1
|
Meunier É, Aubin vega M, Adam D, Privé A, Mohammad Nezhady MA, Lahaie I, Quiniou C, Chemtob S, Brochiero E. Evaluation of interleukin-1 and interleukin-6 receptor antagonists in a murine model of acute lung injury. Exp Physiol 2024; 109:966-979. [PMID: 38594909 PMCID: PMC11140168 DOI: 10.1113/ep091682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venousP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acute Lung Injury/drug therapy
- Acute Lung Injury/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bleomycin
- Disease Models, Animal
- Lung/metabolism
- Lung/drug effects
- Mice, Inbred C57BL
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/metabolism
Collapse
Affiliation(s)
- Émilie Meunier
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Mélissa Aubin vega
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Damien Adam
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Anik Privé
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | | | - Isabelle Lahaie
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Christiane Quiniou
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Sylvain Chemtob
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Département de pédiatrieUniversité de MontréalMontréalQuébecCanada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
2
|
Feng LH, Li XD, Zhang XY, Cheng PJ, Feng ZY. Dexamethasone for the treatment of acute respiratory distress syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30195. [PMID: 36181003 PMCID: PMC9524861 DOI: 10.1097/md.0000000000030195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND This meta-analysis aimed to evaluate the efficacy and safety of dexamethasone in the treatment of acute respiratory distress syndrome (ARDS). METHODS A systematic search of electronic databases was carried out from inception to May 1, 2022, including PUBMED, EMBASE, Cochrane Library, Wangfang, VIP, and CNKI. Other searches were also checked for dissertations/theses and the reference lists of the included studies. Two team members examined all citations and selected eligible articles. Randomized controlled trials (RCTs) reporting the efficacy and safety of dexamethasone for the treatment of ARDS were included, and the quality of eligible RCTs was assessed using the Cochrane Risk of Bias Tool. If necessary, we conducted data synthesis and meta-analysis. The primary outcome was all-cause mortality. Secondary outcomes were mechanical ventilation duration (day), ventilator-free status at 28 days; intensive care unit (ICU) free (day), ICU mortality, hospital mortality, sequential organ failure assessment (SOFA) as mean and range, SOFA as No. of patients, peak airway pressure (cmH2O), arterial oxygen pressure (mm Hg), days with PaO2 > 10kPa, PaO2, and the occurrence rate of adverse events. RESULTS Four studies involving 702 patients were included in this analysis. This study showed that dexamethasone could significantly reduce all-cause mortality (odds ratio (OR) = 0.62, 95% confidence interval (CI) [0.44, 0.88], I2 = 30%, P < .001), and decrease ventilator-free status at 28 days (MD = 3.65, 95% CI [1.49, 5.80], I2 = 51%, P < .001). No significant differences in occurrence rates of adverse events were found between dexamethasone and routine or standard care. CONCLUSIONS Evidence from the meta-analysis suggests that dexamethasone is an effective and relatively safe treatment for all-cause mortality and ventilator-free status at 28 days in patients with ARDS. Owning to the small number of eligible RCTs, the conclusions of present study are warranted in the future study.
Collapse
Affiliation(s)
- Long-hua Feng
- Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, Chongqing, China
- *Correspondence: Zheng-yun Feng, Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, No. 63 Chengxi 9th Road, Qianjiang District, Chongqing 409000, China (e-mail: )
| | - Xiao-dan Li
- Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, Chongqing, China
- *Correspondence: Zheng-yun Feng, Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, No. 63 Chengxi 9th Road, Qianjiang District, Chongqing 409000, China (e-mail: )
| | - Xiao-yu Zhang
- Department of Critical Care Medicine, Chongqing Qianjiang Central Hospital, Chongqing, China
| | - Peng-jiang Cheng
- Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, Chongqing, China
| | - Zheng-yun Feng
- Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, Chongqing, China
- *Correspondence: Zheng-yun Feng, Department of Respiratory Medicine, Chongqing Qianjiang Central Hospital, No. 63 Chengxi 9th Road, Qianjiang District, Chongqing 409000, China (e-mail: )
| |
Collapse
|
3
|
Aubin Vega M, Chupin C, Pascariu M, Privé A, Dagenais A, Berthiaume Y, Brochiero E. Dexamethasone fails to improve bleomycin-induced acute lung injury in mice. Physiol Rep 2020; 7:e14253. [PMID: 31724341 PMCID: PMC6854384 DOI: 10.14814/phy2.14253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) features an exudative phase characterized by alveolar damage, lung edema and exacerbated inflammatory response. Given their anti‐inflammatory properties, the potential therapeutic effect of corticosteroids has been evaluated in ARDS clinical trials and experimental models of ALI. These studies produced contradictory results. Therefore, our aim was to investigate the effects of dexamethasone in an animal model of bleomycin‐induced acute lung injury and then to determine if the lack of response could be related to an impairment in repair ability of alveolar epithelial cells after injury. NMRI mice were challenged with bleomycin and then treated daily with dexamethasone or saline. Bronchoalveolar lavages (BAL) and lungs were collected for assessment of the inflammatory response and wet/dry ratio (lung edema) and for histological analyses. The effect of bleomycin and dexamethasone on wound repair was also evaluated in vitro on primary alveolar epithelial cell (ATII) cultures. Our data first showed that dexamethasone treatment did not reduce the weight loss or mortality rates induced by bleomycin. Although the TNF‐α level in BAL of bleomycin‐treated mice was reduced by dexamethasone, the neutrophil infiltration remained unchanged. Dexamethasone also failed to reduce lung edema and damage scores. Finally, bleomycin elicited a time‐ and dose‐dependent reduction in repair rates of ATII cell cultures. This inhibitory effect was further enhanced by dexamethasone, which also affected the expression of β3‐ and β6‐integrins, key proteins of alveolar repair. Altogether, our data indicate that the inability of dexamethasone to improve the resolution of ALI might be due to his deleterious effect on the alveolar epithelium repair.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Cécile Chupin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Mihai Pascariu
