1
|
Caramenti L, Wołowiec P, Kędzierawski P, Góźdź S, Buchali A, Hauptmann M, Wojcik A. Individual Sensitivity for Radiotherapy-related Adverse Tissue Reactions in Patients Treated Twice for Metachronous Cancers. Radiat Res 2025; 203:107-114. [PMID: 39805311 DOI: 10.1667/rade-24-00226.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
The role of genetics in susceptibility to radiotherapy-induced toxicities is unclear. A strong impact of genetics should cause correlated toxicities in patients with metachronous double radiotherapy. We ascertained information about demographics, lifestyle, radiotherapy and early toxicities in irradiated tissues for a retrospective cohort of 98 patients from 2 hospitals who underwent two metachronous radiotherapeutic treatments (2000-2022) of different anatomical regions. European Organisation for Research and Treatment of Cancer/Radiation Therapy Oncology Group (EORTC/RTOG) toxicity scores per organ system were combined to a single mean score. We considered as genetic component the variation of toxicity not explained by radiation dose to the tumor, age at radiotherapy, sex, smoking status, and surgery. Variance components of toxicity were evaluated by ordinal logistic regression with random intercept. Common site combinations were breast/contralateral breast (N = 16), breast/endometrium (N = 6), and cervix/breast (N = 5). Mean toxicity over exposed tissues was 0.70 (range, 0-3). Prescribed radiation dose was significantly associated with mean toxicity, with a 5% (95% CI 3-8) increase of the odds for a higher toxicity level per Gy. Sex, surgery, age and smoking were not. There was no genetic contribution to risk of toxicities after adjustment. Toxicity levels were not more similar within patients than between patients, suggesting a negligible impact of genotype on radiotherapy-related toxicities.
Collapse
Affiliation(s)
- Luca Caramenti
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
| | | | - Piotr Kędzierawski
- Holy Cross Cancer Centre, Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Stanisław Góźdź
- Holy Cross Cancer Centre, Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - André Buchali
- University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
| | - Andrzej Wojcik
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
2
|
Holmes-Hampton GP, Kumar VP, Valenzia K, Ghosh SP. Sex as a Factor in Murine Radiation Research: Implications for Countermeasure Development. Cytogenet Genome Res 2023; 163:187-196. [PMID: 37348469 DOI: 10.1159/000531630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kaylee Valenzia
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Dröge LH, Hennies S, Lorenzen S, Conradi LC, Quack H, Liersch T, Helms C, Frank MA, Schirmer MA, Rave-Fränk M, Beißbarth T, Wolff HA. Prognostic value of the micronucleus assay for clinical endpoints in neoadjuvant radiochemotherapy for rectal cancer. BMC Cancer 2021; 21:219. [PMID: 33663399 PMCID: PMC7931609 DOI: 10.1186/s12885-021-07914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background The question whether lymphocyte radiosensitivity is representative of patients’ response to radiotherapy (RT) remains unsolved. We analyzed lymphocyte cytogenetic damage in patients who were homogeneously treated with preoperative radiochemotherapy (RCT) for rectal cancer within clinical trials. We tested for interindividual variation and consistent radiosensitivity after in-vivo and in-vitro irradiation, analyzed the effect of patients’ and RCT characteristics on cytogenetic damage, and tested for correlations with patients’ outcome in terms of tumor response, survival and treatment-related toxicity. Methods The cytokinesis-block micronucleus cytome (CBMNcyt) assay was performed on the peripheral blood lymphocytes (PBLCs) of 134 patients obtained before, during, at the end of RCT, and during the 2-year follow-up. A subset of PBLCs obtained before RCT was irradiated in-vitro with 3 Gy. RCT included 50.4 Gy of pelvic RT with 5-fluorouracil (5-FU) alone (n = 78) or 5-FU plus oxaliplatin (n = 56). The analyzed variables included patients’ age, gender, RT characteristics (planning target volume size [PTV size], RT technique), and chemotherapy characteristics (5-FU plasma levels, addition of oxaliplatin). Outcome was analyzed as tumor regression, patient survival, and acute and late toxicity. Results Cytogenetic damage increased significantly with the radiation dose and varied substantially between individuals. Women were more sensitive than men; no significant age-dependent differences were observed. There was a significant correlation between the cytogenetic damage after in-vitro irradiation and in-vivo RCT. We found a significant effect of the PTV size on the yields of cytogenetic damage after RCT, while the RT technique had no effect. Neither the addition of oxaliplatin nor the 5-FU levels influenced cytogenetic damage. We found no correlation between patient outcome and the cytogenetic damage. Conclusions We found consistent cytogenetic damage in lymphocytes after in-vivo RCT and in-vitro irradiation. Gender was confirmed as a well-known, and the PTV size was identified as a less well-known influencing variable on lymphocyte cytogenetic damage after partial-body irradiation. A consistent level of cytogenetic damage after in-vivo and in-vitro irradiation may indicate the importance of genetic factors for individual radiosensitivity. However, we found no evidence that in-vivo or in-vitro irradiation-induced cytogenetic damage is an adequate biomarker for the response to RCT in rectal cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07914-5.
