1
|
Li M, Zhou S, Dong G, Wang C. Emergence of FLASH‑radiotherapy across the last 50 years (Review). Oncol Lett 2024; 28:602. [PMID: 39493433 PMCID: PMC11529378 DOI: 10.3892/ol.2024.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 11/05/2024] Open
Abstract
A novel radiotherapy (RT) approach termed FLASH-RT, which irradiates areas at ultra-high dose rates, is of current interest to medical researchers. FLASH-RT can maintain equivalent antitumor effects while sparing healthy tissue compared with conventional RT (CONV-RT), which uses low dose rates. The sparing effect on healthy tissue after FLASH-RT is known as the FLASH effect. Owing to the FLASH effect, FLASH-RT can raise the maximum tolerable dose to control tumor growth or eradicate the tumor and provide a new strategy for clinical RT. However, definitive irradiation conditions for reproducing the FLASH effect and the biological mechanism of the FLASH effect have not yet been fully elucidated. The efficacy of FLASH-RT is controversial despite its successful application in clinical RT. The present review recapitulates the progression of FLASH-RT and critically comments on the hypothesis of the FLASH effect. In addition, the review expounds on the current issues with regard to the differential phenomena between in vitro and in vivo studies, and elaborates on the challenges for the application of FLASH-RT that need to be addressed in the future.
Collapse
Affiliation(s)
- Menghua Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Guofu Dong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Changzhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
2
|
Fira AMR, Keta OD, Petković VD, Đorđević M, Petringa G, Fattori S, Catalano R, Cirrone GP, Cuttone G, Sakata D, Tran NH, Chatzipapas K, Incerti S, Petrović IM. In vitro validation of helium ion irradiations as a function of linear energy transfer in radioresistant human malignant cells. Int J Radiat Biol 2024; 100:1426-1437. [PMID: 39058324 DOI: 10.1080/09553002.2024.2373752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Collapse
Affiliation(s)
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Miloš Đorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | | | | | | | | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Ivan M Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Ilicic K, Dollinger G, Dombrowsky A, Greubel C, Girst S, Sammer M, Siebenwirth C, Schmid E, Friedrich T, Kundrát P, Friedland W, Scholz M, Combs SE, Schmid TE, Reindl J. Enhanced RBE of Particle Radiation Depends on Beam Size in the Micrometer Range. Radiat Res 2024; 201:140-149. [PMID: 38214379 DOI: 10.1667/rade-23-00217.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
High-linear energy transfer (LET) radiation, such as heavy ions is associated with a higher relative biological effectiveness (RBE) than low-LET radiation, such as photons. Irradiation with low- and high-LET particles differ in the interaction with the cellular matter and therefore in the spatial dose distribution. When a single high-LET particle interacts with matter, it results in doses of up to thousands of gray (Gy) locally concentrated around the ion trajectory, whereas the mean dose averaged over the target, such as a cell nucleus is only in the range of a Gy. DNA damage therefore accumulates in this small volume. In contrast, up to hundreds of low-LET particle hits are required to achieve the same mean dose, resulting in a quasi-homogeneous damage distribution throughout the cell nucleus. In this study, we investigated the dependence of RBE from different spatial dose depositions using different focused beam spot sizes of proton radiation with respect to the induction of chromosome aberrations and clonogenic cell survival. Human-hamster hybrid (AL) as well as Chinese hamster ovary cells (CHO-K1) were irradiated with focused low LET protons of 20 MeV (LET = 2.6 keV/µm) beam energy with a mean dose of 1.7 Gy in a quadratic matrix pattern with point spacing of 5.4 × 5.4 µm2 and 117 protons per matrix point at the ion microbeam SNAKE using different beam spot sizes between 0.8 µm and 2.8 µm (full width at half maximum). The dose-response curves of X-ray reference radiation were used to determine the RBE after a 1.7 Gy dose of radiation. The RBE for the induction of dicentric chromosomes and cell inactivation was increased after irradiation with the smallest beam spot diameter (0.8 µm for chromosome aberration experiments and 1.0 µm for cell survival experiments) compared to homogeneous proton radiation but was still below the RBE of a corresponding high LET single ion hit. By increasing the spot size to 1.6-1.8 µm, the RBE decreased but was still higher than for homogeneously distributed protons. By further increasing the spot size to 2.7-2.8 µm, the RBE was no longer different from the homogeneous radiation. Our experiments demonstrate that varying spot size of low-LET radiation gradually modifies the RBE. This underlines that a substantial fraction of enhanced RBE originates from inhomogeneous energy concentrations on the µm scale (mean intertrack distances of low-LET particles below 0.1 µm) and quantifies the link between such energy concentration and RBE. The missing fraction of RBE enhancement when comparing with high-LET ions is attributed to the high inner track energy deposition on the nanometer scale. The results are compared with model results of PARTRAC and LEM for chromosomal aberration and cell survival, respectively, which suggest mechanistic interpretations of the observed radiation effects.
