1
|
Ueda Y, Omiya S, Pinney J, Bylicky MA, Aryankalayil MJ. Liver quad culture chip as a model for radiation injury research. Sci Rep 2025; 15:12414. [PMID: 40216867 PMCID: PMC11992238 DOI: 10.1038/s41598-025-96140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Both cancer patients receiving radiotherapy and civilians in a mass casualty nuclear event may suffer from radiation induced damage to organ systems. Radiation induced liver disease (RILD) can cause acute and long-term organ dysfunction that potentially leads to death. The objective of this study was to ascertain the validity of a liver quad-culture chip, a micro-physiological system comprising primary human hepatocytes and non-parenchymal cells (NPCs), including liver sinusoidal endothelial cells, hepatic stellate cells (HSCs), and Kupffer cells, as a model for RILD. The radiation exposure to the chip model resulted in DNA damage and cellular senescence of hepatocytes and NPCs. We observed metabolic dysfunction, inflammation, endothelial dysfunction, and HSCs activation. Whole genome sequencing revealed gene alterations in pathways relevant to RILD, as well as the potential efficacy of N-acetylcysteine amide (NACA) against RILD. NACA exhibited the capacity to mitigate DNA damage and cellular senescence and decreased the impact of radiation exposure on other pathophysiological changes. CDKN1A and miR-34a-5p were validated as useful radiation response and treatment efficacy biomarkers. These findings highlight the potential of the liver quad-culture chip as an effective model for investigating the microenvironment in RILD and for evaluating the efficacy of therapeutic countermeasures and biomarkers.
Collapse
Affiliation(s)
- Yuki Ueda
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Satoshi Omiya
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | | | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Kirichenko AV, Lee D, Wagner P, Oh S, Lee H, Pavord D, Shamsesfandabadi P, Chen A, Machado L, Bunker M, Sanguino A, Shah C, Uemura T. Image-Guided Stereotactic Body Radiotherapy (SBRT) with Enhanced Visualization of Tumor and Hepatic Parenchyma in Patients with Primary and Metastatic Liver Malignancies. Cancers (Basel) 2025; 17:1088. [PMID: 40227630 PMCID: PMC11988117 DOI: 10.3390/cancers17071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
GOAL This study evaluates the feasibility and outcome of a personalized MRI-based liver SBRT treatment planning platform with the SPION contrast agent Ferumoxytol® (Sandoz Inc.; Princeton, NJ, USA) to maintain a superior real-time visualization of liver tumors and volumes of functional hepatic parenchyma for radiotherapy planning throughout multi-fractionated liver SBRT with online plan adaptations on an Elekta Unity 1.5 T MR-Linac (Elekta; Stockholm, Sweden). MATERIALS AND METHODS Patients underwent SPION-enhanced MRI on the Elekta Unity MR-Linac for improved tumor and functional hepatic parenchyma visualization. An automated contouring algorithm was applied for the delineation and subsequent guided avoidance of functional liver parenchyma volumes (FLVs) on the SPION-enhanced MR-Linac. Radiation dose constraints were adapted exclusively to FLV. Local control, toxicity, and survival were assessed with at least 6-month radiographic follow-up. Pre- and post-transplant outcomes were analyzed in the subset of patients with HCC and hepatic cirrhosis who completed SBRT as a bridge to liver transplant. Model of End-Stage Liver Disease (MELD-Na) was used to score hepatic function before and after SBRT. RESULTS With a median follow-up of 23 months (range: 3-40 months), 23 HCC patients (26 lesions treated) and 9 patients (14 lesions treated) with hepatic metastases received SBRT (mean dose: 48 Gy, range: 36-54 Gy) in 1-5 fractions. Nearly all patients in this study had pe-existing liver conditions, including hepatic cirrhosis (23), prior TACE (7), prior SBRT (18), or history of hepatic resection (2). Compared to the non-contrast images, SPIONs improved tumor visibility on post-SPION images on the background of negatively enhancing functionally active hepatic parenchyma. Prolonged SPION-contrast retention within hepatic parenchyma enabled per-fraction treatment adaptation throughout the entire multi-fraction treatment course. FLV loss (53%, p < 0.0001) was observed in cirrhotic patients, but functional and anatomic liver volumes remained consistent in non-cirrhotic patients. Mean dose to FLV was maintained within the liver threshold tolerance to radiation in all patients after the optimization of Step-and-Shoot Intensity-Modulated Radiotherapy (SS-IMRT) on the SPION-enhanced MRI-Linac. No radiation-induced liver disease was observed within 6 months post-SBRT, and the MELD-Na score in cirrhotic patients was not significantly elevated at 3-month intervals after SBRT completion. CONCLUSIONS SPION Ferumoxytol® administered intravenously as an alternative MRI contrast agent on the day of SBRT planning produces a long-lasting contrast effect between tumors and functional hepatic parenchyma for precision targeting and guided avoidance during the entire course of liver SBRT, enabling fast and accurate online plan adaptation on the 1.5 T Elekta Unity MR-Linac. This approach demonstrates a safe and effective bridging therapy for patients with hepatic cirrhosis, leading to low toxicity and favorable transplant outcomes.