Collapse
Affiliation(s)
- Leif Hendrik Dröge
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Steffen Hennies
- University Medical Center Göttingen, Göttingen, Germany.,Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333, Munich, Germany
| | - Stephan Lorenzen
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Henriette Quack
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Helms
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Miriam Alice Frank
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Markus Anton Schirmer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Tim Beißbarth
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Andreas Wolff
- University Medical Center Göttingen, Göttingen, Germany.,Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333, Munich, Germany.,Department of Radiotherapy and Radiation Oncology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Bakkenist CJ, Czambel RK, Lin Y, Yates NA, Zeng X, Shogan J, Schmitz JC. Quantitative analysis of ATM phosphorylation in lymphocytes. DNA Repair (Amst) 2019; 80:1-7. [PMID: 31176958 DOI: 10.1016/j.dnarep.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
Abstract
Since many anticancer therapies target DNA and DNA damage response pathways, biomarkers of DNA damage endpoints may prove valuable in basic and clinical cancer research. Ataxia telangiectasia-mutated (ATM) kinase is the principal regulator of cellular responses to DNA double-strand breaks (DSBs). In humans, ATM autophosphorylation at serine 1981 (p-S1981) is an immediate molecular response to nascent DSBs and ionizing radiation (IR). Here we describe the analytical characteristics and fit-for-purpose validation of a quantitative dual-labeled immunoblot that simultaneously measures p-S1981-ATM and pan-ATM in human peripheral blood mononuclear cells (PBMCs) following ex vivo exposure to 2 Gy IR, facilitating the calculation of %p-ATM. To validate our assay, we isolated PBMCs from 41 volunteers. We report that the median basal level of p-S1981-ATM and pan-ATM was 2.4 and 49.5 ng/107 PBMCs, respectively, resulting in %p-ATM of 4%. Following exposure of PBMCs to 2 Gy IR, p-S1981-ATM levels increased 12-fold to 29.8 ng/107 PBMCs resulting in %p-ATM of 63%. Interestingly, we show that PBMCs from women have a 2.6-fold greater median p-S1981-ATM level following IR exposure than men (44.4 versus 16.9 ng/107 cells; p < 0.01). This results in a significantly greater %p-ATM for women (68% versus 49%; p < 0.01). Our rigorous description of the analytical characteristics and reproducibility of phosphoprotein immunoblotting, along with our finding that the ATM DNA damage response is greater in women, has far reaching implications for biomedical researchers.