Collapse
Affiliation(s)
- K Ilicic
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - G Dollinger
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - A Dombrowsky
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - C Greubel
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - S Girst
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - M Sammer
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - C Siebenwirth
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - E Schmid
- Department for Anatomy and Cell Biology, Ludwig-Maximilians Universität München, Germany
| | - T Friedrich
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - P Kundrát
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - W Friedland
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - M Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - S E Combs
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - T E Schmid
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - J Reindl
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
4
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
5
|
Thompson SJ, Prise KM, McMahon SJ. Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Phys Med Biol 2023; 68. [PMID: 36731135 DOI: 10.1088/1361-6560/acb88a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective. Laser-accelerated protons offer an alternative delivery mechanism for proton therapy. This technique delivers dose-rates of ≥109Gy s-1, many orders of magnitude greater than used clinically. Such ultra-high dose-rates reduce delivery time to nanoseconds, equivalent to the lifetime of reactive chemical species within a biological medium. This leads to the possibility of inter-track interactions between successive protons within a pulse, potentially altering the yields of damaging radicals if they are in sufficient spatial proximity. This work investigates the temporal evolution of chemical species for a range of proton energies and doses to quantify the circumstances required for inter-track interactions, and determine any relevance within ultra-high dose-rate proton therapy.Approach. The TOPAS-nBio Monte Carlo toolkit was used to investigate possible inter-track interactions. Firstly, protons between 0.5 and 100 MeV were simulated to record the radial track dimensions throughout the chemical stage from 1 ps to 1μs. Using the track areas, the geometric probability of track overlap was calculated for various exposures and timescales. A sample of irradiations were then simulated in detail to compare any change in chemical yields for independently and instantaneously delivered tracks, and validate the analytic model.Main results. Track overlap for a clinical 2 Gy dose was negligible for biologically relevant timepoints for all energies. Overlap probability increased with time after irradiation, proton energy and dose, with a minimum 23 Gy dose required before significant track overlap occurred. Simulating chemical interactions confirmed these results with no change in radical yields seen up to 8 Gy for independently and instantaneously delivered tracks.Significance. These observations suggest that the spatial separation between incident protons is too large for physico-chemical inter-track interactions, regardless of the delivery time, indicating such interactions would not play a role in any potential changes in biological response between laser-accelerated and conventional proton therapy.
Collapse
Affiliation(s)
- Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2022; 49:1993-2013. [PMID: 34426981 DOI: 10.1002/mp.15184] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California at Irvine, Irvine, California, USA
| | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Université Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| |
Collapse
|
7
|
Niklas M, Schlegel J, Liew H, Zimmermann F, Rein K, Walsh DW, Dzyubachyk O, Holland-Letz T, Rahmanian S, Greilich S, Runz A, Jäkel O, Debus J, Abdollahi A. Biosensor for deconvolution of individual cell fate in response to ion beam irradiation. CELL REPORTS METHODS 2022; 2:100169. [PMID: 35474967 PMCID: PMC9017136 DOI: 10.1016/j.crmeth.2022.100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Clonogenic survival assay constitutes the gold standard method for quantifying radiobiological effects. However, it neglects cellular radiation response variability and heterogeneous energy deposition by ion beams on the microscopic scale. We introduce "Cell-Fit-HD4D" a biosensor that enables a deconvolution of individual cell fate in response to the microscopic energy deposition as visualized by optical microscopy. Cell-Fit-HD4D enables single-cell dosimetry in clinically relevant complex radiation fields by correlating microscopic beam parameters with biological endpoints. Decrypting the ion beam's energy deposition and molecular effects at the single-cell level has the potential to improve our understanding of radiobiological dose concepts as well as radiobiological study approaches in general.
