1
|
Dos Santos CAL, Monteiro AADA, de Deus MS, Kamdem JP, Duarte AE, Almutairi MM, Ali A, Ibrahim M. Neuroprotective and Gastroprotective Effects of Rutin and Fluoxetine Co-Supplementation: A Biochemical Analysis in Nauphoeta cinerea. Neurotoxicology 2025:S0161-813X(25)00060-9. [PMID: 40425052 DOI: 10.1016/j.neuro.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/11/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
A significant portion of the global population is affected by depression, leading to considerable social and economic burdens. Although antidepressants such as fluoxetine are effective, their prolonged use is often associated with adverse side effects. This study investigated the biochemical effects of fluoxetine and rutin, individually and in combination, using the Nauphoeta cinerea model. Cockroaches were supplemented with the compounds for seven days, during which toxicity, body weight, and food intake were monitored. At the end of the treatment, neural and intestinal tissues were subjected to biochemical analyses, and in silico evaluations of the compounds were also performed. Co-supplementation with rutin (5mg/mL) and fluoxetine (20mg/mL) significantly reduced TBARS levels compared to fluoxetine alone and prevented the weight loss typically observed with fluoxetine treatment, despite similar food intake across groups. Rutin also mitigated the toxicity associated with fluoxetine administration. These findings suggest that rutin co-supplementation may attenuate fluoxetine-induced oxidative stress and toxicity, supporting its potential as a protective agent during antidepressant therapy.
Collapse
Affiliation(s)
- Carlos Alonso Leite Dos Santos
- Department of Biological Sciences, Regional University of Cariri, CEP63105-000, Crato, Ceara, Campus Pimenta, Brazil; Center of Agricultural Sciences and Biodiversity, Federal University of Cariri, Crato, CE, Brazil
| | | | - Mateus Santana de Deus
- Department of Biological Sciences, Regional University of Cariri, CEP63105-000, Crato, Ceara, Campus Pimenta, Brazil
| | - Jean Paul Kamdem
- Department of Biochemistry, Microbiology and Immunology (BMI) College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri, CEP63105-000, Crato, Ceara, Campus Pimenta, Brazil
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan-23200, Pakistan
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Pakistan.
| |
Collapse
|
2
|
Hingole P, Saha P, Das S, Gundu C, Kumar A. Exploring the role of mitochondrial dysfunction and aging in COVID-19-Related neurological complications. Mol Biol Rep 2025; 52:479. [PMID: 40397294 DOI: 10.1007/s11033-025-10586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, posed a tremendous challenge to healthcare systems globally. Severe COVID-19 infection was reported to be associated with altered immunometabolism and cytokine storms, contributing to poor clinical outcomes and in many cases resulting in mortality. Despite promising preclinical results, many drugs have failed to show efficacy in clinical trials, highlighting the need for novel approaches to combat the virus and its severe manifestations. Mitochondria, crucial for aerobic respiration, play a pivotal role in modulating immunometabolism and neuronal function, making their compromised capability as central pathological mechanism contributing to the development of neurological complications in COVID-19. Dysregulated mitochondrial dynamics can lead to uncontrolled immune responses, underscoring the importance of mitochondrial regulation in shaping clinical outcomes. Aging further accelerates mitochondrial dysfunction, compounding immune dysregulation and neurodegeneration, making older adults particularly vulnerable to severe COVID-19 and its neurological sequelae. COVID-19 infection impairs mitochondrial oxidative phosphorylation, contributing to the long-term neurological complications associated with the disease. Additionally, recent reports also suggest that up to 30% of COVID-19 patients experience lingering neurological issues, thereby highlighting the critical need for further research into mitochondrial pathways to mitigate long-tern neurological consequences of Covid-19. This review examines the role of mitochondrial dysfunction in COVID-19-induced neurological complications, its connection to aging, and potential biomarkers for clinical diagnostics. It also discusses therapeutic strategies aimed at maintaining mitochondrial integrity to improve COVID-19 outcomes.
