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Reduced Hippocampal Neurogenesis in Mice Deficient in Apoptosis Repressor with Caspase Recruitment Domain (ARC). Neuroscience 2019; 416:20-29. [PMID: 31356897 DOI: 10.1016/j.neuroscience.2019.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
In the adult hippocampal dentate gyrus (DG), the majority of newly generated cells are eliminated by apoptotic mechanisms. The apoptosis repressor with caspase recruitment domain (ARC), encoded by the Nol3 gene, is a potent and multifunctional death repressor that inhibits both death receptor and mitochondrial apoptotic signaling. The aim of the present study was to parse the role of ARC in the development of new granule cell neurons. Nol3 gene expression as revealed by in situ hybridization is present in the entire dentate granule cell layer. Moreover, a comparison of Nol3 expression between FACS-sorted Sox2-positive neural stem cells and Doublecortin (DCX)-positive immature neurons demonstrates upregulation of Nol3 during neurogenesis. Using ARC-deficient mice, we show that proliferation and survival of BrdU birth-dated cells are strongly reduced in the absence of ARC while neuronal-glial fate choice is not affected. Both the number of DCX-positive cells and the number of calretinin (CR)-positive immature postmitotic neurons are reduced in the hippocampus of ARC-/- mice. ARC knockout is not associated with increased numbers of microglia or with microglia activation. However, hippocampal brain-derived neurotrophic factor (BDNF) protein content is significantly increased in ARC-/- mice, possibly representing a compensatory response. Collectively, our results suggest that ARC plays a critical cell-autonomous role in preventing cell death during adult granule cell neogenesis.
Collapse
|
12
|
Popova NK, Naumenko VS. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets 2019; 23:227-239. [DOI: 10.1080/14728222.2019.1572747] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nina K. Popova
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
13
|
Kronenberg G, Petermann M, Dormann C, Bader M, Gass P, Hellweg R, Klempin F. Brain serotonin critically contributes to the biological effects of electroconvulsive seizures. Eur Arch Psychiatry Clin Neurosci 2018; 268:861-864. [PMID: 30019210 DOI: 10.1007/s00406-018-0924-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Compounds targeting serotonin (5-HT) are widely used as antidepressants. However, the role of 5-HT in mediating the effects of electroconvulsive seizure (ECS) therapy remains undefined. Using Tph2-/- mice depleted of brain 5-HT, we studied the effects of ECS on behavior and neurobiology. ECS significantly prolonged the start latency in the elevated O-Maze test, an effect that was abolished in Tph2-/- mice. Furthermore, in the absence of 5-HT, the ECS-induced increase in adult neurogenesis and in brain-derived neurotrophic factor signaling in the hippocampus were significantly reduced. Our results indicate that brain 5-HT critically contributes to the neurobiological responses to ECS.
Collapse
Affiliation(s)
- Golo Kronenberg
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsmedizin Rostock, 18147, Rostock, Germany.,Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health, 10178, Berlin, Germany
| | - Markus Petermann
- Berlin Institute of Health, 10178, Berlin, Germany.,Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Christof Dormann
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (CIMH), University of Heidelberg, J 5, 68159, Mannheim, Germany
| | - Michael Bader
- Berlin Institute of Health, 10178, Berlin, Germany.,Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,Charité-University Medicine Berlin, 10117, Berlin, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (CIMH), University of Heidelberg, J 5, 68159, Mannheim, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Friederike Klempin
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Berlin Institute of Health, 10178, Berlin, Germany. .,Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.