Collapse
Affiliation(s)
- Martin Niklas
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Julian Schlegel
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Hans Liew
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Ferdinand Zimmermann
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Katrin Rein
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Dietrich W.M. Walsh
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Oleh Dzyubachyk
- Department of Radiology and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Jäkel
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
8
|
Panek A, Miszczyk J. ATM and RAD51 Repair Pathways in Human Lymphocytes Irradiated with 70 MeV Therapeutic Proton Beam. Radiat Res 2021; 197:396-402. [PMID: 34958667 DOI: 10.1667/rade-21-00109.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
The repair of radiation-induced DNA damage is a key factor differentiating patients in terms of the therapeutic efficacy and toxicity to surrounding normal tissue. Proton energy substantially determines the types of cancers that can be treated. The present work investigated the DNA double-strand break repair systems, represented by phosphorylated ATM and Rad51. The status of proton therapy energy used to treat major types of cancer is summarized. Here, human lymphocytes from eight healthy donors (male and female) were irradiated with a spread-out Bragg peak using a therapeutic 70 MeV proton beam or with reference X rays. For both types of radiation, the kinetics of pATM and Rad51 repair protein activation (0-24 h) were estimated as determinants of homologous and non-homologous double-strand break repair. Additionally, γ-H2AX was used as the gold standard marker of double-strand breaks. Our results showed that at 30 min postirradiation there was significantly greater accumulation of γ-H2AX (0.6-fold), pATM (2.0-fold), and Rad51 (0.6-fold) in the proton-irradiated cells compared with the X-ray-treated cells. At 24 h post irradiation, for both types of radiation and all investigated proteins, the foci number was still significantly higher when compared with control. Furthermore, the mean value of pATM and Rad51 repair effectiveness was higher in cells exposed to protons than in cells exposed to X rays; however, the difference was significant only for pATM. The largest inter-individual differences in the repair capabilities were noted for Rad51. The association between the frequency of repair protein foci and the frequency of lymphocyte viability at 1 h post irradiation showed a positive correlation for protons but a negative correlation for X rays. These findings indicate that the accumulation of radiation-induced repair protein foci after proton versus X-ray irradiation differs between patients, consequently affecting the cellular responses to particle therapy and conventional radiation therapy.
Collapse
Affiliation(s)
- Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| |
Collapse
|
9
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
10
|
Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021; 97:1229-1240. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Pablo Cirrone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Institute of Physics (IoP) of the Czech Academy of Science (CAS), ELI-Beamlines, Prague, Czech Republic
| | - Giacomo Cuttone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, NIRS, Chiba, QST, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
11
|
Zou W, Diffenderfer ES, Cengel KA, Kim MM, Avery S, Konzer J, Cai Y, Boisseu P, Ota K, Yin L, Wiersma R, Carlson DJ, Fan Y, Busch TM, Koumenis C, Lin A, Metz JM, Teo BK, Dong L. Current delivery limitations of proton PBS for FLASH. Radiother Oncol 2020; 155:212-218. [PMID: 33186682 DOI: 10.1016/j.radonc.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA.