Collapse
Affiliation(s)
- Prajakta Hingole
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Sourav Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Chayanika Gundu
- Department of Ophthalmology, University of Wisconsin, Madison, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India.
| |
Collapse
|
3
|
Santus P, Strizzi S, Danzo F, Biasin M, Saulle I, Vanetti C, Saad M, Radovanovic D, Trabattoni D. Antiviral Effect of Erdosteine in Cells Infected with Human Respiratory Viruses. Pathogens 2025; 14:388. [PMID: 40333155 PMCID: PMC12030430 DOI: 10.3390/pathogens14040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, 20147 Milan, Italy; (P.S.); (F.D.); (M.S.); (D.R.)
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Fiammetta Danzo
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, 20147 Milan, Italy; (P.S.); (F.D.); (M.S.); (D.R.)
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Marina Saad
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, 20147 Milan, Italy; (P.S.); (F.D.); (M.S.); (D.R.)
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Dejan Radovanovic
- Division of Respiratory Diseases, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, 20147 Milan, Italy; (P.S.); (F.D.); (M.S.); (D.R.)
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20122 Milan, Italy; (S.S.); (M.B.); (I.S.); (C.V.)
| |
Collapse
|
4
|
Mokra D, Porvaznik I, Mokry J. N-Acetylcysteine in the Treatment of Acute Lung Injury: Perspectives and Limitations. Int J Mol Sci 2025; 26:2657. [PMID: 40141299 PMCID: PMC11942046 DOI: 10.3390/ijms26062657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
N-acetylcysteine (NAC) can take part in the treatment of chronic respiratory diseases because of the potent mucolytic, antioxidant, and anti-inflammatory effects of NAC. However, less is known about its use in the treatment of acute lung injury. Nowadays, an increasing number of studies indicates that early administration of NAC may reduce markers of oxidative stress and alleviate inflammation in animal models of acute lung injury (ALI) and in patients suffering from distinct forms of acute respiratory distress syndrome (ARDS) or pulmonary infections including community-acquired pneumonia or Coronavirus Disease (COVID)-19. Besides low costs, easy accessibility, low toxicity, and rare side effects, NAC can also be combined with other drugs. This article provides a review of knowledge on the mechanisms of inflammation and oxidative stress in various forms of ALI/ARDS and critically discusses experience with the use of NAC in these disorders. For preparing the review, articles published in the English language from the PubMed database were used.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Igor Porvaznik
- Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ružomberok, SK-03401 Ružomberok, Slovakia;
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| |
Collapse
|
5
|
C L B Ferreira B, Hannard M, Lozano-Garcia M, Aston L, Tejeda G, Domena JB, Bernard B, Chen J, Bartoli M, Rech Tondin A, Zhou Y, Scorzari A, Perrone CS, Tagliaferro A, Deo S, Daunert S, Dumont CM, Leblanc RM. Investigating the Significances of Thiol Functionalities in SARS-CoV-2 Using Carbon Dots for Viral Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58439-58451. [PMID: 39422222 DOI: 10.1021/acsami.4c14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
While the World Health Organization has declared the end of the SARS-CoV-2 public health emergency, studies related to corona viruses are still under course. As of 2024, the severity of COVID-19 has diminished with current treatments and vaccinations. However, individuals can still face severe complications, highlighting the importance of ongoing research into innovative treatments for current and future coronavirus-related diseases. This study approaches the mechanism of viral entrance into the host cells and the current evidence on the use of sulfhydryl groups for the COVID-19 treatment. Certain thiol drugs, a key contributor to inflammatory processes, exhibit both viral inhibition properties and the potential to regulate cellular oxidative stress by scavenging free radicals. Herein, we developed biocompatible thiol-functionalized carbon dots (CDs) and investigated the correlation between the number of thiols and pseudo-SARS-CoV-2 inhibition, reactive oxygen species (ROS) scavenging, and anti-inflammatory response. The free-radical scavenging experiment and the ROS cellular assay indicate that thiolated CDs serve as effective reducing agents and potential regulators of cellular oxidative stress. The CDs also demonstrated good cell viability alongside significant antiviral capabilities, with inhibition levels up to 60.4%. Furthermore, the flow cytometry results suggest that in an inflammatory environment, the presence of thiolated CDs promotes an anti-inflammatory response. Overall, the results demonstrate a strong correlation between the number of thiols and the increased efficacy observed across experiments, presenting thiolated CDs as promising candidates to prevent and treat COVID-19 infection.
