1
|
von Mücke-Heim IA, Oldekamp J, Metzger MW, Kläffgen S, Tang H, Walser SM, Dedic N, Rammes G, Holsboer F, Wurst W, Deussing JM. Establishment and behavioural characterization of a novel constitutive P2X7 receptor knockout mouse line. Purinergic Signal 2025:10.1007/s11302-025-10074-x. [PMID: 40024982 DOI: 10.1007/s11302-025-10074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
The P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel expressed in different cell types of the brain. Polymorphisms in the P2RX7 gene have repeatedly been associated with psychiatric disorders including major depression. Depression is a stress-related disorder in which a dysregulation of the immune system has attracted increasing attention as a potential disease mechanism. The well-documented role of P2X7 in inflammatory conditions advocates its involvement in immune system dysregulation and depression genesis. However, understanding its exact role requires further research using appropriate animal models. Unfortunately, some of the most widely used P2X7 knockout mouse models are limited in their utility by the continuous expression of certain P2rx7 splice variants or even activation of de novo transcripts. To overcome this limitation, we generated a novel constitutive and complete P2X7 KO mouse line. These KO mice lack all known murine splice variants and protein expression resulting in a loss-of-function as confirmed by calcium imaging and by the inability of P2X7-deficient peritoneal macrophages to mount an appropriate interleukin (IL)-1β response. Comprehensive characterization using a battery of tests assessing locomotion, anxiety- and depression-related as well as social behaviour revealed differences in locomotor and exploratory behaviours. P2X7 KO mice showed slightly increased locomotor activity and reduced anxiety-related behaviour at baseline. Under conditions of chronic stress exposure, genotype-dependent differences largely dissolved while P2X7 deficiency promoted enhanced stress resilience with regard to social behaviour. Taken together, our findings add further evidence for an involvement of the P2X7 in shaping different behavioural responses and their modulation by stressful environments. This novel loss-of-function model will contribute to a better understanding of P2X7 in stress-associated behaviours in basic and translational neuropsychiatric research.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Max Planck Institute of Psychiatry, Research Clinic, 80804, Munich, Germany
| | - Judit Oldekamp
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Michael W Metzger
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sarah Kläffgen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Hao Tang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sandra M Walser
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Nina Dedic
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Klinikum Rechts Der Isar, 81675, Munich, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Present Address: HMNC Brain Health, 80539, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, 81377, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
2
|
Han Q, Li W, Chen P, Wang L, Bao X, Huang R, Liu G, Chen X. Microglial NLRP3 inflammasome-mediated neuroinflammation and therapeutic strategies in depression. Neural Regen Res 2024; 19:1890-1898. [PMID: 38227513 DOI: 10.4103/1673-5374.390964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 01/17/2024] Open
Abstract
Previous studies have demonstrated a bidirectional relationship between inflammation and depression. Activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes is closely related to the pathogenesis of various neurological diseases. In patients with major depressive disorder, NLRP3 inflammasome levels are significantly elevated. Understanding the role that NLRP3 inflammasome-mediated neuroinflammation plays in the pathogenesis of depression may be beneficial for future therapeutic strategies. In this review, we aimed to elucidate the mechanisms that lead to the activation of the NLRP3 inflammasome in depression as well as to provide insight into therapeutic strategies that target the NLRP3 inflammasome. Moreover, we outlined various therapeutic strategies that target the NLRP3 inflammasome, including NLRP3 inflammatory pathway inhibitors, natural compounds, and other therapeutic compounds that have been shown to be effective in treating depression. Additionally, we summarized the application of NLRP3 inflammasome inhibitors in clinical trials related to depression. Currently, there is a scarcity of clinical trials dedicated to investigating the applications of NLRP3 inflammasome inhibitors in depression treatment. The modulation of NLRP3 inflammasomes in microglia holds promise for the management of depression. Further investigations are necessary to ascertain the efficacy and safety of these therapeutic approaches as potential novel antidepressant treatments.