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Steve Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Joshua Konzer
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Yongliang Cai
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Paul Boisseu
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Kan Ota
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Rodney Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - James M Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - BoonKeng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
12
|
Colangelo NW, Azzam EI. The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for Proton and Heavy Ion Radiotherapy. Radiat Res 2019; 193:1-4. [PMID: 31657670 DOI: 10.1667/rr15537.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of radiation therapy is to provide the highest probability of tumor control while minimizing normal tissue toxicity. Recently, it has been discovered that ultra-high dose rates of ionizing radiation may preferentially spare normal tissue over tumor tissue. This effect, referred to as FLASH radiotherapy, has been observed in various animal models as well as, more recently, in a human patient. This effect may be related to the cell sparing found in vitro at ultra-high dose rates of photons and electrons dating back to the 1960s. Conditions representative of physiologic oxygen were found to be essential for this process to occur. However, there is no conclusive data on whether this effect occurs with protons, as all results to date have been in cells irradiated at ambient oxygen conditions. There have been no ultra-high dose-rate experiments with heavy ions, which would be relevant to the implementation of FLASH to carbon-ion therapy. These basic science results are critical in guiding this rapidly advancing field, since clinical particle therapy machines capable of FLASH dose rates have already been promoted for protons. To help ensure FLASH radiotherapy is reliable and maximally effective, the radiobiology must keep ahead of the clinical implementation to help guide it. In this context, in vitro and in vivo proton and heavy ion experiments involving FLASH dose rates need to be performed to evaluate not only short-term consequences, but also sequelae related to long-term health risks. Critical to these future studies is consideration of relevant oxygen tensions at the time of irradiation, as well as appropriate in silico modeling to assist in understanding the initial physicochemical events.
Collapse
Affiliation(s)
- Nicholas W Colangelo
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| | - Edouard I Azzam
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| |
Collapse
|
13
|
Multicolor Laser Scanning Confocal Immunofluorescence Microscopy of DNA Damage Response Biomarkers. Methods Mol Biol 2019. [PMID: 31473966 DOI: 10.1007/978-1-4939-9646-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA damage through endogenous and environmental toxicants is a constant threat to both a human's ability to pass on intact genetic information to its offspring as well as in somatic cells for its own survival. To counter these threats posed by DNA damage, cells have evolved a series of highly choreographed mechanisms-collectively defined as the DNA-damage response (DDR)-to sense DNA lesions, signal their presence, and mediate their repair. Thus, regular DDR signaling cascades are vital to prevent the initiation and progression of many human diseases including cancer. Consequently, quantitative assessment of DNA damage and response became an important biomarker for assessment of human health and disease risk in biomonitoring studies. However, most quantitative DNA damage biomarker techniques require dissolution of the nuclear architecture and hence loss of spatial information. Laser scanning confocal immunofluorescence microscopy (LSCIM) of three-dimensionally preserved nuclei can be, quantitative and maintain the spatial information. Here we describe the experimental protocols to quantify individual key events of the DDR cascade in three-dimensionally preserved nuclei by LSCIM with high resolution, using the simultaneous detection of Rad50 as well as phosphorylated H2AX and ATM and in somatic and germ cells as an example.
Collapse
|
14
|
A Plasma Focus device as ultra-high dose rate pulsed radiation source. Part I: Primary electron beam characterization. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol 2019; 139:51-55. [PMID: 30850209 DOI: 10.1016/j.radonc.2019.02.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiotherapy outcomes are limited by toxicity in the healthy tissues surrounding the irradiated tumor. Recent pre-clinical studies have shown that irradiations with electrons or photons delivered at so called FLASH dose rates (i.e. >40 Gy/s) dramatically reduce adverse side effects in the normal tissues while being equally efficient for tumor control as irradiations at conventional dose rates (3-5 cGy/s). In the case of protons however, FLASH effects have not been investigated partially because of the limited availability of facilities that can achieve such high dose rates. METHODS Using a novel irradiation platform, we measured acute and long-term biological effects in normal human lung fibroblasts (IMR90) exposed to therapeutically relevant doses of 4.5 MeV protons (LET = 10 keV/µm) delivered at dose rates spanning four orders of magnitude. Endpoints included clonogenic cell survival, γH2AX foci formation, induction of premature senescence (β-gal), and the expression of the pro-inflammatory marker TGFβ. RESULTS Proton dose rate had no influence on the cell survival, but for the highest dose rate used (i.e. 1000 Gy/s) foci formation saturated beyond 10 Gy. In the progeny of irradiated cells, an increase in dose (20 Gy vs. 10 Gy) and dose rate (1000 Gy/s vs. 0.05 Gy/s) positively affected the number of senescence cells and the expression of TGFβ1. CONCLUSIONS In normal lung fibroblasts proton dose rate had little impact on acute effects, but significantly influenced the expression of long-term biological responses in vitro. Compared to conventional dose rates, protons delivered at FLASH dose rates mitigated such delayed detrimental effects.