Collapse
Affiliation(s)
- Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - R Kenneth Czambel
- Department of Medicine, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States; Biomedical Mass Spectrometry Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Jeffery Shogan
- Department of Radiation Oncology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - John C Schmitz
- Department of Medicine, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States.
| |
Collapse
|
5
|
Hultborn R, Albertsson P, Ottosson S, Warnhammar E, Palm Å, Palm S, Elmroth K. Radiosensitivity: Gender and Order of Administration of G-CSF, An Experimental Study in Mice. Radiat Res 2019; 191:335-341. [PMID: 30730283 DOI: 10.1667/rr15038.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To elucidate the potential influence of stimulating bone marrow before cell-cycle-dependent irradiation, we sought to determine overall survival in mice receiving total-body irradiation (TBI) when administered granulocyte stimulating factor (G-CSF) at different time points. Gender differences were also studied. C57/BL/6J mice, aged 9-14 weeks, received 8 Gy TBI in a perspex cage using a linear accelerator. In each of five different experiments, three groups were studied: 1. one control group receiving TBI only; 2. one group treated with filgrastim [500 lg/kg subcutaneously/intraperitoneally (s.c./i.p.)] the day before TBI, followed by daily filgrastim injections postirradiation (1-5 days); and 3. one group treated with daily filgrastim injections only post-TBI (1-5 days). Each experimental group included male and female mice. Survival of the mice was monitored daily, and mice were euthanized when their condition deteriorated. A total of 293 mice were monitored for at least 37 days post-TBI. Control mice that received 8 Gy TBI showed a significant gender difference, with a median survival of 22 days in females and 17 days in males. Addition of G-CSF, irrespective of pre- or postirradiation, significantly improved survival, but in males the improvement was significantly better when G-CSF was not given before TBI. Improved survival in females was independent of the order of administration of GCSF. Multiple filgrastim injections were more effective than a single injection, and s.c. administration was not better than i.p. In conclusion, these findings indicate that male mice are more sensitive to TBI than females. Filgrastim improved survival in both genders irrespective of whether given pre- or postirradiation, but in males the improvement was significantly less if an injection was given before irradiation. These results suggest that, to prevent toxicity most effectively, GCSF should not be given before cytotoxic therapy. While a completely different experimental model was used here, these results may also be extrapolated to indicate that endocrine cell-cycle suppression therapy should not be given before or during cytotoxic therapy of hormone-dependent tumors (e.g., breast and prostate cancer), thus a reduction in the efficacy of cell-cycle-dependent therapy can be prevented.
Collapse
Affiliation(s)
- R Hultborn
- a Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - P Albertsson
- a Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S Ottosson
- a Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Warnhammar
- a Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Å Palm
- b Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S Palm
- b Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Elmroth
- a Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Affiliation(s)
- Zafer Koçak
- Department of Radiation Oncology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
7
|
Fendler W, Malachowska B, Meghani K, Konstantinopoulos PA, Guha C, Singh VK, Chowdhury D. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci Transl Med 2017; 9:9/379/eaal2408. [PMID: 28251902 DOI: 10.1126/scitranslmed.aal2408] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
Effective planning for the medical response to a radiological or nuclear accident is complex. Because of limited resources for medical countermeasures, the key would be to accurately triage and identify victims most likely to benefit from treatment. We used a mouse model system to provide evidence that serum microRNAs (miRNAs) may effectively predict the impact of radiation on the long-term viability of animals. We had previously used nonhuman primates (NHPs) to demonstrate that this concept is conserved and serum miRNA signatures have the potential to serve as prediction biomarkers for radiation-induced fatality in a human population. We identified a signature of seven miRNAs that are altered by irradiation in both mice and NHPs. Genomic analysis of these conserved miRNAs revealed that there is a combination of seven transcription factors that are predicted to regulate these miRNAs in human, mice, and NHPs. Moreover, a combination of three miRNAs (miR-133b, miR-215, and miR-375) can identify, with nearly complete accuracy, NHPs exposed to radiation versus unexposed NHPs. Consistent with historical data, female macaques appeared to be more sensitive to radiation, but the difference was not significant. Sex-based stratification allowed us to identify an interaction between gender and miR-16-2 expression, which affected the outcome of radiation exposure. Moreover, we developed a classifier based on two miRNAs (miR-30a and miR-126) that can reproducibly predict radiation-induced mortality. Together, we have obtained a five-miRNA composite signature that can identify irradiated macaques and predict their probability of survival.