Collapse
Affiliation(s)
- Qiuqin Han
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wenhui Li
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peiqing Chen
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lijuan Wang
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiwen Bao
- Department of Scientific Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Renyan Huang
- Department of Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guobin Liu
- Department of Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaorong Chen
- Department of Physiology, Laboratory of Neurodegenerative Diseases, Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
3
|
Jin GN, Wang Y, Liu YM, Lu YN, Lu JM, Wang JH, Ma JW, Quan YZ, Gao HY, Cui YX, Xu X, Piao LX. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02117-z. [PMID: 39154088 DOI: 10.1007/s10753-024-02117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong-Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue-Xian Cui
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
4
|
Fan X, Wang J, Ma Y, Chai D, Han S, Xiao C, Huang Y, Wang X, Wang J, Wang S, Xiao L, Zhang C. Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress. BIOLOGY 2024; 13:620. [PMID: 39194558 DOI: 10.3390/biology13080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Institute of Rehabilitation Science, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Jing Wang
- Department of Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yinyin Ma
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Chai
- Shangrao People's Hospital, Shangrao 334000, China
| | - Suo Han
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuyu Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingtong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaojie Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shimeng Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Li Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunping Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
6
|
Liu J, Liu TT, Mou L, Zhang Y, Chen X, Wang Q, Deng BL, Liu J. P2X7 receptor: a potential target for treating comorbid anxiety and depression. Purinergic Signal 2024:10.1007/s11302-024-10007-0. [PMID: 38642324 DOI: 10.1007/s11302-024-10007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5'-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People's Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Mou
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuwen Zhang
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Bin-Lu Deng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China.
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Sperlagh B, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Embers of the Past: Early Childhood Traumas Interact with Variation in P2RX7 Gene Implicated in Neuroinflammation on Markers of Current Suicide Risk. Int J Mol Sci 2024; 25:865. [PMID: 38255938 PMCID: PMC10815854 DOI: 10.3390/ijms25020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Sara Sutori
- National Centre for Suicide Research and Prevention (NASP), Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Granits väg 4, 17165 Solna, Sweden;
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| |
Collapse
|
10
|
Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res 2024; 1822:148644. [PMID: 37871673 DOI: 10.1016/j.brainres.2023.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Depression holds the title of the largest contributor to worldwide disability, with the numbers expected to continue growing. Currently, there are neither reliable biomarkers for the diagnosis of the disease nor are the current medications sufficient for a lasting response in nearly half of patients. In this comprehensive review, we analyze the previously established pathophysiological models of the disease and how the interplay between NLRP3 inflammasome activation and depression might offer a unifying perspective. Adopting this inflammatory theory, we explain how NLRP3 inflammasome activation emerges as a pivotal contributor to depressive inflammation, substantiated by compelling evidence from both human studies and animal models. This inflammation is found in the central nervous system (CNS) neurons, astrocytes, and microglial cells. Remarkably, dysregulation of the NLRP3 inflammasome extends beyond the CNS boundaries and permeates into the enteric and peripheral immune systems, thereby altering the microbiota-gut-brain axis. The integrity of the brain blood barrier (BBB) and intestinal epithelial barrier (IEB) is also compromised by this inflammation. By emphasizing the central role of NLRP3 inflammasome activation in depression and its far-reaching implications, we go over each area with potential modulating mechanisms within the inflammasome pathway in hopes of finding new targets for more effective management of this debilitating condition.
Collapse
Affiliation(s)
- Ghazaleh Ghaffaripour Jahromi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
11
|
