1
|
Ciccone LP, Franzetti J, Bonora M, Ronchi S, Camarda AM, Charalampopoulou A, Facoetti A, Bazani A, Magro G, Vischioni B, Locati LD, Licitra L, Sauerwein WAG, Orlandi E. Charged particle radiotherapy for thyroid cancer. A systematic review. Crit Rev Oncol Hematol 2024; 202:104463. [PMID: 39098367 DOI: 10.1016/j.critrevonc.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024] Open
Abstract
The role of external beam radiotherapy (EBRT) in thyroid cancer (TC) remains contentious due to limited data. Retrospective studies suggest adjuvant EBRT benefits high-risk differentiated thyroid cancer (DTC) and limited-stage anaplastic thyroid carcinoma (ATC), enhancing locoregional control and progression-free survival when combined with surgery and chemotherapy. Intensity-modulated radiotherapy (IMRT) and particle therapy (PT), including protons, carbon ions, and Boron Neutron Capture Therapy (BNCT), represent advances in TC treatment. Following PRISMA guidelines, we reviewed 471 studies from January 2002 to January 2024, selecting 14 articles (10 preclinical, 4 clinical). Preclinical research focused on BNCT in ATC mouse models, showing promising local control rates. Clinical studies explored proton, neutron, or photon radiotherapy, reporting favorable outcomes and manageable toxicity. While PT shows promise supported by biological rationale, further research is necessary to clarify its role and potential combination with systemic treatments in TC management.
Collapse
Affiliation(s)
- Lucia Pia Ciccone
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Jessica Franzetti
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy.
| | - Maria Bonora
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Sara Ronchi
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Anna Maria Camarda
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Alexandra Charalampopoulou
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy; Hadron Academy PhD Course, University School for Advanced Studies (IUSS), Pavia 27100, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Alessia Bazani
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Giuseppe Magro
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Barbara Vischioni
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics University of Pavia, Pavia 27100, Italy; Medical Oncology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy; Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy; Department of Oncology & Haemato-Oncology, University of Milan, Milan 20122, Italy
| | - Wolfgang A G Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie (DGBNCT), Essen, Germany; BNCT Global GmbH, Essen, Germany
| | - Ester Orlandi
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy; Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
3
|
Couto M, Alamón C, Nievas S, Perona M, Dagrosa MA, Teixidor F, Cabral P, Viñas C, Cerecetto H. Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chemistry 2020; 26:14335-14340. [PMID: 32738078 DOI: 10.1002/chem.202002963] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Indexed: 12/17/2022]
Abstract
About 95 % of people diagnosed with glioblastoma die within five years. Glioblastoma is the most aggressive central nervous system tumour. It is necessary to make progress in the glioblastoma treatment so that advanced chemotherapy drugs or radiation therapy or, ideally, two-in-one hybrid systems should be implemented. Tyrosine kinase receptors-inhibitors and boron neutron capture therapy (BNCT), together, could provide a therapeutic strategy. In this work, sunitinib decorated-carborane hybrids were prepared and biologically evaluated identifying excellent antitumoral- and BNCT-agents. One of the selected hybrids was studied against glioma-cells and found to be 4 times more cytotoxic than sunitinib and 1.7 times more effective than 10 B-boronophenylalanine fructose complex when the cells were irradiated with neutrons.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Catalina Alamón
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Nievas
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission (CNEA), Buenos Aires, Argentina
| | - Marina Perona
- Department of Radiobiology, CNEA, Buenos Aires, Argentina
| | | | - Francesc Teixidor
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Pablo Cabral
- Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| |
Collapse
|
4
|