Collapse
Affiliation(s)
- Manuela Buonanno
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - Veljko Grilj
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - David J Brenner
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| |
Collapse
|
16
|
Lühr A, von Neubeck C, Pawelke J, Seidlitz A, Peitzsch C, Bentzen SM, Bortfeld T, Debus J, Deutsch E, Langendijk JA, Loeffler JS, Mohan R, Scholz M, Sørensen BS, Weber DC, Baumann M, Krause M. "Radiobiology of Proton Therapy": Results of an international expert workshop. Radiother Oncol 2018; 128:56-67. [PMID: 29861141 DOI: 10.1016/j.radonc.2018.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full advantage of the opportunities offered by proton radiation for clinical radiotherapy requires a better understanding of the radiobiological effects of protons alone or combined with drugs or immunotherapy on normal tissues and tumors. This report summarizes the main results of the international expert workshop "Radiobiology of Proton Therapy" that was held in November 2016 in Dresden. It addresses the major topics (1) relative biological effectiveness (RBE) in proton beam therapy, (2) interaction of proton radiobiology with radiation physics in current treatment planning, (3) biological effects in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data repositories will be most important to achieve this goal.
Collapse
Affiliation(s)
- Armin Lühr
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health and the Maryland Proton Therapy Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Thomas Bortfeld
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, University Heidelberg German Consortium for Translational Oncology (DKTK), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eric Deutsch
- Department of Radiation Oncology Gustave Roussy Cancer Campus, INSERM, 1030 Villejuif, France; Université Paris-Sud, Faculté de Medecine du Kremlin Bicetre Paris Sud, Le Kremlin-Bicêtre, France
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, USA
| | - Radhe Mohan
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, USA
| | - Michael Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Brita S Sørensen
- Dept. Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Michael Baumann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mechthild Krause
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | | |
Collapse
|
17
|
Babayan N, Hovhannisyan G, Grigoryan B, Grigoryan R, Sarkisyan N, Tsakanova G, Haroutiunian S, Aroutiounian R. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro. JOURNAL OF RADIATION RESEARCH 2017; 58:894-897. [PMID: 28992052 PMCID: PMC5737585 DOI: 10.1093/jrr/rrx035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 05/07/2023]
Abstract
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation.
Collapse
Affiliation(s)
- Nelly Babayan
- Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
- Corresponding author. Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia. Tel: +37491-572573; Fax: +37410-282061;
| | | | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, 0040, Yerevan, Armenia
| | - Ruzanna Grigoryan
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | - Natalia Sarkisyan
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | - Gohar Tsakanova
- Institute of Molecular Biology of NAS, Hasratyan 7, 0014 Yerevan, Armenia
| | | | | |
Collapse
|
18
|
Laschinsky L, Karsch L, Leßmann E, Oppelt M, Pawelke J, Richter C, Schürer M, Beyreuther E. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:381-91. [PMID: 27193178 DOI: 10.1007/s00411-016-0652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/09/2016] [Indexed: 05/25/2023]
Abstract
Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.
Collapse
Affiliation(s)
- Lydia Laschinsky
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany
- Menarini - Von Heyden GmbH, Leipziger Straße 7 - 13, 01097, Dresden, Germany
| | - Leonhard Karsch
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
| | - Elisabeth Leßmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany
| | - Melanie Oppelt
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany
- Quintiles GmbH, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | - Jörg Pawelke
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany
| | - Christian Richter
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
| | - Elke Beyreuther
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstraße 400, P.O. Box 510119, 01314, Dresden, Germany.
| |
Collapse
|
19
|
Horn S, Brady D, Prise K. Alpha particles induce pan-nuclear phosphorylation of H2AX in primary human lymphocytes mediated through ATM. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2199-206. [PMID: 26116906 DOI: 10.1016/j.bbamcr.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/01/2022]
Abstract
The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.