Shirayama Y, Iwata M, Miyano K, Hirose Y, Oda Y, Fujita Y, Hashimoto K. Infusions of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produce antidepressant-like effects on learned helplessness rats through BDNF-TrkB signaling and AMPA receptor activation, and strengthen learning ability. Brain Res 2023; 1821:148567. [PMID: 37689333 DOI: 10.1016/j.brainres.2023.148567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Beta-hydroxybutyrate (BHB), an endogenous NLRP3 inflammasome inhibitor, has been shown to be associated with the pathophysiology of depression in rodents. However its active mechanism has not been revealed. Herein, we probed both the pathways and brain regions involved in BHB's antidepressant-like effects in a learned helplessness (LH) rat model of depression. A single bilateral infusion of BHB into the cerebral ventricles induced the antidepressant-like effects on the LH rats. The antidepressant-like effects of BHB were blocked by the TrkB inhibitor ANA-12 and the AMPA receptor antagonist NBQX, indicating that the antidepressant-like effects of BHB involve BDNF-TrkB signaling and AMPA receptor activation. Further, infusions of BHB into the prelimbic and infralimbic portions of medial prefrontal cortex, the dentate gyrus of hippocampus, and the basolateral region of amygdala produced the antidepressant-like effects on LH rats. However, infusions of BHB into the central region of amygdala, the CA3 region of hippocampus, and the shell and core regions of nucleus accumbens had no effect. Finally, a single bilateral infusion of BHB into the cerebral ventricles of naive rats strengthened learning ability on repeated active avoidance test where saline-infused animals failed to increase avoidance responses.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Hirose
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
12
|
Iring-Varga B, Baranyi M, Gölöncsér F, Tod P, Sperlágh B. The antidepressant effect of short- and long-term zinc exposition is partly mediated by P2X7 receptors in male mice. Front Pharmacol 2023; 14:1241406. [PMID: 37908978 PMCID: PMC10613712 DOI: 10.3389/fphar.2023.1241406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Background: As a member of the purinergic receptor family, divalent cation-regulated ionotropic P2X7 (P2rx7) plays a role in the pathophysiology of psychiatric disorders. This study aimed to investigate whether the effects of acute zinc administration and long-term zinc deprivation on depression-like behaviors in mice are mediated by P2X7 receptors. Methods: The antidepressant-like effect of elevated zinc level was studied using a single acute intraperitoneal injection in C57BL6/J wild-type and P2rx7 gene-deficient (P2rx7 -/-) young adult and elderly animals in the tail suspension test (TST) and the forced swim test (FST). In the long-term experiments, depression-like behavior caused by zinc deficiency was investigated with the continuous administration of zinc-reduced and control diets for 8 weeks, followed by the same behavioral tests. The actual change in zinc levels owing to the treatments was examined by assaying serum zinc levels. Changes in monoamine and brain-derived neurotrophic factor (BDNF) levels were measured from the hippocampus and prefrontal cortex brain areas by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. Results: A single acute zinc treatment increased the serum zinc level evoked antidepressant-like effect in both genotypes and age groups, except TST in elderly P2rx7 -/- animals, where no significant effect was detected. Likewise, the pro-depressant effect of zinc deprivation was observed in young adult mice in the FST and TST, which was alleviated in the case of the TST in the absence of functional P2X7 receptors. Among elderly mice, no pro-depressant effect was observed in P2rx7 -/- mice in either tests. Treatment and genotype changes in monoamine and BDNF levels were also detected in the hippocampi. Conclusion: Changes in zinc intake were associated with age-related changes in behavior in the TST and FST. The antidepressant-like effect of zinc is partially mediated by the P2X7 receptor.
Collapse
Affiliation(s)
- Bernadett Iring-Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Wang X, Su M, Wang L, Zhou Y, Li N, Yang B. NEDD4 Like E3 Ubiquitin Protein Ligase Represses Astrocyte Activation and Aggravates Neuroinflammation in Mice with Depression via Paired Box 6 Ubiquitination. Neuroscience 2023; 530:144-157. [PMID: 37661017 DOI: 10.1016/j.neuroscience.2023.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Astrocytes are implicated in stress-induced neuroinflammatory responses in depression. This paper was to explore the molecular mechanism of the E3 ubiquitin ligase NEDD4L (NEDD4 like E3 ubiquitin protein ligase) in depressed mice by regulating astrocyte activation, and to find a new target for depression. A mouse model of depression was established by CUMS (chronic mild unpredictable stress) in 48 6-week male C57BL/6 mice and injected with sh-NEDD4L vector for testing behavioral and cognitive abilities, histopathological changes, and the number of GFAP-positive cells. The mRNA and protein levels of NEDD4L, PAX6 (paired box 6) and P2X7R (purinergic ligand-gated ion channel 7 receptor) were measured. Inflammation model was established by lipopolysaccharide treatment of mouse astrocyte line C8-D1A and infected with sh-NEDD4L. After CUMS induction, mice showed depression-like symptoms, increased inflammatory infiltration, decreased glial fibrillary acidic protein (GFAP)-positive cells in brain tissue, and increased NEDD4L protein levels. NEDD4L inhibition increased GFAP-positive cells, increased PAX6 protein levels and decreased P2X7R mRNA and protein levels, and decreased inflammatory factor secretion in brain tissue and in vitro cells. PAX6 knockdown or P2X7R overexpression partially reversed the effects of NEDD4L inhibition on astrocyte activation and neuroinflammation. To conclude, highly-expressed NEDD4L in depression-like mouse brain inhibits astrocyte activation and exacerbates neuroinflammation by ubiquitinating PAX6 and promoting P2X7R level.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yixuan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Ren WJ, Zhao YF, Li J, Rubini P, Yuan ZQ, Tang Y, Illes P. P2X7 receptor-mediated depression-like reactions arising in the mouse medial prefrontal cortex. Cereb Cortex 2023:7161772. [PMID: 37183178 DOI: 10.1093/cercor/bhad166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[β-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.