Perona M, Majdalani ME, Rodríguez C, Nievas S, Carpano M, Rossini A, Longhino JM, Cabrini R, Pisarev MA, Juvenal GJ, Dagrosa MA. Experimental studies of boron neutron capture therapy (BNCT) using histone deacetylase inhibitor (HDACI) sodium butyrate, as a complementary drug for the treatment of poorly differentiated thyroid cancer (PDTC). Appl Radiat Isot 2020; 164:109297. [PMID: 32768887 DOI: 10.1016/j.apradiso.2020.109297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/19/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The present study analyzed different protocols of administration of boronophenylalanine (BPA) and sodium butyrate (NaB) to increase the BNCT efficacy for poorly differentiated thyroid cancer (PDTC). MATERIALS AND METHODS Nude mice implanted with human PDTC cells (WRO) were distributed into four protocols: 1) BPA; 2) BPA + ip NaB; 3) BPA + oral NaB; 4) Control. Biodistribution and histologic studies were performed. LAT (BPA transporter) isoforms gene expression was assessed by RT-PCR. RESULTS Tumor growth delay was observed in animals of the Protocol #3 (p < 0.05). NaB (Protocol #2) increased tumor boron uptake 2-h post BPA injection (p < 0.05). On the other hand, NaB upregulated the expression of all the isoforms of the LAT transporter in vitro. Histologic studies showed a significant decrease of mitotic activity and an increase of vacuoles in tumors of Protocol #3. Neutrons alone or combined with NaB caused some tumor growth delay (p < 0.05), while in the BNCT and BNCT + NaB groups, there was a halt in tumor growth in 70 and 80% of the animals, respectively. CONCLUSIONS Intraperitoneally administration of NaB increased boron uptake while oral administration for a longer period of time induced tumor growth delay previous to BPA administration. The use of NaB via ip would optimize the irradiation results.
Collapse
Affiliation(s)
- M Perona
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (1425) CABA, Argentina
| | - M E Majdalani
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - C Rodríguez
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - S Nievas
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - M Carpano
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - A Rossini
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - J M Longhino
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - R Cabrini
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - M A Pisarev
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina
| | - G J Juvenal
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (1425) CABA, Argentina
| | - M A Dagrosa
- Comisión Nacional de Energía Atómica (CNEA), Av. Gral Paz 1499 (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (1425) CABA, Argentina. http://
| |
Collapse
|
5
|
Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy. Cells 2020; 9:cells9061408. [PMID: 32517054 PMCID: PMC7349914 DOI: 10.3390/cells9061408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
One of the driving forces of carcinogenesis in humans is the aberrant activation of receptors; consequently, one of the most promising mechanisms for cancer treatment is receptor inhibition by chemotherapy. Although a variety of cancers are initially susceptible to chemotherapy, they eventually develop multi-drug resistance. Anti-tumor agents overcoming resistance and acting through two or more ways offer greater therapeutic benefits over single-mechanism entities. In this study, we report on a new family of bifunctional compounds that, offering the possibility of dual action (drug + radiotherapy combinations), may result in significant clinical benefits. This new family of compounds combines two fragments: the drug fragment is a lapatinib group, which inhibits the tyrosine kinase receptor activity, and an icosahedral boron cluster used as agents for neutron capture therapy (BNCT). The developed compounds were evaluated in vitro against different tyrosine kinase receptors (TKRs)-expressing tumoral cells, and in vitro–BNCT experiments were performed for two of the most promising hybrids, 19 and 22. We identified hybrid 19 with excellent selectivity to inhibit cell proliferation and ability to induce necrosis/apoptosis of glioblastoma U87 MG cell line. Furthermore, derivative 22, bearing a water-solubility-enhancing moiety, showed moderate inhibition of cell proliferation in both U87 MG and colorectal HT-29 cell lines. Additionally, the HT-29 cells accumulated adequate levels of boron after hybrids 19 and 22 incubations rendering, and after neutron irradiation, higher BNCT-effects than BPA. The attractive profile of developed hybrids makes them interesting agents for combined therapy.