Collapse
Affiliation(s)
- Alexander V. Kirichenko
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Danny Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Patrick Wagner
- Division of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA;
| | - Seungjong Oh
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Hannah Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Daniel Pavord
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Parisa Shamsesfandabadi
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Allen Chen
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| | - Lorenzo Machado
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| | - Mark Bunker
- Department of Clinical Pathology, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (M.B.); (A.S.)
| | - Angela Sanguino
- Department of Clinical Pathology, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (M.B.); (A.S.)
| | - Chirag Shah
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Tadahiro Uemura
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| |
Collapse
|
3
|
Kirichenko A, Uemura T, Liang Y, Hasan S, Abel S, Renz P, Shamsesfandabadi P, Carpenter J, Yin Y, Thai N. Stereotactic Body Radiation Therapy (SBRT) for Hepatocellular Carcinoma (HCC) With Single Photon Emission Computed Tomography (SPECT) Functional Treatment Planning in Patients With Advanced Hepatic Cirrhosis. Adv Radiat Oncol 2024; 9:101367. [PMID: 38405302 PMCID: PMC10885583 DOI: 10.1016/j.adro.2023.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/19/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose We report on the feasibility and outcomes of liver stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC) with single-photon emission computed tomography (SPECT) functional treatment planning in patients with Child-Pugh (CP) B/C cirrhosis. Methods and Materials Liver SPECT with 99mTc-sulfur colloid was coregistered to treatment planning computed tomography (CT) for the guided avoidance of functional hepatic parenchyma during SBRT. Functional liver volumes (FLVs) obtained from SPECT were compared with anatomic liver volumes defined on the planning CT. Radiation dose constraints were adapted exclusively to FLV. Local control, toxicity, and survival were reported with at least 6 months of radiographic follow-up. Pre- and posttransplant outcomes were analyzed in a subset of patients who completed SBRT as a bridge to liver transplant. Model of End-Stage Liver Disease was used to score hepatic function before and after SBRT completion. Results With a median follow-up of 32 months, 45 patients (58 lesions) with HCC and CP-B/C cirrhosis received SBRT to a median dose of 45 Gy (3-5 fractions). FLV loss (34%, P < .001) was observed in all patients, and the functional and anatomic liver volumes matched well in a control group of noncirrhotic/non-HCC patients. Despite marked functional parenchyma retraction, the amount of FLV on SPECT exposed to the threshold irradiation was significantly less than the CT liver volumes (P < .001) because of the optimized beam placement during dosimetry planning. Twenty-three patients (51%) successfully completed orthotopic liver transplant, with a median time to transplant of 9.2 months. With 91% in-field local control, the overall 2-year survival was 65% (90% after the orthotopic liver transplant), with no incidence of radiation-induced liver disease observed within 3 to 4 months or accelerated CP class migration from B to C within the first 6 months post-SBRT. Mean Model of End-Stage Liver Disease-Na score was not significantly elevated at 3-month intervals after SBRT completion. Conclusions Functional treatment planning with 99mTc sulfur colloid SPECT/CT allows identification and avoidance of functional hepatic parenchyma in patients with CP-B/C cirrhosis, leading to low toxicity and satisfactory transplant outcomes.