Collapse
Affiliation(s)
- Simon Horn
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast 7AE BT9, United Kingdom.
| | - Darren Brady
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast 7AE BT9, United Kingdom; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast 7AE BT9, United Kingdom
| | - Kevin Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast 7AE BT9, United Kingdom
| |
Collapse
|
20
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
21
|
Robertson AB, Robertson J, Fusser M, Klungland A. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucleic Acids Res 2014; 42:13280-93. [PMID: 25355512 PMCID: PMC4245937 DOI: 10.1093/nar/gku1032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner.
Collapse
Affiliation(s)
- Adam B Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Julia Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
22
|
Qu A, Wang H, Li J, Wang J, Liu J, Hou Y, Huang L, Zhao Y. Biological effects of (125)i seeds radiation on A549 lung cancer cells: G2/M arrest and enhanced cell death. Cancer Invest 2014; 32:209-17. [PMID: 24745612 DOI: 10.3109/07357907.2014.905585] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
External beam radiation (EBRT) and (125)I seeds continuous low dose rate radiation (CLDR) were used to treat patients with lung cancer. We herein investigated the biological effects of EBRT and CLDR on lung cancer cells. A549 human lung cancer cell line was thus exposed to different doses of EBRT and CLDR. CLDR was more efficient to inhibit cell growth than EBRT. CLDR induced increased DNA damage as evidenced by long-lasting p-H2AX activity. The enhanced inhibitory effects of CLDR on lung cancer cell growth may be, at least in part, due to the increased Bax/Bcl2 ratio and cyclin B1-mediated G2/M arrest.
Collapse
Affiliation(s)
- Ang Qu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, P.R. China,1
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C. Current concepts in clinical radiation oncology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:1-29. [PMID: 24141602 PMCID: PMC3935099 DOI: 10.1007/s00411-013-0497-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/05/2013] [Indexed: 05/04/2023]
Abstract
Based on its potent capacity to induce tumor cell death and to abrogate clonogenic survival, radiotherapy is a key part of multimodal cancer treatment approaches. Numerous clinical trials have documented the clear correlation between improved local control and increased overall survival. However, despite all progress, the efficacy of radiation-based treatment approaches is still limited by different technological, biological, and clinical constraints. In principle, the following major issues can be distinguished: (1) The intrinsic radiation resistance of several tumors is higher than that of the surrounding normal tissue, (2) the true patho-anatomical borders of tumors or areas at risk are not perfectly identifiable, (3) the treatment volume cannot be adjusted properly during a given treatment series, and (4) the individual heterogeneity in terms of tumor and normal tissue responses toward irradiation is immense. At present, research efforts in radiation oncology follow three major tracks, in order to address these limitations: (1) implementation of molecularly targeted agents and 'omics'-based screening and stratification procedures, (2) improvement of treatment planning, imaging, and accuracy of dose application, and (3) clinical implementation of other types of radiation, including protons and heavy ions. Several of these strategies have already revealed promising improvements with regard to clinical outcome. Nevertheless, many open questions remain with individualization of treatment approaches being a key problem. In the present review, the current status of radiation-based cancer treatment with particular focus on novel aspects and developments that will influence the field of radiation oncology in the near future is summarized and discussed.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna A. Friedl
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Minglun Li
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelius Maihöfer
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Schüttrumpf
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivier M. Niemöller
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Present Address: Clinic for Radiation Oncology, St. Elisabeth Hospital Ravensburg, Ravensburg, Germany
| | - Claus Belka
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
24
|