Collapse
Affiliation(s)
- Wen-Jing Ren
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Ya-Fei Zhao
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Jie Li
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Patrizia Rubini
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Zeng-Qiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Medicine, University of South China, Hengyang 421000, Hunan, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 04107, Germany
| |
Collapse
|
15
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Erdelyi-Hamza B, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Bagdy G, Juhasz G, Gonda X. Variation along P2RX7 interacts with early traumas on severity of anxiety suggesting a role for neuroinflammation. Sci Rep 2023; 13:7757. [PMID: 37173368 PMCID: PMC10182087 DOI: 10.1038/s41598-023-34781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emotional stress is a leading risk factor in the development of neuropsychiatric disorders possibly via immune activation. P2X7 receptors promote neuroinflammation, and research suggests a relationship between chromosome region 12q2431, in which the P2X7R gene is located, and development of mood disorders, however, few studies concentrate on its association with anxiety. Our aim was to investigate the effects of P2RX7 variation in interaction with early childhood traumas and recent stressors on anxiety. 1752 participants completed questionnaires assessing childhood adversities and recent negative life events, provided data on anxiety using the Brief Symptom Inventory, and were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into linear regression models followed by a linkage disequilibrium-based clumping procedure to identify clumps of SNPs with a significant main or interaction effect. We identified a significant clump with top SNP rs67881993 and containing a set of 29SNPs that are in high LD, which significantly interacted with early childhood traumas but not with recent stress conveying a protective effect against increased anxiety in those exposed to early adversities. Our study demonstrated that P2RX7 variants interact with distal and more etiological stressors in influencing the severity of anxiety symptoms, supporting previous scarce results and demonstrating its role in moderating the effects of stress.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Berta Erdelyi-Hamza
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Uji, Kyoto, Japan
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
16
|
Pang F, Yang Y, Huang S, Yang Z, Zhu Z, Liao D, Guo X, Zhou M, Li Y, Tang C. Electroacupuncture Alleviates Depressive-like Behavior by Modulating the Expression of P2X7/NLRP3/IL-1β of Prefrontal Cortex and Liver in Rats Exposed to Chronic Unpredictable Mild Stress. Brain Sci 2023; 13:brainsci13030436. [PMID: 36979246 PMCID: PMC10046261 DOI: 10.3390/brainsci13030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Depression is a complex clinical disorder associated with poor outcomes. Electroacupuncture (EA) has been demonstrated to have an important role in both clinical and pre-clinical depression investigations. Evidence has suggested that the P2X7 receptor (P2X7R), NLRP3, and IL-1β play an important role in depressive disorder. Our study is aimed at exploring the role of EA in alleviating depression-like behaviors in rats. We therefore investigated the effects of EA on the prefrontal cortex and liver of rats subjected to chronic unpredictable mild stress (CUMS) through behavior tests, transmission electron microscopy, Nissl staining, HE staining, immunohistochemistry and Western blotting. Five weeks after exposure to CUMS, Sprague-Dawley (SD) rats showed depression-like behavior. Three weeks after treatment with brilliant blue G (BBG) or EA, depressive symptoms were significantly improved. Liver cells and microglia showed regular morphology and orderly arrangement in the BBG and EA groups compared with the CUMS group. Here we show that EA downregulated P2X7R/NLRP3/IL-1β expression and relieved depression-like behavior. In summary, our findings demonstrated the efficacy of EA in alleviating depression-like behaviors induced by CUMS in rats. This suggests that EA may serve as an adjunctive therapy in clinical practice, and that P2X7R may be a promising target for EA intervention on the liver–brain axis in treatment of depression.