| |
Collapse
|
14
|
Brivio P, Sbrini G, Peeva P, Todiras M, Bader M, Alenina N, Calabrese F. TPH2 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a Sex Specific Manner. Front Mol Neurosci 2018; 11:389. [PMID: 30425618 PMCID: PMC6218558 DOI: 10.3389/fnmol.2018.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023] Open
Abstract
Dysregulations of the central serotoninergic system have been implicated in several psychopathologies, characterized by different susceptibility between males and females. We took advantage of tryptophan hydroxylase 2 (TPH2) deficient rats, lacking serotonin specifically in the brain, to investigate whether a vulnerable genotype can be associated with alterations of neuronal plasticity from the early stage of maturation of the brain until adulthood. We found a significant increase, in both gene and protein expression, of the neurotrophin brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) of adult TPH2-deficient (TPH2−/−) male and female rats in comparison to wild type (TPH2+/+) counterparts. Interestingly, a development-specific pattern was observed during early postnatal life: whereas the increase in Bdnf expression, mainly driven by the modulation of Bdnf isoform IV was clearly visible after weaning at postnatal day (pnd) 30 in both sexes of TPH2−/− in comparison to TPH2+/+ rats, at early stages (pnd1 and pnd10) Bdnf expression levels did not differ between the genotypes, or even were downregulated in male TPH2−/− animals at pnd10. Moreover, to establish if hyposerotonergia may influence the response to a challenging situation, we exposed adult rats to an acute stress. Although the pattern of corticosterone release was similar between the genotypes, neuronal activation in response to stress, quantified by the expression of the immediate early genes activity regulated cytoskeleton associated protein (Arc) and Fos Proto-Oncogene (cFos), was blunted in both sexes of animals lacking brain serotonin. Interestingly, although upregulation of Bdnf mRNA levels after stress was observed in both genotypes, it was less pronounced in TPH2−/− in comparison to TPH2+/+ rats. In summary, our results demonstrated that serotonin deficiency affects neuroplastic mechanisms following a specific temporal pattern and influences the response to an acute stress.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Polina Peeva
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charite-University Medicine, Berlin, Germany
| | - Natalia Alenina
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Rafa-Zabłocka K, Kreiner G, Bagińska M, Nalepa I. Selective Depletion of CREB in Serotonergic Neurons Affects the Upregulation of Brain-Derived Neurotrophic Factor Evoked by Chronic Fluoxetine Treatment. Front Neurosci 2018; 12:637. [PMID: 30294251 PMCID: PMC6158386 DOI: 10.3389/fnins.2018.00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022] Open
Abstract
Neurotrophic factors are regarded as crucial regulatory components in neuronal plasticity and are postulated to play an important role in depression pathology. The abundant expression of brain-derived neurotrophic factor (BDNF) in various brain structures seems to be of particular interest in this context, as downregulation of BDNF is postulated to be correlated with depression and its upregulation is often observed after chronic treatment with common antidepressants. It is well-known that BDNF expression is regulated by cyclic AMP response element-binding protein (CREB). In our previous study using mice lacking CREB in serotonergic neurons (Creb1TPH2CreERT2 mice), we showed that selective CREB ablation in these particular neuronal populations is crucial for drug-resistant phenotypes in the tail suspension test observed after fluoxetine administration in Creb1TPH2CreERT2 mice. The aim of this study was to investigate the molecular changes in the expression of neurotrophins in Creb1TPH2CreERT2 mice after chronic fluoxetine treatment, restricted to the brain structures implicated in depression pathology with profound serotonergic innervation including the prefrontal cortex (PFC) and hippocampus. Here, we show for the first time that BDNF upregulation observed after fluoxetine in the hippocampus or PFC might be dependent on the transcription factor CREB residing, not within these particular structures targeted by serotonergic projections, but exclusively in serotonergic neurons. This observation may shed new light on the neurotrophic hypothesis of depression, where the effects of BDNF observed after antidepressants in the hippocampus and other brain structures were rather thought to be regulated by CREB residing within the same brain structures. Overall, these results provide further evidence for the pivotal role of CREB in serotonergic neurons in maintaining mechanisms of antidepressant drug action by regulation of BDNF levels.
Collapse
Affiliation(s)
- Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
16
|
Serotonin depletion causes valproate-responsive manic-like condition and increased hippocampal neuroplasticity that are reversed by stress. Sci Rep 2018; 8:11847. [PMID: 30087403 PMCID: PMC6081464 DOI: 10.1038/s41598-018-30291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2−/− mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.