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada.,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Anik Privé
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - André Dagenais
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Yves Berthiaume
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada.,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Engel M, Nowacki RME, Jonker EM, Ophelders D, Nikiforou M, Kloosterboer N, Zimmermann LJI, van Waardenburg DA, Kramer BW. A comparison of four different models of acute respiratory distress syndrome in sheep. Respir Res 2020; 21:209. [PMID: 32771010 PMCID: PMC7414721 DOI: 10.1186/s12931-020-01475-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) can have various causes. The study objective was to investigate whether different pathophysiologic models of ARDS would show different respiratory, cardiovascular and inflammatory outcomes. METHODS We performed a prospective, randomized study in 27 ventilated ewes inducing ARDS using three different techniques to mimic the pulmonary causes of ARDS (ARDSp): warm saline lavage (n = 6), intratracheal hydrochloric acid (HCl; n = 6), intratracheal albumin (n = 10), and one technique to mimic an extrapulmonary cause of ARDS (ARDSexp): intravenous lipopolysaccharide (LPS iv; n = 5). ARDS was defined when PaO2 was < 15 kPa (112 mmHg) when ventilated with PEEP 10 cm H2O and FiO2 = 1.0. The effects on gas exchange were investigated by calculating the oxygenation index (OI) and the ventilation efficacy index (VEI) every 30 min for a period of 4 h. Post mortem lung lavage was performed to obtain broncho-alveolar lavage fluid (BALF) to assess lung injury and inflammation. Lung injury and inflammation were assessed by measuring the total number and differentiation of leukocytes, the concentration of protein and disaturated phospholipids, and interleukine-6 and -8 in the BALF. Histology of the lung was evaluated by measuring the mean alveolar size, alveolar wall thickness and the lung injury score system by Matute-Bello et al., as markers of lung injury. The concentration of interleukin-6 was determined in plasma, as a marker of systematic inflammation. RESULTS The OI and VEI were most affected in the LPS iv group and thereafter the HCl group, after meeting the ARDS criteria. Diastolic blood pressure was lowest in the LPS iv group. There were no significant differences found in the total number and differentiation of leukocytes, the concentration of protein and disaturated phospholipids, or interleukin-8 in the BALF, histology of the lung and the lung injury score. IL-6 in BALF and plasma was highest in the LPS iv group, but no significant differences were found between the other groups. It took a significantly longer period of time to meet the ARDS criteria in the LPS iv group. CONCLUSIONS The LPS model caused the most severe pulmonary and cardiovascular insufficiency. Surprisingly, there were limited significant differences in lung injury and inflammatory markers, despite the different pathophysiological models, when the clinical definition of ARDS was applied.
Collapse
Affiliation(s)
- Monique Engel
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands.
| | - Relana M E Nowacki
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Elly M Jonker
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Daan Ophelders
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Maria Nikiforou
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Nico Kloosterboer
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
| | - Dick A van Waardenburg
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism - NUTRIM, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, School for Oncology and Developmental Biology - GROW, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, PO Box 5800, NL-6202, AZ, Maastricht, The Netherlands
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
5
|
Mikolka P, Kosutova P, Kolomaznik M, Topercerova J, Kopincova J, Calkovska A, Mokra D. Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res 2020; 68:S253-S263. [PMID: 31928043 DOI: 10.33549/physiolres.934364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inflammation associated with acute respiratory distress syndrome (ARDS) can damage the alveolar epithelium and surfactant and worsen the respiratory failure. Glucocorticoids (GC) appear to be a rational therapeutic approach, but the effect is still unclear, especially for early administration and low-dose. In this study we compared two low doses of dexamethasone in early phase of surfactant-depleted model of acute respiratory distress syndrome (ARDS). In the study, lung-lavaged New Zealand rabbits with respiratory failure (PaO(2)<26.7 kPa in FiO(2) 1.0) were treated with intravenous dexamethasone (DEX): 0.5 mg/kg (DEX-0.5) and 1.0 mg/kg (DEX-1.0), or were untreated (ARDS). Animals without ARDS served as controls. Respiratory parameters, lung edema, leukocyte shifts, markers of inflammation and oxidative damage in the plasma and lung were evaluated. Both doses of DEX improved the lung function vs. untreated animals. DEX-1.0 had faster onset with significant improvement in gas exchange and ventilation efficiency vs. DEX-0.5. DEX-1.0 showed a trend to reduce lung neutrophils, local oxidative damage, and levels of TNFalpha, IL-6, IL-8 more effectively than DEX-0.5 vs. ARDS group. Both dosages of dexamethasone significantly improved the lung function and suppressed inflammation in early phase ARDS, while some additional enhancement was observed for higher dose (1 mg/kg) of DEX.