Collapse
|
17
|
Purinergic P2X7R as a potential target for pancreatic cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03123-7. [PMID: 36856920 DOI: 10.1007/s12094-023-03123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Pancreatic cancer is one of the deadliest types of cancer, with a death rate nearly equal to the incidence. The P2X7 receptor (P2X7R) is a kind of extracellular adenosine triphosphate (ATP)-gated ion channel with special permeability, which exists in most tissues of human body and mediates inflammation-related signaling pathways and immune signal transduction after activation. P2X7R is also present on the surface of several tumor cells and is involved in tumor growth and progression. P2X7R expression in pancreatic cancer has also been identified in recent studies. Activation of P2X7R in pancreatic cancer can support the proliferation of pancreatic stellate cells, participate in protein interactions, and mediate ERK1/2, IL-6/STAT3, hCAP-18/LL-37, PI3K/AKT signaling pathways to promote pancreatic cancer progression. Inhibitors targeting P2X7R can inhibit the development of pancreatic cancer and are expected to be used in clinical therapy. Therefore, P2X7R is promising as a potential therapeutic target for pancreatic cancer. This article reviews the progress of research on P2X7R in pancreatic cancer.
Collapse
|
18
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
20
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
21
|
von Mücke-Heim IA, Martin J, Uhr M, Ries C, Deussing JM. The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation. Front Pharmacol 2023; 14:1148190. [PMID: 37101546 PMCID: PMC10123291 DOI: 10.3389/fphar.2023.1148190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: In recent years, purinergic signaling via the P2X7 receptor (P2X7R) on microglia has repeatedly been implicated in depression genesis. However, it remains unclear which role the human P2X7R (hP2X7R) plays in regulating both microglia morphology and cytokine secretion upon different environmental and immune stimuli, respectively. Methods: For this purpose, we used primary microglial cultures derived from a humanized microglia-specific conditional P2X7R knockout mouse line to emulate different gene-environment interactions between microglial hP2X7R and molecular proxies of psychosocial and pathogen-derived immune stimuli. Microglial cultures were subjected to treatments with the agonists 2'(3')-O-(4-benzoylbenzoyl)-ATP (BzATP) and lipopolysaccharides (LPS) combined with specific P2X7R antagonists (JNJ-47965567, A-804598). Results: Morphotyping revealed overall high baseline activation due to the in vitro conditions. Both BzATP and LPS + BzATP treatment increased round/ameboid microglia and decreased polarized and ramified morphotypes. This effect was stronger in hP2X7R-proficient (CTRL) compared to knockout (KO) microglia. Aptly, we found antagonism with JNJ-4796556 and A-804598 to reduce round/ameboid microglia and increase complex morphologies only in CTRL but not KO microglia. Single cell shape descriptor analysis confirmed the morphotyping results. Compared to KO microglia, hP2X7R-targeted stimulation in CTRLs led to a more pronounced increase in microglial roundness and circularity along with an overall higher decrease in aspect ratio and shape complexity. JNJ-4796556 and A-804598, on the other hand, led to opposite dynamics. In KO microglia, similar trends were observed, yet the magnitude of responses was much smaller. Parallel assessment of 10 cytokines demonstrated the proinflammatory properties of hP2X7R. Following LPS + BzATP stimulation, IL-1β, IL-6, and TNFα levels were found to be higher and IL-4 levels lower in CTRL than in KO cultures. Vice versa, hP2X7R antagonists reduced proinflammatory cytokine levels and increased IL-4 secretion. Discussion: Taken together, our results help disentangle the complex function of microglial hP2X7R downstream of various immune stimuli. In addition, this is the first study in a humanized, microglia-specific in vitro model identifying a so far unknown potential link between microglial hP2X7R function and IL-27 levels.
Collapse
Affiliation(s)
| | - Jana Martin
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- *Correspondence: Jan M. Deussing,
| |
Collapse
|
22
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
23
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
24
|
Xia W, Xu Y, Gong Y, Cheng X, Yu T, Yu G. Microglia Involves in the Immune Inflammatory Response of Poststroke Depression: A Review of Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2049371. [PMID: 35958023 PMCID: PMC9363171 DOI: 10.1155/2022/2049371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Poststroke depression (PSD) does not exist before and occurs after the stroke. PSD can appear shortly after the onset of stroke or be observed in the weeks and months after the acute or subacute phase of stroke. The pathogenesis of PSD is unclear, resulting in poor treatment effects. With research advancement, immunoactive cells in the central nervous system, particularly microglia, play a role in the occurrence and development of PSD. Microglia affects the homeostasis of the central nervous system through various factors, leading to the occurrence of depression. The research progress of microglia in PSD has been summarized to review the evidence regarding the pathogenesis and treatment target of PSD in the future.