Collapse
|
17
|
Absence of Stress Response in Dorsal Raphe Nucleus in Modulator of Apoptosis 1-Deficient Mice. Mol Neurobiol 2018; 56:2185-2201. [PMID: 30003515 PMCID: PMC6394635 DOI: 10.1007/s12035-018-1205-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
Modulator of apoptosis 1 (MOAP-1) is a Bcl-2-associated X Protein (BAX)-associating protein that plays an important role in regulating apoptosis. It is highly enriched in the brain but its function in this organ remains unknown. Studies on BAX-/- mice suggested that disruption of programmed cell death may lead to abnormal emotional states. We thus hypothesize that MOAP-1-/- mice may also display stress-related behavioral differences and perhaps involved in stress responses in the brain and investigated if a depression-like trait exists in MOAP-1-/- mice, and if so, whether it is age related, and how it relates to central serotonergic stress response in the dorsal raphe nucleus. Young MOAP-1-/- mice exhibit depression-like behavior, in the form of increased immobility time when compared to age-matched wild-type mice in the forced swimming test, which is abolished by acute treatment of fluoxetine. This is supported by data from the tail suspension and sucrose preference tests. Repeated forced swimming stress causes an up-regulation of tryptophan hydroxylase 2 (TPH2) and a down-regulation of brain-derived neurotrophic factor (BDNF) in the dorsal raphe nucleus (DRN) in young wild-type (WT) control mice. In contrast, TPH2 up-regulation was not observed in aged WT mice. Interestingly, such a stress response appears absent in both young and aged MOAP-1-/- mice. Aged MOAP-1-/- and WT mice also have similar immobility times on the forced swimming test. These data suggest that MOAP-1 is required in the regulation of stress response in the DRN. Crosstalk between BDNF and 5-HT appears to play an important role in this stress response.
Collapse
|
18
|
Shishkina GT, Bulygina VV, Agarina NP, Dygalo NN. The Expression of Brain-Derived Neurotrophic Factor and Tryptophan Hydroxylase in the Dorsal Raphe Nucleus during Repeated Stress. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
D’Addario C, Palazzo MC, Benatti B, Grancini B, Pucci M, Di Francesco A, Camuri G, Galimberti D, Fenoglio C, Scarpini E, Altamura AC, Maccarrone M, Dell’Osso B. Regulation of gene transcription in bipolar disorders: Role of DNA methylation in the relationship between prodynorphin and brain derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:314-321. [PMID: 28830794 PMCID: PMC5859566 DOI: 10.1016/j.pnpbp.2017.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
Bipolar Disorder (BD) is a prevalent and disabling condition, determined by gene-environment interactions, possibly mediated by epigenetic mechanisms. The present study aimed at investigating the transcriptional regulation of BD selected target genes by DNA methylation in peripheral blood mononuclear cells of patients with a DSM-5 diagnosis of type I (BD-I) and type II (BD-II) Bipolar Disorders (n=99), as well as of healthy controls (CT, n=42). The analysis of gene expression revealed prodynorphin (PDYN) mRNA levels significantly reduced in subjects with BD-II but not in those with BD-I, when compared to CT. Other target genes (i.e. catechol-O-methyltransferase (COMT), glutamate decarboxylase (GAD67), serotonin transporter (SERT) mRNA levels remained unaltered. Consistently, an increase in DNA methylation at PDYN gene promoter was observed in BD-II patients vs CT. After stratifying data on the basis of pharmacotherapy, patients on mood-stabilizers (i.e., lithium and anticonvulsants) were found to have lower DNA methylation at PDYN gene promoter. A significantly positive correlation in promoter DNA methylation was observed in all subjects between PDYN and brain derived neurotrophic factor (BDNF), whose methylation status had been previously found altered in BD. Moreover, among key genes relevant for DNA methylation establishment here analysed, an up-regulation of DNA Methyl Transferases 3b (DNMT3b) and of the methyl binding protein MeCP2 (methyl CpG binding protein 2) mRNA levels was also observed again just in BD-II subjects. A clear selective role of DNA methylation involvement in BD-II is shown here, further supporting a role for BDNF and its possible interaction with PDYN. These data might be relevant in the pathophysiology of BD, both in relation to BDNF and for the improvement of available treatments and development of novel ones that modulate epigenetic signatures.