Collapse
Affiliation(s)
- Alexander Kirichenko
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Tadahiro Uemura
- Division of Abdominal Transplantation and Hepato-Biliary Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yun Liang
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | | | - Steven Abel
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Paul Renz
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Parisa Shamsesfandabadi
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Jennifer Carpenter
- Division of Abdominal Transplantation and Hepato-Biliary Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yue Yin
- Allegheny-Singer Research Institute, Biostatistics, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Ngoc Thai
- Division of Abdominal Transplantation and Hepato-Biliary Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Aloe vera gel as a stimulant for mesenchymal stem cells differentiation and a natural therapy for radiation induced liver damage. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zhang LW, Koci J, Jeffery B, Riviere JE, Monteiro-Riviere NA. Safety assessment of potential food ingredients in canine hepatocytes. Food Chem Toxicol 2015; 78:105-15. [PMID: 25660481 DOI: 10.1016/j.fct.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
This research aimed to develop in vitro methods to assess hazard of canine food ingredients. Canine hepatocytes were harvested and cell viability of clove-leaf oil (CLO), eugenol (EUG), lemongrass oil (LGO), guanosine monophosphate (GMP), inosine monophosphate (IMP), sorbose, ginger-root extract (GRE), cinnamon-bark oil (CBO), cinnamaldehyde (CINA), thymol oil (TO), thymol (THYM), and citric acid were assessed with positive controls: acetaminophen (APAP), aflatoxin B1 and xylitol. Molecular Toxicology PathwayFinder array (MTPF) analyzed toxicity mechanisms for LGO. LC50 for APAP was similar among human (3.45), rat (2.35), dog (4.26 mg/ml). Aflatoxin B1 had an LC50 of 4.43 (human), 5.78 (rat) and 6.05 (dog) µg/ml; xylitol did not decrease viability. LC50 of CLO (0.185 ± 0.075(SD)), EUG (0.165 ± 0.112), LGO (0.220 ± 0.012), GRE (1.54 ± 0.31) mg/ml; GMP (166.03 ± 41.83), GMP + IMP (208.67 ± 15.27) mM; CBO (0.08 ± 0.03), CINA (0.11 ± 0.01), TO (0.21 ± 0.03), THYM (0.05 ± 0.01), citric acid (1.58 ± 0.08) mg/ml, while sorbose was non-toxic. LGO induced upregulation of 16 and down-regulation of 24 genes, which CYP and heat shock most affected. These results suggest that in vitro assays such as this may be useful for hazard assessment of food ingredients for altered hepatic function.
Collapse
Affiliation(s)
- Leshuai W Zhang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Juraj Koci
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Brett Jeffery
- Mars Global Food Safety Center, Yanqi Economic Development Zone, Huairou, Beijing, P.R. China 101407
| | - Jim E Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Nancy A Monteiro-Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.
| |
Collapse
|
6
|
CHENG WEI, XIAO LEI, AINIWAER AIMUDULA, WANG YUNLIAN, WU GE, MAO RUI, YANG YING, BAO YONGXING. Molecular responses of radiation-induced liver damage in rats. Mol Med Rep 2015; 11:2592-2600. [PMID: 25483171 PMCID: PMC4337597 DOI: 10.3892/mmr.2014.3051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the molecular responses involved in radiation‑induced liver damage (RILD). Sprague‑Dawley rats (6‑weeks‑old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT‑qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor‑β1 (TGF‑β1), nuclear factor (NF)‑κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor‑α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF‑β1/Smads and NF‑κB65 signaling pathways are involved in the mechanism of RILD recovery.
Collapse
Affiliation(s)
- WEI CHENG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - LEI XIAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - AIMUDULA AINIWAER
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YUNLIAN WANG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - GE WU
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - RUI MAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YING YANG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YONGXING BAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
7
|
Richter C, Seco J, Hong TS, Duda DG, Bortfeld T. Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism. Med Hypotheses 2014; 83:477-81. [PMID: 25175713 DOI: 10.1016/j.mehy.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 01/23/2023]
Abstract
Liver irradiation leads to a decreased uptake of a hepatobiliary directed MRI contrast agent (Gd-EOB-DTPA) as shown in studies performed 1-6 months after proton therapy, stereotactic ablative body radiation therapy and brachytherapy. Therefore, Gd-EOB-DTPA enhanced MRI could potentially be used for in vivo verification of the delivered dose distribution. Achieving this would be highly desirable, especially for particle therapy, where the accuracy and precision of the spatial dose deposition is affected by uncertainties of the range of particles in patients. However, the empirically detected effect needs to be understood before it can be used as a surrogate imaging biomarker for in vivo treatment verification or even liver functionality. Here, we propose a model of the underlying molecular mechanism of this phenomenon and discuss its implications for radiation therapy. We model the multi-step process starting from the immediate response after liver irradiation to the delayed/subsequent signal decrease in Gd-EOB-DTPA enhanced MRI. The model is based on both: (a) Evidence from different previously published reports and (b) a detailed evaluation of intra-hepatic signaling using a pathway analysis to identify potential pathways that are critical in this process. The proposed model provides mechanistic understanding of the reduced signal intensity in Gd-EOB-DTPA enhanced MRI occurring in irradiated liver. We think that establishing this comprehensive model will be of great interest for the field of radiation oncology and can trigger further research. For example, measuring the expression of involved cytokines and specific transport proteins in blood samples and biopsy derived tissue samples and correlating the results with MRI imaging could give important information and may even explain inter-patient variations in MRI signal decrease.