Collapse
Affiliation(s)
- Braulio C L B Ferreira
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Maxence Hannard
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Mercedes Lozano-Garcia
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Lillian Aston
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Justin B Domena
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Mattia Bartoli
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, Turin 10144, Italy
| | - Arthur Rech Tondin
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Annalise Scorzari
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Caitlyn S Perrone
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129 Italy
| | - Sapna Deo
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United States
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
6
|
Najafi-Fard S, Farroni C, Petrone L, Altera AMG, Salmi A, Vanini V, Cuzzi G, Alonzi T, Nicastri E, Gualano G, Palmieri F, Piacentini M, Goletti D. Immunomodulatory effects of cysteamine and its potential use as a host-directed therapy for tuberculosis. Front Immunol 2024; 15:1411827. [PMID: 39530101 PMCID: PMC11550979 DOI: 10.3389/fimmu.2024.1411827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Cysteamine, a drug approved to treat cystinosis, has been proposed as a host-directed therapy for M. tuberculosis (Mtb) and SARS-CoV-2. The impact of cysteamine on the immune responses has not been fully investigated. We aimed to in vitro evaluate the immunomodulatory effects of cysteamine on peripheral blood mononuclear cells (PBMCs) using the purified protein derivative (PPD) as a recall antigen, and an unspecific stimulus as staphylococcal enterotoxin B (SEB). Methods PBMCs isolated from subjects with tuberculosis infection (TBI), those with tuberculosis disease (TB), and healthy controls (HC) were in vitro stimulated with PPD or SEB and treated or not with cysteamine at different concentrations (50 µM-400 µM) for 6 hours (h) and 24 h. We evaluated the T helper1 (Th1) and T cytotoxic1 (Tc1) cell cytokine production by flow cytometry and immune-enzymatic assays. In HC, we also evaluated apoptosis and/or necrosis by flow cytometry. Results We observed an immunomodulatory effect of cysteamine at 400 µM in PBMCs from TB and TBI subjects. It significantly reduced PPD-specific Th1 responses at 24 h and at 6 h (p=0.0004 and p=0.0009, respectively), and a similar non-significant trend was observed with cysteamine at 200 µM (p=0.06 at 24 h and p=0.14 at 6 h). Moreover, cysteamine at both 400 µM (p<0.0001 and p=0.0187 at 24 h, respectively, and p<0.0001 at 6 h for both) and 200 µM (p=0.0119 and p=0.0028 at 24 h and p=0.0028 and p=0.0003 at 6 h, respectively) significantly reduced SEB-induced Th1 and Tc1 responses. Furthermore, we found that cysteamine induced morphological lymphocyte changes and significantly reduced the lymphocyte percentage in a dose- and time-dependent manner. Cysteamine at 400 µM induced 8% late apoptosis and 1.6% necrosis (p<0.05) at 24 h. In contrast, despite significant differences from untreated conditions (p<0.05), cysteamine at 400 µM for 6 h induced approximately 1% late apoptosis and 0.1% necrosis in the cells. Conclusions High doses of cysteamine in vitro reduce the percentages of PPD- and SEB-induced Th1 and Tc1 cells and induce late apoptosis and necrosis. Differently, cysteamine at lower doses retains the immunomodulatory effect without affecting cell viability. These findings suggest cysteamine as a potential adjunct to antimicrobial regimens as in the TB or COVID-19 field, for its ability to reduce the inflammatory status.