Collapse
Affiliation(s)
- Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
| | - Khyati Meghani
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA. .,Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Vijay K Singh
- Department of Pharmacology and Experimental Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA. .,Armed Forces Radiobiology Research Institute, Bethesda, MD 20814, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Achel DG, Serafin AM, Akudugu JM. Flow cytometry-assisted quantification of γH2AX expression has potential as a rapid high-throughput biodosimetry tool. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:349-357. [PMID: 27262315 DOI: 10.1007/s00411-016-0654-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Large-scale radiological events require immediate and accurate estimates of doses received by victims, and possibly the first responders, to assist in treatment decisions. Although there are numerous efforts worldwide to develop biodosimetric tools to adequately handle triage needs during radiological incidents, such endeavours do not seem to actively involve sub-Saharan Africa which currently has a significant level of nuclear-related activity. To initiate a similar interest in Africa, ex vivo radiation-induced γH2AX expression in peripheral blood lymphocytes from fourteen healthy donors was assessed using flow cytometry. While the technique shows potential for use as a rapid high-throughput biodosimetric tool for radiation absorbed doses up to 5 Gy, significant inter-individual differences in γH2AX expression emerged. Also, female donors exhibited higher levels of γH2AX expression than their male counterparts. To address these shortcomings, gender-based in-house dose-response curves for γH2AX induction in lymphocytes 2, 4, and 6 h after X-ray irradiation are proposed for the South African population. The obtained results show that γH2AX is a good candidate biomarker for biodosimetry, but might need some refinement and validation through further studies involving a larger cohort of donors.
Collapse
Affiliation(s)
- Daniel G Achel
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
9
|
Yamamoto ML, Hafer K, Reliene R, Fleming S, Kelly O, Hacke K, Schiestl RH. Effects of 1 GeV/nucleon56Fe Particles on Longevity, Carcinogenesis and Neuromotor Ability inAtm-Deficient Mice. Radiat Res 2011; 175:231-9. [DOI: 10.1667/rr2312.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Borgmann K, Raabe A, Reuther S, Szymczak S, Schlomm T, Isbarn H, Gomolka M, Busjahn A, Bonin M, Ziegler A, Dikomey E. The potential role of G2- but not of G0-radiosensitivity for predisposition of prostate cancer. Radiother Oncol 2010; 96:19-24. [DOI: 10.1016/j.radonc.2010.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/30/2022]
|
11
|
Qureshi IA, Mehler MF. Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility. PROGRESS IN BRAIN RESEARCH 2010; 186:77-95. [PMID: 21094887 PMCID: PMC4465286 DOI: 10.1016/b978-0-444-53630-3.00006-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are numerous examples of sex differences in brain and behavior and in susceptibility to a broad range of brain diseases. For example, gene expression is sexually dimorphic during brain development, adult life, and aging. These differences are orchestrated by the interplay between genetic, hormonal, and environmental influences. However, the molecular mechanisms that underpin these differences have not been fully elucidated. Because recent studies have highlighted the key roles played by epigenetic processes in regulating gene expression and mediating brain form and function, this chapter reviews emerging evidence that shows how epigenetic mechanisms including DNA methylation, histone modifications, and chromatin remodeling, and non-coding RNAs (ncRNAs) are responsible for promoting sexual dimorphism in the brain. Differential profiles of DNA methylation and histone modifications are found in dimorphic brain regions such as the hypothalamus as a result of sex hormone exposure during developmental critical periods. The elaboration of specific epigenetic marks is also linked with regulating sex hormone signaling pathways later in life. Furthermore, the expression and function of epigenetic factors such as the methyl-CpG-binding protein, MeCP2, and the histone-modifying enzymes, UTX and UTY, are sexually dimorphic in the brain. ncRNAs are also implicated in promoting sex differences. For example, X inactivation-specific transcript (XIST) is a long ncRNA that mediates X chromosome inactivation, a seminal developmental process that is particularly important in brain. These observations imply that understanding epigenetic mechanisms, which regulate dimorphic gene expression and function, is necessary for developing a more comprehensive view of sex differences in brain. These emerging findings also suggest that epigenetic mechanisms are, in part, responsible for the differential susceptibility between males and females that is characteristic of a spectrum of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|