Collapse
Affiliation(s)
- Christian Richter
- OncoRay - National Center of Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Joao Seco
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - Ted S Hong
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - Dan G Duda
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| |
Collapse
|
8
|
Sultan S, Cameron S, Ahmad S, Malik IA, Schultze FC, Hielscher R, Rave-Fränk M, Hess CF, Ramadori G, Christiansen H. Serum Lipocalin2 is a potential biomarker of liver irradiation damage. Liver Int 2013; 33:459-68. [PMID: 23331620 DOI: 10.1111/liv.12073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM IL-6 - IL-1- lipocalin2 (LCN2) - liver irradiation - oxidative stress - TNF-a Lipocalin2 (LCN2) is an acute phase protein. The source of its increased serum level in oxidative stress conditions (ROS) remains still unknown. We prospectively evaluate the serum LCN2 increase after single dose liver irradiation along with hepatic LCN2 gene and protein expression. METHODS A single dose of 25 Gray was administered percutaneously to the liver of randomly paired rats after a planning CT scan. Male Wistar rats were sacrificed 1, 3, 6, 12, 24 and 48 h after irradiation along with sham-irradiated controls. ELISA, RT-PCR, Western blot and immunofluorescence staining was performed. Furthermore, hepatocytes, myofibroblasts and Kupffer cells were isolated from the liver of healthy rats and irradiated ex-vivo. RESULTS After liver irradiation, LCN2 serum levels increased significantly up to 2.7 μg/ml within 6 h and stayed elevated over 24 h. LCN2 specific transcripts increased significantly up to 552 ± 109-fold at 24 h after liver irradiation, which was further confirmed at protein level. α2-macroglobulin and hemoxygenase-1 also showed an increase, but the magnitude was less as compared to LCN2. LCN2+ granulocytes were detected within 1 h after irradiation around central and portal fields and remained high during the course of study. Ex-vivo irradiated hepatocytes (2.4 ± 0.6-fold) showed a higher LCN2 gene expression as compared to myofibroblasts and Kupffer cells. IL-1β treatment further increased LCN2 gene expression in cultured hepatocytes. CONCLUSIONS Single dose liver irradiation induces a significant increase in LCN2 serum levels, comparable to the induction of acute phase proteins. We suggest LCN2 as marker for the early phase of radiation-induced tissue damage.
Collapse
Affiliation(s)
- Sadaf Sultan
- Department of Gastroenterology and Endocrinology, All University Medical Center, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Lv H, Song S, Shen X, Yang L, Yu W. Emulsified isoflurane preconditioning protects isolated rat Kupffer cells against hypoxia/reoxygenation-induced injury. Int J Med Sci 2013; 10:286-91. [PMID: 23372435 PMCID: PMC3558717 DOI: 10.7150/ijms.5343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the protective effect of emulsified isoflurane (EI) preconditioning on isolated rat Kupffer cells (KCs) subjected to hypoxia/reoxygenation (H/R)-induced injury. MATERIALS AND METHODS KCs were isolated by collagenase digestion and purified by Percoll density gradient centrifugation. Primary cultured KCs were divided into five groups: control, H/R plus 0.1% lipid preconditioning, and H/R plus 0.05%, 0.1% or 0.2% emulsified isoflurane preconditioning groups. H/R was induced by 4 h of hypoxia followed by 6 h of reoxygenation. Reactive oxygen species (ROS) production in the KCs and the concentration of tumor necrosis factor-α (TNF-α) in the KC culture media were measured, and the apoptosis of KCs was assayed concomitantly. RESULTS ROS and TNF-α production were markedly induced in the H/R + lipid group, and lower in the 0.2% and 0.1% EI groups (P<0.05). The apoptotic rate in the H/R + lipid group was significantly higher than that in the 0.2% and 0.1% EI groups (P<0.05). CONCLUSIONS Emulsified isoflurane protects isolated rat KCs against H/R induced injury by decreasing the production of ROS and TNF-α and attenuating apoptosis in KCs.