Collapse
|
6
|
Rodriguez C, Carpano M, Curotto P, Thorp S, Casal M, Juvenal G, Pisarev M, Dagrosa MA. In vitro studies of DNA damage and repair mechanisms induced by BNCT in a poorly differentiated thyroid carcinoma cell line. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:143-152. [PMID: 29453554 DOI: 10.1007/s00411-017-0729-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Boron neutron capture therapy (BNCT) for aggressive tumors is based on nuclear reaction [10B (n, α) 7Li]. Previously, we demonstrated that BNCT could be applied for the treatment of undifferentiated thyroid carcinoma. The aim of the present study was to describe the DNA damage pattern and the repair pathways that are activated by BNCT in thyroid cells. We analyzed γH2AX foci and the expression of Ku70, Rad51 and Rad54, main effector enzymes of non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, respectively, in thyroid follicular carcinoma cells. The studied groups were: (1) C [no irradiation], (2) gamma [60Co source], (3) N [neutron beam alone], (4) BNCT [neutron beam plus 10 µg 10B/ml of boronphenylalanine (10BPA)]. The total absorbed dose was always 3 Gy. The results showed that the number of nuclear γH2AX foci was higher in the gamma group than in the N and BNCT groups (30 min-24 h) (p < 0.001). However, the focus size was significantly larger in BNCT compared to other groups (p < 0.01). The analysis of repair enzymes showed a significant increase in Rad51 and Rad54 mRNA at 4 and 6 h, respectively; in both N and BNCT groups and the expression of Ku70 did not show significant differences between groups. These findings are consistent with an activation of HRR mechanism in thyroid cells. A melanoma cell line showed different DNA damage pattern and activation of both repair pathways. These results will allow us to evaluate different blocking points, to potentiate the damage induced by BNCT.
Collapse
Affiliation(s)
- C Rodriguez
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
| | - M Carpano
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
| | - P Curotto
- RA-3-Investigation and Production Reactors (CAE, CNEA), 15 Presbítero González y Aragón Rd, Buenos Aires, Argentina
| | - S Thorp
- Instrumentation and Control Department (CAE, CNEA), 15 Presbítero González y Aragón Rd, Buenos Aires, Argentina
| | - M Casal
- Oncology Institute "Ángel H. Roffo"-University of Buenos Aires, 5481 San Martín Av, Ciudad Autónoma de Buenos Aires, Argentina
| | - G Juvenal
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Pisarev
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina
| | - M A Dagrosa
- Radiobiology Department (CAC, CNEA), 1499 Gral Paz Av, Buenos Aires, Argentina.
- Scientific and Technical Research National Council (CONICET), 1917 Rivadavia St, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. ACTA ACUST UNITED AC 2017; 64:44-56. [PMID: 28440770 DOI: 10.1016/j.endinu.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain; Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Elías Delgado-Álvarez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Lucía Díaz-Naya
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Alicia Martín Nieto
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Carpano M, Perona M, Rodriguez C, Nievas S, Olivera M, Santa Cruz GA, Brandizzi D, Cabrini R, Pisarev M, Juvenal GJ, Dagrosa MA. Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment. Int J Radiat Oncol Biol Phys 2015; 93:344-52. [PMID: 26232853 DOI: 10.1016/j.ijrobp.2015.05.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 11/23/2022]
Abstract
PURPOSE Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ((10)BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. METHODS AND MATERIALS The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10(6) MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. RESULTS The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of (10)B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37 °C and 23 °C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R(2) = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R(2) = 0.81, logistic function fit). CONCLUSION We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual patient and lesion.
Collapse
Affiliation(s)
- Marina Carpano
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina
| | - Marina Perona
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina
| | - Carla Rodriguez
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina
| | - Susana Nievas
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín, Argentina
| | - Maria Olivera
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín, Argentina
| | - Gustavo A Santa Cruz
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín, Argentina
| | - Daniel Brandizzi
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina; School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Romulo Cabrini
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina; School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Pisarev
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina; National Research Council of Argentina, Buenos Aires, Argentina; Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Juan Juvenal
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina; National Research Council of Argentina, Buenos Aires, Argentina
| | - Maria Alejandra Dagrosa
- Department of Radiobiology, National Atomic Energy Commission, San Martín, Argentina; National Research Council of Argentina, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Takahashi K. Influence of bacteria on epigenetic gene control. Cell Mol Life Sci 2014; 71:1045-54. [PMID: 24132510 PMCID: PMC11113846 DOI: 10.1007/s00018-013-1487-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan,
| |
Collapse
|