Collapse
Affiliation(s)
- Saeid Najafi-Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
7
|
Özgöçer T, Çelik H, Ceylan MR. Dynamic Thiol-Disulfide Homeostasis Post-COVID-19 Depends on Age, Gender, and Symptom Severity. Cureus 2024; 16:e72097. [PMID: 39575049 PMCID: PMC11581460 DOI: 10.7759/cureus.72097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
INTRODUCTION It has been indicated that the thiol-disulfide homeostasis plays a role in the pathogenesis of COVID-19 infection. We assessed the impact on the thiol-disulfide homeostasis at 15-day intervals until 60 days, implicated in the pathogenesis of COVID-19, and its clinical relevance in disease progression. METHODS In this study, 43 COVID-19 patients (18 females and 25 males) were categorized based on symptom severity, age group, and body mass index. Serum samples were collected on days 15, 30, 45, and 60 after COVID-19 diagnosis. Thiol and disulfide parameters were measured in the collected serum samples using spectrophotometric methods. RESULTS Serum thiol levels were higher in females and disulfide levels in males (p<0.05). Disulfide levels increased in those older on 15-day post-symptom onset (p<0.05). Serum native thiol levels were higher in patients with moderate and severe symptom severity (p<0.05) than in those with mild severity. The symptoms of chest pain, shortness of breath, loss of taste, and loss of appetite were negatively correlated with thiol levels (p<0.05). CONCLUSIONS This study suggested critical findings of higher disulfide levels in older age and men, even in the weeks after disease onset. This discovery is significant as it could pave the way for interventions to repair thiol-disulfide homeostasis, potentially transforming the treatment of this group. Moreover, native thiols can point to disease severity even weeks after the onset of symptoms.
Collapse
Affiliation(s)
| | - Hakim Çelik
- Physiology, Harran University, Şanlıurfa, TUR
| | | |
Collapse
|
8
|
Roy A, Duari S, Maity S, Biswas S, Mishra AK, Biswas S. Regioselective Brønsted acid catalyzed ring opening of aziridines by phenols and thiophenols; a gateway to access functionalized indolines, indoles, benzothiazines, dihydrobenzo-thiazines, benzo-oxazines and benzochromenes. Org Biomol Chem 2024; 22:5653-5664. [PMID: 38919997 DOI: 10.1039/d4ob00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Brønsted acid catalyzed regioselective ring opening of aziridines by phenols and thiophenols have been reported. Involvement of a series of aziridines with a range of phenols and thiophenols offer the generality of the reported protocol. Completion of the reaction at room temperature within very short time brings the uniqueness of the developed technique. To emphasis on the application of the developed methodology, the products have been used for the further synthesis of a range of useful and novel heterocyclic molecules such as indolines, indoles, benzothiazines, dihydrobenzothiazines, benzo-oxazines and benzochromenes.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Abhishek Kumar Mishra
- Department of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow - 226031, U. P., India
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| |
Collapse
|
9
|
de Koning MSLY, Emmens JE, Romero-Hernández E, Bourgonje AR, Assa S, Figarska SM, Cleland JGF, Samani NJ, Ng LL, Lang CC, Metra M, Filippatos GS, van Veldhuisen DJ, Anker SD, Dickstein K, Voors AA, Lipsic E, van Goor H, van der Harst P. Systemic oxidative stress associates with disease severity and outcome in patients with new-onset or worsening heart failure. Clin Res Cardiol 2023; 112:1056-1066. [PMID: 36997667 PMCID: PMC10062262 DOI: 10.1007/s00392-023-02171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Oxidative stress may be a key pathophysiological mediator in the development and progression of heart failure (HF). The role of serum-free thiol concentrations, as a marker of systemic oxidative stress, in HF remains largely unknown. OBJECTIVE The purpose of this study was to investigate associations between serum-free thiol concentrations and disease severity and clinical outcome in patients with new-onset or worsening HF. METHODS Serum-free thiol concentrations were determined by colorimetric detection in 3802 patients from the BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF). Associations between free thiol concentrations and clinical characteristics and outcomes, including all-cause mortality, cardiovascular mortality, and a composite of HF hospitalization and all-cause mortality during a 2-years follow-up, were reported. RESULTS Lower serum-free thiol concentrations were associated with more advanced HF, as indicated by worse NYHA class, higher plasma NT-proBNP (P < 0.001 for both) and with higher rates of all-cause mortality (hazard ratio (HR) per standard deviation (SD) decrease in free thiols: 1.253, 95% confidence interval (CI): 1.171-1.341, P < 0.001), cardiovascular mortality (HR per SD: 1.182, 95% CI: 1.086-1.288, P < 0.001), and the composite outcome (HR per SD: 1.058, 95% CI: 1.001-1.118, P = 0.046). CONCLUSIONS In patients with new-onset or worsening HF, a lower serum-free thiol concentration, indicative of higher oxidative stress, is associated with increased HF severity and poorer prognosis. Our results do not prove causality, but our findings may be used as rationale for future (mechanistic) studies on serum-free thiol modulation in heart failure. Associations of serum-free thiol concentrations with heart failure severity and outcomes.