Collapse
Affiliation(s)
- Zhenmeng Wang
- Department of Anaesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | | | | | | | | | | |
Collapse
|
10
|
Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response. Cell Tissue Res 2011; 344:299-312. [PMID: 21437659 PMCID: PMC3085758 DOI: 10.1007/s00441-011-1152-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/22/2011] [Indexed: 01/17/2023]
Abstract
The “acute phase” is clinically characterized by homeostatic alterations such as somnolence, adinamia, fever, muscular weakness, and leukocytosis. Dramatic changes in iron metabolism are observed under acute-phase conditions. Rats were administered turpentine oil (TO) intramuscularly to induce a sterile abscess and killed at various time points. Tissue iron content in the liver and brain increased progressively after TO administration. Immunohistology revealed an abundant expression of transferrin receptor-1 (TfR1) in the membrane and cytoplasm of the liver cells, in contrast to almost only nuclear expression of TfR1 in brain tissue. The expression of TfR1 increased at the protein and RNA levels in both organs. Gene expression of hepcidin, ferritin-H, iron-regulatory protein-1, and heme oxygenase-1 was also upregulated, whereas that of hemojuvelin, ferroportin-1, and the hemochromatosis gene was significantly downregulated at the same time points in both the brain and the liver at the RNA level. However, in contrast to observations in the liver, gene expression of the main acute-phase cytokine (interleukin-6) in the brain was significantly upregulated. In vitro experiments revealed TfR1 membranous protein expression in the liver cells, whereas nuclear and cytoplasmic TfR1 protein was detectable in brain cells. During the non-bacterial acute phase, iron content in the liver and brain increased together with the expression of TfR1. The iron metabolism proteins were regulated in a way similar to that observed in the liver, possibly by locally produced acute-phase cytokines. The significance of the presence of TfR1 in the nucleus of the brain cells has to be clarified.
Collapse
|
11
|
Malik IA, Moriconi F, Sheikh N, Naz N, Khan S, Dudas J, Mansuroglu T, Hess CF, Rave-Fränk M, Christiansen H, Ramadori G. Single-dose gamma-irradiation induces up-regulation of chemokine gene expression and recruitment of granulocytes into the portal area but not into other regions of rat hepatic tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1801-15. [PMID: 20185578 DOI: 10.2353/ajpath.2010.090505] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver damage is a serious clinical complication of gamma-irradiation. We therefore exposed rats to single-dose gamma-irradiation (25 Gy) that was focused on the liver. Three to six hours after irradiation, an increased number of neutrophils (but not mononuclear phagocytes) was observed by immunohistochemistry to be attached to portal vessels between and around the portal (myo)fibroblasts (smooth muscle actin and Thy-1(+) cells). MCP-1/CCL2 staining was also detected in the portal vessel walls, including some cells of the portal area. CC-chemokine (MCP-1/CCL2 and MCP-3/CCL7) and CXC-chemokine (KC/CXCL1, MIP-2/CXCL2, and LIX/CXCL5) gene expression was significantly induced in total RNA from irradiated livers. In laser capture microdissected samples, an early (1 to 3 hours) up-regulation of CCL2, CXCL1, CXCL8, and CXCR2 gene expression was detected in the portal area but not in the parenchyma; with the exception of CXCL1 gene expression. In addition, treatment with an antibody against MCP-1/CCL2 before irradiation led to an increase in gene expression of interferon-gamma and IP-10/CXCL10 in liver tissue without influencing the recruitment of granulocytes. Indeed, the CCL2, CXCL1, CXCL2, and CXCL5 genes were strongly expressed and further up-regulated in liver (myo)fibroblasts after irradiation (8 Gy). Taken together, these results suggest that gamma-irradiation of the liver induces a transient accumulation of granulocytes within the portal area and that (myo)fibroblasts of the portal vessels may be one of the major sources of the chemokines involved in neutrophil recruitment. Moreover, inhibition of more than one chemokine (eg, CXCL1 and CXCL8) may be necessary to reduce leukocytes recruitment.