Collapse
Affiliation(s)
- Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden,Correspondence to: Claudio D’Addario, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy,
| | - Maria Carlotta Palazzo
- Centro Sant’Ambrogio Ordine Ospedaliero San Giovanni di Dio Fatebenefratelli, Milano, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Benedetta Grancini
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Andrea Di Francesco
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Giulia Camuri
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Galimberti
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Chiara Fenoglio
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Elio Scarpini
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - A. Carlo Altamura
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Bernardo Dell’Osso
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy,Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA,Correspondence to: Bernardo Dell’Osso, Department of Psychiatry, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy,
| |
Collapse
|
20
|
Jordan W, Dobrowolny H, Bahn S, Bernstein HG, Brigadski T, Frodl T, Isermann B, Lessmann V, Pilz J, Rodenbeck A, Schiltz K, Schwedhelm E, Tumani H, Wiltfang J, Guest PC, Steiner J. Oxidative stress in drug-naïve first episode patients with schizophrenia and major depression: effects of disease acuity and potential confounders. Eur Arch Psychiatry Clin Neurosci 2018; 268:129-143. [PMID: 27913877 DOI: 10.1007/s00406-016-0749-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress and immune dysregulation have been linked to schizophrenia and depression. However, it is unknown whether these factors are related to the pathophysiology or whether they are an epiphenomenon. Inconsistent oxidative stress-related findings in previous studies may have resulted from the use of different biomarkers which show disparate aspects of oxidative stress. Additionally, disease severity, medication, smoking, endocrine stress axis activation and obesity are potential confounders. In order to address some of these shortcomings, we have analyzed a broader set of oxidative stress biomarkers in our exploratory study, including urinary 8-iso-prostaglandin F2α (8-iso-PGF2α), 8-OH-2-deoyxguanosine (8-OH-2-dG), and blood levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione S-transferase (GST) in acutely ill drug-naïve first episode patients with schizophrenia (n = 22), major depression (n = 18), and controls (n = 43). Possible confounding factors were considered, and patients were followed-up after 6 weeks of treatment. No differences were observed regarding 8-OH-2-dG, MDA and GST. At baseline, 8-iso-PGF2α levels were higher in patients with schizophrenia (p = 0.004) and major depression (p = 0.037), with a trend toward higher SOD concentrations in schizophrenia (p = 0.053). After treatment, schizophrenia patients showed a further increase in 8-iso-PGF2α (p = 0.016). These results were not related to age, sex, disease severity, medication or adipose tissue mass. However, 8-iso-PGF2α was associated with smoking, endocrine stress axis activation, C-reactive protein levels and low plasma concentrations of brain-derived neurotrophic factor. This study suggests a role of lipid peroxidation particularly in drug-naïve acutely ill schizophrenia patients and highlights the importance of taking into account other confounding factors in biomarker studies.
Collapse
Affiliation(s)
- Wolfgang Jordan
- Department of Psychiatry and Psychotherapy, Magdeburg Hospital GmbH, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Tanja Brigadski
- Institute of Physiology, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, University of Magdeburg, Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jürgen Pilz
- Laboratory of Stress Monitoring, Hardegsen, Germany
| | - Andrea Rodenbeck
- Sleep Laboratory, Department of Pneumology, Evangelisches Krankenhaus Goettingen-Weende gGmbH, Goettingen, Germany
- Department of Sleep Medicine and Clinical Chronobiology, Institute of Physiology, St. Hedwig Hospital, Charite, University of Berlin, Berlin, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Edzard Schwedhelm
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Paul C Guest
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
21
|
Benedetti F, Ambrée O, Locatelli C, Lorenzi C, Poletti S, Colombo C, Arolt V. The effect of childhood trauma on serum BDNF in bipolar depression is modulated by the serotonin promoter genotype. Neurosci Lett 2017; 656:177-181. [PMID: 28754344 DOI: 10.1016/j.neulet.2017.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
In healthy humans, both childhood trauma and the short form of the serotonin promoter transporter genotype (5-HTTLPR) are associated with lower levels of brain-derived neurotrophic factor (BDNF). In subjects with bipolar disorder (BD), lower levels of BDNF and a higher degree of childhood trauma were observed compared with healthy controls. However, is still unknown if the functional 5-HTTLPR polymorphisms exerts an effect on both abnormalities. In 40 inpatients affected by a major depressive episode in the course of BD, we genotyped 5-HTTLPR, measured serum BDNF with ELISA, and assessed early adversities by the childhood trauma questionnaire (CTQ). Data were analyzed in the context of the general linear model correcting for age, sex, ongoing lithium treatment, severity of current depression, and CTQ minimization/denial scores to investigate the effect of 5-HTTLPR polymorphism and childhood trauma on BDNF levels. Early trauma were negatively associated with BDNF serum levels (higher CTQ scores, lower BDNF; p=0.0019). 5-HTTLPR l/l homozygotes showed significantly higher BDNF levels than 5-HTTLPR*s carriers (30.57±6.13 vs 26.82±6.41; p=0.0309). A separate-slopes analysis showed that 5-HTTLPR significantly influenced the relationship between early trauma and adult BDNF (interaction of 5-HTTLPR with CTQ scores: p=0.0023), due to a significant relationship between trauma and BDNF in 5-HTTLPR*s carriers, but not among l/l homozygotes. Putatively detrimental effects of childhood trauma exposure on adult BDNF serum levels are influenced by 5-HTTLPR genotype in patients affected by BD. Possible mechanisms include epigenetic modulation of BDNF gene expression, due to different reactivity to stressors in 5-HTTLPR genotype groups.