Collapse
Affiliation(s)
- Marie-Sophie L Y de Koning
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Johanna E Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Solmaz Assa
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Sylwia M Figarska
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - John G F Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Institute of Cardiology, University of Brescia, Brescia, Italy
| | | | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Stefan D Anker
- Department of Cardiology (CVK), Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Rasool N, Negi D, Singh Y. Thiol-Functionalized, Antioxidant, and Osteogenic Mesoporous Silica Nanoparticles for Osteoporosis. ACS Biomater Sci Eng 2023. [PMID: 37172017 DOI: 10.1021/acsbiomaterials.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Osteoporosis is a chronic bone disorder characterized by decreased bone mass, leading to brittle bones and fractures. Oxidative stress has been identified as the most profound trigger for the initiation and progression of osteoporosis. Current treatment strategies do not induce new bone formation and fail to address a high level of reactive oxygen species (ROS). Mesoporous silica nanoparticles (MSNs) have been explored in bone tissue regeneration owing to their inherent osteogenic property, but they lack antioxidant and cell adhesion properties, required in such applications. We have developed thiolated, bioactive mesoporous silica nanoparticles (MSN-SH) to address this challenge. MSNs were fabricated using the Stöber method, and 11% of the surface was functionalized post-synthesis with thiol groups using MPTMS to obtain MSN-SH. The particle size measured by the dynamic light scattering technique was found to be around 300 nm. The surface morphology was investigated using HR-TEM, and their physical and chemical properties were characterized using various spectroscopic techniques. They exhibited more than 90% antioxidant activity, neutralized ROS formed in cells, and provided protection against ROS-induced cell damage. The cell viability assay in murine osteoblast precursor cells (MC3T3) showed that MSN-SH is cell-proliferative in nature with 140% cell viability. Osteogenic potential was evaluated by measuring the ALP activities, calcium deposition, and gene expression levels of osteogenic markers, such as RUNX2, ALP, OCN, and OPN, and results revealed that MSN-SH increases calcium deposition and induces osteogenesis through upregulation of osteogenic genes and markers without the involvement of any osteogenic supplements. Besides promoting osteogenesis, MSN-SH was found to inhibit osteoclastogenesis. The nanomaterial was found to be regenerative in nature, and it stimulated migration of osteoblast cells and caused a complete wound closure within 48 h. We were able to achieve a multifunctional nanomaterial by simply modifying the surface. MSNs have been explored for bone tissue engineering/osteoporosis as a composite system incorporating metals, like gold and cerium, or as a nanocarrier loaded with growth factors or active drugs. This study offers a simple and economical method to enhance the existing properties of MSNs and impart new activities by a single-step surface modification. It can be concluded that MSN-SH holds promise as a complementary and alternate treatment for osteoporosis along with the standardized therapy.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
11
|
Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms. Microbiol Spectr 2022; 10:e0341522. [PMID: 36445126 PMCID: PMC9769599 DOI: 10.1128/spectrum.03415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biofilm formation by Streptococcus pneumoniae is associated with colonization of the upper respiratory tract, including the carrier state, and with chronic respiratory infections in patients suffering from chronic obstructive pulmonary disease (COPD). The use of antibiotics alone to treat recalcitrant infections caused by biofilms is insufficient in many cases, requiring novel strategies based on a combination of antibiotics with other agents, including