Zlobinskaya O, Siebenwirth C, Greubel C, Hable V, Hertenberger R, Humble N, Reinhardt S, Michalski D, Röper B, Multhoff G, Dollinger G, Wilkens JJ, Schmid TE. The Effects of Ultra-High Dose Rate Proton Irradiation on Growth Delay in the Treatment of Human Tumor Xenografts in Nude Mice. Radiat Res 2014; 181:177-83. [DOI: 10.1667/rr13464.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Laubenthal J, Gdula MR, Dhawan A, Anderson D. Multicolor laser scanning confocal immunofluorescence microscopy of DNA damage response biomarkers. Methods Mol Biol 2013; 1044:311-23. [PMID: 23896884 DOI: 10.1007/978-1-62703-529-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
DNA damage through endogenous and environmental toxicants is a constant threat to both a human's ability to pass on intact genetic information to its offspring as well as somatic cells for their own survival. To counter these threats posed by DNA damage, cells have evolved a series of highly choreographed mechanisms--collectively defined as the DNA damage response (DDR)--to sense DNA lesions, signal their presence, and mediate their repair. Thus, regular DDR signalling cascades are vital to prevent the initiation and progression of many human diseases including cancer. Consequently, quantitative assessment of DNA damage and response became an important biomarker for assessment of human health and disease risk in biomonitoring studies. However, most quantitative DNA damage biomarker techniques require dissolution of the nuclear architecture and hence loss of spatial information. Laser scanning confocal immunofluorescence microscopy (LSCIM) of three-dimensionally preserved nuclei can be quantitative and maintain the spatial information. Here we describe the experimental protocols to quantify individual key events of the DDR cascade in three-dimensionally preserved nuclei by LSCIM with high resolution, using the simultaneous detection of Rad50 as well as phosphorylated H2AX and ATM and in somatic and germ cells as an example.
Collapse
Affiliation(s)
- Julian Laubenthal
- Medical Sciences Division, School of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | |
Collapse
|
26
|
Che J, Lu YW, Sun KK, Feng C, Dong AJ, Jiao Y. Overexpression of TOB1 confers radioprotection to bronchial epithelial cells through the MAPK/ERK pathway. Oncol Rep 2013; 30:637-42. [PMID: 23756562 DOI: 10.3892/or.2013.2536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/06/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects and mechanisms of antiproliferative transducer of erbB2, 1 (TOB1) on the radiosensitivity of the normal human bronchial epithelial cell line HBE. After exposure to different doses of irradiation or a certain dose for different time intervals, the expression of TOB1 mRNA and protein in HBE cells was determined by semi-quantitative RT-PCR and western blot analysis. Liposome-induced recombinant plasmid transfection and G418 selection were performed to establish a stably transfected TOB1-overexpressing HBE cell line. A clonogenic assay was used to determine the radiosensitivity of the HBE cells with different TOB1 expression statuses. The cell cycle distribution was detected by flow cytometry. The ionizing radiation (IR)-induced γ-H2AX foci formation was detected by immunofluorescence assay. The related mechanism was explored by western blot analysis. TOB1 expression in the HBE cells was not induced by IR, neither dose-dependently nor time-dependently. Compared to the parental or 'mock' transfected HBE cells, the radiosensitivity of HBE cells overexpressing TOB1 was significantly decreased (P<0.05). Exogenous TOB1 prevented HBE cells from apoptosis after IR, in contrast to the control cells (P<0.05), and significantly decreased the IR-induced γ-H2AX foci formation. After IR, the expression of DNA damage repair proteins such as XRCC1, MRE11, FEN1 and ATM was increased in the TOB1‑overexpressing HBE cells when compared with the expression levels in the control cells. HBE/TOB1 cells presented a much higher phosphorylated ERK1/2 and phosphorylated p53 when compared with the levels in the control cell lines when receiving 6 Gy of X-rays. Notably, the increased expression of phosphorylated p53 in HBE/TOB1 cells after IR was sufficiently blocked by U0126, a specific inhibitor of MEK1/2. Different from its functions in several lung cancer cell lines, TOB1 demonstrated a radioprotective function in the immortalized normal human bronchial epithelial cell line HBE via the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jun Che