Collapse
Affiliation(s)
- Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yong Xu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
25
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
26
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
27
|
Urbina-Treviño L, von Mücke-Heim IA, Deussing JM. P2X7 Receptor-Related Genetic Mouse Models – Tools for Translational Research in Psychiatry. Front Neural Circuits 2022; 16:876304. [PMID: 35422688 PMCID: PMC9001905 DOI: 10.3389/fncir.2022.876304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Depression is a common psychiatric disorder and the leading cause of disability worldwide. Although treatments are available, only about 60% of treated patients experience a significant improvement in disease symptoms. Numerous clinical and rodent studies have identified the purinergic P2X7 receptor (P2X7R) as one of the genetic factors potentially contributing to the disease risk. In this respect, genetically engineered mouse models targeting the P2X7R have become increasingly important in studying designated immunological features and subtypes of depression in vivo. This review provides an overview of the P2X7R -related mouse lines currently available for translational psychiatric research and discusses their strengths, weaknesses, and potentials.
Collapse
Affiliation(s)
- Lidia Urbina-Treviño
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Iven-Alex von Mücke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- *Correspondence: Jan M. Deussing,
| |
Collapse
|
28
|
High, in Contrast to Low Levels of Acute Stress Induce Depressive-like Behavior by Involving Astrocytic, in Addition to Microglial P2X7 Receptors in the Rodent Hippocampus. Int J Mol Sci 2022; 23:ijms23031904. [PMID: 35163829 PMCID: PMC8836505 DOI: 10.3390/ijms23031904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) in the brain is suggested to be an etiological factor of major depressive disorder (MDD). It has been assumed that stress-released ATP stimulates P2X7 receptors (Rs) at the microglia, thereby causing neuroinflammation; however, other central nervous system (CNS) cell types such as astrocytes also possess P2X7Rs. In order to elucidate the possible involvement of the MDD-relevant hippocampal astrocytes in the development of a depressive-like state, we used various behavioral tests (tail suspension test [TST], forced swim test [FST], restraint stress, inescapable foot shock, unpredictable chronic mild stress [UCMS]), as well as fluorescence immunohistochemistry, and patch-clamp electrophysiology in wild-type (WT) and genetically manipulated rodents. The TST and FST resulted in learned helplessness manifested as a prolongation of the immobility time, while inescapable foot shock caused lower sucrose consumption as a sign of anhedonia. We confirmed the participation of P2X7Rs in the development of the depressive-like behaviors in all forms of acute (TST, FST, foot shock) and chronic stress (UCMS) in the rodent models used. Further, pharmacological agonists and antagonists acted in a different manner in rats and mice due to their diverse potencies at the respective receptor orthologs. In hippocampal slices of mice and rats, only foot shock increased the current responses to locally applied dibenzoyl-ATP (Bz-ATP) in CA1 astrocytes; in contrast, TST and restraint depressed these responses. Following stressful stimuli, immunohistochemistry demonstrated an increased co-localization of P2X7Rs with a microglial marker, but no change in co-localization with an astroglial marker. Pharmacological damage to the microglia and astroglia has proven the significance of the microglia for mediating all types of depression-like behavioral reactions, while the astroglia participated only in reactions induced by strong stressors, such as foot shock. Because, in addition to acute stressors, their chronic counterparts induce a depressive-like state in rodents via P2X7R activation, we suggest that our data may have relevance for the etiology of MDD in humans.
Collapse
|
29
|
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay MÈ. Present and future of microglial pharmacology. Trends Pharmacol Sci 2022; 43:669-685. [PMID: 35031144 DOI: 10.1016/j.tips.2021.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Microglia, brain resident immune cells, modulate development, activity, and plasticity of the central nervous system. Mechanistically implicated in numerous neurological pathologies, microglia emerge as strong contenders for novel neurotherapies. Shifting away from merely an attenuation of excessive microglial inflammatory and phagocytic activities, current therapies aim toward targeting the complex context-dependent microglial heterogeneity, unveiled by large-scale genetic studies and emerging single-cell analyses. Although lacking the necessary selectivity, initial therapies attempting to target specific state-associated microglial properties and functions (e.g., inflammatory activity, phagocytosis, proliferation, metabolism, or surveillance) are currently under pre- or even clinical (Phase I-IV) investigation. Here, we provide an update on current microglial therapeutic research and discuss what the future in the field might look like.
Collapse
Affiliation(s)
- Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Ifeoluwa O Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Charlotte I Delage
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|