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- Department of Internal Medicine, University Hospital Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moriconi F, Malik I, Ahmad G, Dudas J, Rave-Fränk M, Vorwerk H, Hille A, Hess CF, Ramadori G, Christiansen H. Effect of irradiation on gene expression of rat liver adhesion molecules: in vivo and in vitro studies. Strahlenther Onkol 2009; 185:460-8. [PMID: 19714308 DOI: 10.1007/s00066-009-1964-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 03/05/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Migration of leukocytes into tissue is a key element of innate and adaptive immunity. An animal study showed that liver irradiation, in spite of induction of chemokine gene expression, does not lead to recruitment of leukocytes into the parenchyma. The aim of this study was to analyze gene expression of adhesion molecules, which mediate leukocyte recruitment into organs, in irradiated rat liver in vivo and rat hepatocytes in vitro. MATERIAL AND METHODS Rat livers in vivo were irradiated selectively at 25 Gy. Isolated hepatocytes in vitro were irradiated at 8 Gy. RNA extracted within 48 h after irradiation in vivo and in vitro was analyzed by real-time PCR (polymerase chain reaction) and Northern blot. Adhesion molecule concentration in serum was measured by ELISA (enzyme-linked immunosorbent assay). Cryostat sections of livers were used for immunohistology. RESULTS Significant radiation-induced increase of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), JAM-1 (junctional adhesion molecule-1), beta1-integrin, beta2-integrin, E-cadherin, and P-selectin gene expression could be detected in vivo, while PECAM-1 (platelet-endothelial cell adhesion molecule-1) gene expression remained unchanged. In vitro, beta1-integrin, JAM-1, and ICAM-2 showed a radiation-induced increased expression, whereas the levels of P-selectin, ICAM-1, PECAM-1, VCAM-1, Madcam-1 (mucosal addressin cell adhesion molecule-1), beta2-integrin, and E-cadherin were downregulated. However, incubation of irradiated hepatocytes with either tumor necrosis factor-(TNF-)alpha, interleukin-(IL-)1beta, or IL-6 plus TNF-alpha led to an upregulation of P-selectin, ICAM-1 and VCAM-1. CONCLUSION The findings suggest that liver irradiation modulates gene expression of the main adhesion molecules in vivo and in cytokine-activated hepatocytes, with the exception of PECAM-1. This may be one reason for the lack of inflammation in the irradiated rat liver.
Collapse
Affiliation(s)
- Federico Moriconi
- Department of Gastroenterology and Endocrinology, Göttingen University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qesaraku B, Dudas J, Rave-Fränk M, Hess CF, Ramadori G, Saile B, Christiansen H. Effect of tumour necrosis factor-alpha and irradiation alone or in combination on the viability of hepatocellular and biliary adenocarcinoma cell lines in vitro. Liver Int 2009; 29:910-21. [PMID: 19226333 DOI: 10.1111/j.1478-3231.2009.01980.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Tumour necrosis factor alpha (TNF-alpha) may exhibit antitumoral activity and can influence the reaction of both tumour and normal tissue to radiation. AIMS To test the effect of TNF-alpha and/or irradiation on hepatocellular (HepG2, Hep3B, Sk-Hep1, HuH7) and cholangiocellular (Sk-chA1, Mz-chA1) tumour cell lines. METHODS Colony formation, apoptosis analysis and trypan blue exclusion were used to assess cell viability. Doses of radiation (2-25 Gy) and TNF-alpha (100-50,000 U) as well as their respective sequencing were varied (24 and 12 h before and 6 h after). The expression of TNF-alpha and TNF receptors 1/2 was determined using real-time polymerase chain reaction and IkappaBalpha protein expression was detected by Western blot. RESULTS Sole irradiation induced a reduction in colony formation in all cell lines and sole TNF-alpha in HepG2 and Sk-chA1 cells only. No difference in apoptosis induction after TNF-alpha or irradiation was observed. Cellular death induced by the combination of TNF-alpha and radiation was not superior to the use of any of the two agents alone. All cell lines revealed that radiation induced upregulation of TNF-alpha whereas the extent of TNF receptor-specific transcription did not change. Furthermore, radiation-induced changes in IkappaBalpha expression were not detectable. CONCLUSIONS Our data suggest that both TNF-alpha and radiation may be treatment options for hepatocellular and cholangiocellular carcinomas. Because TNF-alpha and radiation do not interact in terms of radiosensitization, anti-TNF-alpha treatment may have the potential to protect against hepatocellular injury after abdominal irradiation. However, further in vivo studies are needed to confirm that anti-TNF-alpha treatment does not compromise tumour control and actually attenuates radiation-induced liver injury.
Collapse
Affiliation(s)
- Blendi Qesaraku
- Department of Radiotherapy, University Hospital Goettingen, Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|