antibodies, enzybiotics, and antioxidants. In this work, we demonstrate that the third-generation oral cephalosporin cefditoren (CDN) and the antioxidant N-acetyl-l-cysteine (NAC) are synergistic against pneumococcal biofilms. Additionally, the combination of CDN and NAC resulted in the inhibition of bacterial growth (planktonic and biofilm cells) and destruction of the biofilm biomass. This marked antimicrobial effect was also observed in terms of viability in both inhibition (prevention) and disaggregation (treatment) assays. Moreover, the use of CDN and NAC reduced bacterial adhesion to human lung epithelial cells, confirming that this strategy of combining these two compounds is effective against resistant pneumococcal strains colonizing the lung epithelium. Finally, administration of CDN and NAC in mice suffering acute pneumococcal pneumonia caused by a multidrug-resistant strain was effective in clearing the bacteria from the respiratory tract in comparison to treatment with either compound alone. Overall, these results demonstrate that the combination of oral cephalosporins and antioxidants, such as CDN and NAC, respectively, is a promising strategy against respiratory biofilms caused by S. pneumoniae. IMPORTANCE Streptococcus pneumoniae is one of the deadliest bacterial pathogens, accounting for up to 2 million deaths annually prior to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccines have decreased the burden of diseases produced by S. pneumoniae, but the rise of antibiotic-resistant strains and nonvaccine serotypes is worrisome. Pneumococcal biofilms are associated with chronic respiratory infections, and treatment is challenging, making the search for new antibiofilm therapies a priority as biofilms become resistant to traditional antibiotics. In this work, we used the combination of an antibiotic (CDN) and an antioxidant (NAC) to treat the pneumococcal biofilms of relevant clinical isolates. We demonstrated a synergy between CDN and NAC that inhibited and treated pneumococcal biofilms, impaired pneumococcal adherence to the lung epithelium, and treated pneumonia in a mouse pneumonia model. We propose the widely used cephalosporin CDN and the repurposed drug NAC as a new antibiofilm therapy against S. pneumoniae biofilms, including those formed by antibiotic-resistant clinical isolates.
Collapse
|
12
|
Izquierdo-Alonso JL, Pérez-Rial S, Rivera CG, Peces-Barba G. N-acetylcysteine for prevention and treatment of COVID-19: Current state of evidence and future directions. J Infect Public Health 2022; 15:1477-1483. [PMID: 36410267 PMCID: PMC9651994 DOI: 10.1016/j.jiph.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19) and can be associated with serious complications, including acute respiratory distress syndrome. This condition is accompanied by a massive release of cytokines, also denominated cytokine storm, development of systemic oxidative stress and a prothrombotic state. In this context, it has been proposed a role for acetylcysteine (NAC) in the management of patients with COVID-19. NAC is a molecule classically known for its mucolytic effect, but it also has direct and indirect antioxidant activity as a precursor of reduced glutathione. Other effects of NAC have also been described, such as modulating the immune and inflammatory response, counteracting the thrombotic state, and having an antiviral effect. The pharmacological activities of NAC and its effects on the mechanisms of disease progression make it a potential therapeutic agent for COVID-19. NAC is safe, tolerable, affordable, and easily available. Moreover, the antioxidant effects of the molecule may even prevent infection and play an important role as a complement to vaccination. Although the clinical efficacy and dosing regimens of NAC have been evaluated in the clinical setting with small series of patients, the results are promising. In this article, we review the pathogenesis of SARS-CoV-2 infection and the current knowledge of the mechanisms of action of NAC across disease stages. We also propose NAC posology strategies to manage COVID-19 patients in different clinical scenarios.