Collapse
Affiliation(s)
- Francesco Benedetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano and University Vita-Salute San Raffaele, Milano, Italy.
| | - Oliver Ambrée
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Clara Locatelli
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano and University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano and University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Cristina Colombo
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano and University Vita-Salute San Raffaele, Milano, Italy
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry. eNeuro 2017; 4:eN-NWR-0376-16. [PMID: 28413824 PMCID: PMC5388670 DOI: 10.1523/eneuro.0376-16.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/01/2023] Open
Abstract
Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2fl°x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.
Collapse
|
23
|
A Novel Interaction between Tryptophan Hydroxylase 2 (TPH2) Gene Polymorphism (rs4570625) and BDNF Val66Met Predicts a High-Risk Emotional Phenotype in Healthy Subjects. PLoS One 2016; 11:e0162585. [PMID: 27695066 PMCID: PMC5047464 DOI: 10.1371/journal.pone.0162585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Poor inhibitory processing of negative emotional content is central to many psychiatric disorders, including depression and anxiety. Moreover, increasing evidence suggests that core aspects of emotion-inhibitory processing are largely inherited and as such may represent a key intermediate or risk-related phenotype for common affective diseases (e.g., unipolar depressive, anxiety disorders). The current study employed a candidate-gene approach in order to most effectively examine this complex behavioral phenotype. We examined the novel interaction between BDNF (Val66Met) and TPH2 (rs4570625) polymorphisms and their influence on behavioral inhibition of negative emotion in two independent investigations of healthy adults. BDNF Met carriers consistently report greater symptoms of affective disease and display corresponding behavioral rigidity, while TPH2 T carriers display poor inhibitory processing. These genotypes are traditionally perceived as ‘risk’ genotypes when compared to their respective major Val and G homozygous genotypes, but evidence is mixed. Recent studies in humans and mutant mouse models suggest biological epistasis between BDNF and genes involved in serotonin regulation. Moreover, polymorphisms in the TPH2 gene may have greater influence on serotonergic function than other more commonly studied polymorphisms (e.g., 5-HTTLPR). We observed consistent evidence across two different emotion-inhibition paradigms, one with high internal validity (Study 1, n = 119) and one with high ecological validity (Study 2, n = 115) that the combination of Val/Val and G/G genotypes was clearly associated with impaired inhibition of negative emotional content. This was followed by individuals carrying the BDNF—Met allele (including Met/Val and Met/Met) when combined with the TPH2—T allele (including T/G and T/T combinations). The consistency of these results across tasks and studies suggests that these two groups may be particularly vulnerable to the most common psychiatric disorders and should be targets for future clinical investigation.
Collapse
|
24
|
Foltran RB, Diaz SL. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 2016; 138:204-21. [PMID: 27167299 DOI: 10.1111/jnc.13658] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
The brain-derived neurotrophic factor, BDNF, was discovered more than 30 years ago and, like other members of the neurotrophin family, this neuropeptide is synthetized as a proneurotrophin, the pro-BDNF, which is further cleaved to yield mature BDNF. The myriad of actions of these two BDNF isoforms in the central nervous system is constantly increasing and requires the development of sophisticated tools and animal models to refine our understanding. This review is focused on BDNF isoforms, their participation in the process of neurogenesis taking place in the hippocampus of adult mammals, and the modulation of their expression by serotonergic agents. Interestingly, around this triumvirate of BDNF, serotonin, and neurogenesis, a series of recent research has emerged with apparently counterintuitive results. This calls for an exhaustive analysis of the data published so far and encourages thorough work in the quest for new hypotheses in the field. BDNF is synthetized as a pre-proneurotrophin. After removal of the pre-region, proBDNF can be cleaved by intracellular or extracellular proteases. Mature BDNF can bind TrkB receptors, promoting their homodimerization and intracellular phosphorylation. Phosphorylated-TrkB can activate three different signaling pathways. Whereas G-protein-coupled receptors can transactivate TrkB receptors, truncated forms can inhibit mBDNF signaling. Pro-BDNF binds p75(NTR) by its mature domain, whereas the pro-region binds co-receptors.
Collapse
Affiliation(s)
- Rocío Beatriz Foltran
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Fac. de Medicina - UBA, Buenos Aires, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Fac. de Medicina - UBA, Buenos Aires, Argentina
| |
Collapse
|