- Department of Head and Neck Radiotherapy, the Fourth People's Hospital of Wuxi, Wuxi 214062, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Sorokina S, Markova E, Gursky J, Dobrovodsky J, Belyaev I. Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γH2AX foci in lymphocytes from umbilical cord blood. Int J Radiat Biol 2013; 89:716-23. [DOI: 10.3109/09553002.2013.797619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
van Oorschot B, Hovingh SE, Rodermond H, Güçlü A, Losekoot N, Geldof AA, Barendsen GW, Stalpers LJ, Franken NAP. Decay of γ-H2AX foci correlates with potentially lethal damage repair in prostate cancer cells. Oncol Rep 2013; 29:2175-80. [PMID: 23545587 DOI: 10.3892/or.2013.2364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/30/2012] [Indexed: 11/05/2022] Open
Abstract
To determine the relationship between ionizing radiation-induced levels of γ-H2AX foci and cell survival in cultured prostate cancer cell lines, three prostate cancer cell lines: LNCaP (wt TP53), DU145 (mut TP53) and PC3 (TP53 null), were studied. For γ-H2AX foci induction, cells were irradiated with a single dose of 2 Gy and foci levels were studied at 30 min and 24 h after irradiation. Cell survival was determined by clonogenic assay, directly and 24 h after irradiation with doses ranging from 0 to 8 Gy. Irradiation was performed with a Siemens Stabilipan 250 KeV X-ray machine at a dose rate of approximately 3 Gy/min. Survival curves were analyzed using the linear-quadratic model S(D)/S(0)=exp-(αD+βD2). LNCaP cells clearly demonstrated potentially lethal damage repair (PLDR) which was assessed as increased survival levels after delayed plating as compared to cells plated immediately after irradiation. DU145 cells demonstrated only a slight PLDR and PC3 cells did not show PLDR at all. Levels of γ-H2AX foci were significantly decreased in all cell lines at 24 h after irradiation, compared to levels after 30 min. The LNCaP cells which demonstrated a clear PLDR also showed the largest decay in the number of γ-H2AX foci. In addition, the PC cells which did not show PLDR had the lowest decay of γ-H2AX foci. A clear correlation was demonstrated between the degree of decay of γ-H2AX foci and PLDR.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Department of Radiation Oncology, Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, and Free University Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wéra AC, Heuskin AC, Riquier H, Michiels C, Lucas S. Low-LET Proton Irradiation of A549 Non-small Cell Lung Adenocarcinoma Cells: Dose Response and RBE Determination. Radiat Res 2013; 179:273-81. [DOI: 10.1667/rr3008.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Laubenthal J, Zlobinskaya O, Poterlowicz K, Baumgartner A, Gdula MR, Fthenou E, Keramarou M, Hepworth SJ, Kleinjans JCS, van Schooten FJ, Brunborg G, Godschalk RW, Schmid TE, Anderson D. Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J 2012; 26:3946-56. [PMID: 22730438 DOI: 10.1096/fj.11-201194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The relevance of preconceptional and prenatal toxicant exposures for genomic stability in offspring is difficult to analyze in human populations, because gestational exposures usually cannot be separated from preconceptional exposures. To analyze the roles of exposures during gestation and conception on genomic stability in the offspring, stability was assessed via the Comet assay and highly sensitive, semiautomated confocal laser scans of γH2AX foci in cord, maternal, and paternal blood as well as spermatozoa from 39 families in Crete, Greece, and the United Kingdom. With use of multivariate linear regression analysis with backward selection, preconceptional paternal smoking (% tail DNA: P>0.032; γH2AX foci: P>0.018) and gestational maternal (% tail DNA: P>0.033) smoking were found to statistically significantly predict DNA damage in the cord blood of F1 offspring. Maternal passive smoke exposure was not identified as a predictor of DNA damage in cord blood, indicating that the effect of paternal smoking may be transmitted via the spermatozoal genome. Taken together, these studies reveal a role for cigarette smoke in the induction of DNA alterations in human F1 offspring via exposures of the fetus in utero or the paternal germline. Moreover, the identification of transgenerational DNA alterations in the unexposed F1 offspring of smoking-exposed fathers supports the claim that cigarette smoke is a human germ cell mutagen.
Collapse
Affiliation(s)
- Julian Laubenthal
- Centre of Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford BD7 1DP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|