Collapse
Affiliation(s)
- P Mikolka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang J, Wang R, Li N, Shen X, Huang G, Zhu J, He D. High-performance reoxygenation from PLGA-PEG/PFOB emulsions: a feedback relationship between ROS and HIF-1α. Int J Nanomedicine 2018; 13:3027-3038. [PMID: 29861634 PMCID: PMC5968788 DOI: 10.2147/ijn.s155509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxemia is one of the most common pathological processes in various clinical diseases. Methods A novel emulsion of poly(lactide-co-glycolide)-poly(ethylene glycol)/perfluorooctyl bromide has been developed to improve arterial hypoxemia through pulmonary drug delivery. Hypoxia-reoxygenation experiment was used to investigate the ability of the emulsion to supply oxygen and the saline lavage acute lung injury model was established to evaluate oxygen supply of the emulsion. Results It has been demonstrated that an apparent increase has been detected in the cytotoxicity test of the emulsion, indicating its lower cell toxicity. A hypoxia-reoxygenation experiment uncovered the fact that notable cell growth was observed after reoxygenation with poly(lactide-co-glycolide)-poly(ethylene glycol)/perfluorooctyl bromide emulsion because of the ability of the emulsion to supply oxygen adequately and reasonably. Moreover, the level of intracellular reactive oxygen species was significantly enhanced during hypoxia, which further influenced the concentration and activity of hypoxia-inducible factor-1α (HIF-1α). Furthermore, the upregulated expression of HIF-1α during hypoxia has verified that certain emulsions can increase HIF-1α content and relieve hypoxia, which further indicates HIF-1α plays an essential role in improving cell viability. Afterwards, the saline lavage acute lung injury model was established to evaluate oxygen supply of the emulsion and the result shows considerable improvement of lung ventilation of rabbits. Conclusion We recommend that the feedback relationship between reactive oxygen species and HIF-1 plays an essential role in improving cell viability. It is anticipated that the emulsion will be applied in the field of alleviating hypoxemia.
Collapse
Affiliation(s)
- Jie Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ruochen Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Niannian Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xi Shen
- The Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Huang
- Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,National Engineering Research Center for Nanotechnology, Shanghai, People's Republic of China
| | - Dannong He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,National Engineering Research Center for Nanotechnology, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Glendinning L, Wright S, Pollock J, Tennant P, Collie D, McLachlan G. Variability of the Sheep Lung Microbiota. Appl Environ Microbiol 2016; 82:3225-3238. [PMID: 26994083 PMCID: PMC4959240 DOI: 10.1128/aem.00540-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Sequencing technologies have recently facilitated the characterization of bacterial communities present in lungs during health and disease. However, there is currently a dearth of information concerning the variability of such data in health both between and within subjects. This study seeks to examine such variability using healthy adult sheep as our model system. Protected specimen brush samples were collected from three spatially disparate segmental bronchi of six adult sheep (age, 20 months) on three occasions (day 0, 1 month, and 3 months). To further explore the spatial variability of the microbiotas, more-extensive brushing samples (n = 16) and a throat swab were taken from a separate sheep. The V2 and V3 hypervariable regions of the bacterial 16S rRNA genes were amplified and sequenced via Illumina MiSeq. DNA sequences were analyzed using the mothur software package. Quantitative PCR was performed to quantify total bacterial DNA. Some sheep lungs contained dramatically different bacterial communities at different sampling sites, whereas in others, airway microbiotas appeared similar across the lung. In our spatial variability study, we observed clustering related to the depth within the lung from which samples were taken. Lung depth refers to increasing distance from the glottis, progressing in a caudal direction. We conclude that both host influence and local factors have impacts on the composition of the sheep lung microbiota. IMPORTANCE Until recently, it was assumed that the lungs were a sterile environment which was colonized by microbes only during disease. However, recent studies using sequencing technologies have found that there is a small population of bacteria which exists in the lung during health, referred to as the "lung microbiota." In this study, we characterize the variability of the lung microbiotas of healthy sheep. Sheep not only are economically important animals but also are often used as large animal models of human respiratory disease. We conclude that, while host influence does play a role in dictating the types of microbes which colonize the airways, it is clear that local factors also play an important role in this regard. Understanding the nature and influence of these factors will be key to understanding the variability in, and functional relevance of, the lung microbiota.
Collapse
Affiliation(s)
- Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Steven Wright
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Jolinda Pollock
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, Midlothian, United Kingdom
| | - Peter Tennant
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - David Collie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Gerry McLachlan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
8
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|