Collapse
Affiliation(s)
- José Luis Izquierdo-Alonso
- Servicio de Neumología, Gerencia de Atención Integrada de Guadalajara, Spain,Correspondence to: Gerencia de Atención Integrada de Guadalajara, C/Donante de sangre, s/n, 19002 Guadalajara, Spain
| | | | | | | |
Collapse
|
13
|
Clove bud (Syzygium aromaticum L.) polyphenol helps to mitigate metabolic syndrome by establishing intracellular redox homeostasis and glucose metabolism: A randomized, double-blinded, active-controlled comparative study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
15
|
Avdeev SN. COVID-19: Opportunities to Improve Prognosis. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:404-411. [PMID: 36091855 PMCID: PMC9447977 DOI: 10.1134/s1019331622040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
COVID-19 is characterized by a severe course in approximately 5‒10% of patients, who require admittance to the intensive care unit and mechanical ventilation, which is associated with a very high risk of a poor prognosis. At present, in real clinical practice, in managing severe patients with COVID-19, noninvasive ventilation (NIV) is widely used (in some countries, up to 60% of all methods of respiratory support). In most studies on the effectiveness of NIV in hypoxemic acute respiratory failure in patients with COVID-19, the need for tracheal intubation and hospital mortality with the use of NIV averaged 20-30%, which suggests the rather high efficiency of this method. The COVID-19 pandemic has given a powerful impetus to the widespread use of prone positioning among nonintubated patients with acute respiratory failure caused by COVID-19. Several studies have shown that prone positioning can reduce the need for mechanical ventilation and hospital mortality. Medications that have proven effective in severe forms of COVID-19 include remdesivir, systemic glucocorticoids, tocilizumab, baricitinib, and anticoagulants. Among the new promising areas of drug therapy, noteworthy is the use of thiol-containing drugs (N-acetylcysteine), inhaled surfactant, and inhaled prostacyclin analogues.
Collapse
Affiliation(s)
- S. N. Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Pulmonology Research Institute, Federal Medical‒Biological Agency, Moscow, Russia
| |
Collapse
|
16
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Hellou E, Mohsin J, Elemy A, Hakim F, Mustafa-Hellou M, Hamoud S. Effect of ArtemiC in patients with COVID-19: A Phase II prospective study. J Cell Mol Med 2022; 26:3281-3289. [PMID: 35587574 PMCID: PMC9170814 DOI: 10.1111/jcmm.17337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Despite intensive efforts, there is no effective remedy for COVID‐19. Moreover, vaccination efficacy declines over time and may be compromised against new SARS‐CoV‐2 lineages. Therefore, there remains an unmet need for simple, accessible, low‐cost and effective pharmacological anti‐SARS‐CoV‐2 agents. ArtemiC is a medical product comprising artemisinin, curcumin, frankincense and vitamin C, all of which possess anti‐inflammatory and anti‐oxidant properties. The present Phase II placebo‐controlled, double‐blinded, multi‐centred, prospective study evaluated the efficacy and safety of ArtemiC in patients with COVID‐19. The study included 50 hospitalized symptomatic COVID‐19 patients randomized (2:1) to receive ArtemiC or placebo oral spray, twice daily on Days 1 and 2, beside standard care. A physical examination was performed, and vital signs and blood tests were monitored daily until hospital discharge (or Day 15). A PCR assessment of SARS‐CoV‐2 carriage was performed at screening and on last visit. ArtemiC improved NEWS2 in 91% of patients and shortened durations of abnormal SpO2 levels, oxygen supplementation and fever. No treatment‐related adverse events were reported. These findings suggest that ArtemiC curbed deterioration, possibly by limiting cytokine storm of COVID‐19, thus bearing great promise for COVID‐19 patients, particularly those with comorbidities.
Collapse
Affiliation(s)
- Elias Hellou
- Department of Cardiology, E.M.M.S Hospital, Nazareth, Israel.,Department of Cardiology, Hillel Yaffe Hospital, Hadera, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jameel Mohsin
- Department of Cardiology, Hillel Yaffe Hospital, Hadera, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ameer Elemy
- Victory Department for COVID-19 Patients, E.M.M.S Hospital, Nazareth, Israel
| | - Fahed Hakim
- Victory Department for COVID-19 Patients, E.M.M.S Hospital, Nazareth, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
| | - Mona Mustafa-Hellou
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Shadi Hamoud
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
19
|
Affiliation(s)
- Peter V Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center/Einstein Division, 1825 Eastchester Road, Bronx, NY, 10461, USA.
| |
Collapse
|
20
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|