1
|
Christophorou N, She W, Long J, Hurel A, Beaubiat S, Idir Y, Tagliaro-Jahns M, Chambon A, Solier V, Vezon D, Grelon M, Feng X, Bouché N, Mézard C. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLoS Genet 2020; 16:e1008894. [PMID: 32598340 PMCID: PMC7351236 DOI: 10.1371/journal.pgen.1008894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/10/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells. In sexually reproducing organisms, each parent transmits one and only one copy of each chromosome to their progeny via their packaging in haploid gametes. To ensure the proper transmission of the chromosomes, pairs of homologous chromosomes must associate and exchange genetic information (also called reciprocal recombination) during a special division called meiosis that lead to the formation of the gametes. The recombination process is highly controlled in terms of number and localization of the events along the chromosomes. Disruption of this control may cause an inappropriate transmission of the chromosomes in the gametes leading to abnormal chromosome numbers in the offspring which is usually deleterious. In the plant Arabidopis thaliana, we show that when the pathway modifying proteins through ubiquitination/neddylation is impaired, the number of reciprocal recombination events is maintained but they are delocalized toward the ends of the chromosomes and some chromosomes do not exchange material. We also detected changes of patterns for DNA methylation, an epigenetic modification localised on DNA cytosines. Furthermore, we demonstrate that the methylation of cytosines is not causal to the localization change of meiotic recombination events.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Wenjing She
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jincheng Long
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sébastien Beaubiat
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Yassir Idir
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marina Tagliaro-Jahns
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Victor Solier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Daniel Vezon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| |
Collapse
|
2
|
Silva MC, Powell S, Ladstätter S, Gassler J, Stocsits R, Tedeschi A, Peters JM, Tachibana K. Wapl releases Scc1-cohesin and regulates chromosome structure and segregation in mouse oocytes. J Cell Biol 2020; 219:e201906100. [PMID: 32328639 PMCID: PMC7147110 DOI: 10.1083/jcb.201906100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cohesin is essential for genome folding and inheritance. In somatic cells, these functions are both mediated by Scc1-cohesin, which in mitosis is released from chromosomes by Wapl and separase. In mammalian oocytes, cohesion is mediated by Rec8-cohesin. Scc1 is expressed but neither required nor sufficient for cohesion, and its function remains unknown. Likewise, it is unknown whether Wapl regulates one or both cohesin complexes and chromosome segregation in mature oocytes. Here, we show that Wapl is required for accurate meiosis I chromosome segregation, predominantly releases Scc1-cohesin from chromosomes, and promotes production of euploid eggs. Using single-nucleus Hi-C, we found that Scc1 is essential for chromosome organization in oocytes. Increasing Scc1 residence time on chromosomes by Wapl depletion leads to vermicelli formation and intra-loop structures but, unlike in somatic cells, does not increase loop size. We conclude that distinct cohesin complexes generate loops and cohesion in oocytes and propose that the same principle applies to all cell types and species.
Collapse
Affiliation(s)
- Mariana C.C. Silva
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Antonio Tedeschi
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Tao Y, Chen D, Zou T, Zeng J, Gao F, He Z, Zhou D, He Z, Yuan G, Liu M, Zhao H, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Wang L, Li P, Li S. Defective Leptotene Chromosome 1 (DLC1) encodes a type-B response regulator and is required for rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:556-570. [PMID: 31004552 DOI: 10.1111/tpj.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Meiosis is critical for sexual reproduction and the generation of new allelic variations in most eukaryotes. In this study, we report the isolation of a meiotic gene, DLC1, using a map-based cloning strategy. The dlc1 mutant is sterile in both male and female gametophytes due to an earlier defect in the leptotene chromosome and subsequent abnormalities at later stages. DLC1 is strongly expressed in the pollen mother cells (PMCs) and tapetum and encodes a nucleus-located rice type-B response regulator (RR) with transcriptional activity. Further investigations showed that DLC1 interacts with all five putative rice histidine phosphotransfer proteins (HPs) in yeast and planta cells, suggesting a possible participation of the two-component signalling systems (TCS) in rice meiosis. Our results demonstrated that DLC1 is required for rice meiosis and fertility, providing useful information for the role of TCS in rice meiosis.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Gao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongshan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongfeng Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
4
|
Amitai A, Holcman D. Encounter times of chromatin loci influenced by polymer decondensation. Phys Rev E 2018; 97:032417. [PMID: 29776075 DOI: 10.1103/physreve.97.032417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/24/2022]
Abstract
The time for a DNA sequence to find its homologous counterpart depends on a long random search inside the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two sites located on two different polymer chains and confined locally by potential wells. We find that reducing tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the present modeling approach that the fast search for homology is mediated by a local chromatin decondensation due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous recombination pathway for double-stranded DNA repair is controlled by its random search step.
Collapse
Affiliation(s)
- A Amitai
- Department of Chemical Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - D Holcman
- Group of Applied Mathematics and Computational Biology, Ecole Normale Supérieure, 75005 Paris, France
| |
Collapse
|
5
|
Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. FRONTIERS IN PLANT SCIENCE 2018; 9:880. [PMID: 30013585 PMCID: PMC6036140 DOI: 10.3389/fpls.2018.00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Meiosis, the type of cell division that halves the chromosome number, shows a considerable degree of diversity among species. Unraveling molecular mechanisms of the meiotic machinery has been mainly based on meiotic mutants, where the effects of a change were assessed on chromosomes of the particular species. An alternative approach is to study the meiotic behavior of the chromosomes introgressed into different genetic backgrounds. As an allohexaploid, common wheat tolerates introgression of chromosomes from related species, such as rye. The behavior of individual pairs of rye homologues added to wheat has been monitored in meiotic prophase I and metaphase I. Chromosome 4R increased its length in early prophase I much more than other chromosomes studied, implying chromosome specific patterns of chromatin organization. Chromosome conformation affected clustering of telomeres but not their dispersion. Telomeres of the short arm of submetacentric chromosomes 4R, 5R, and 6R failed more often to be included in the telomere cluster either than the telomeres of the long arms or telomeres of metacentrics such as 2R, 3R, and 7R. The disturbed migration of the telomeres of 5RS and 6RS was associated with failure of synapsis and chiasma formation. However, despite the failed convergence of its telomere, the 4RS arm developed normal synapsis, perhaps because the strong increase of its length in early prophase I facilitated homologous encounters in intercalary regions. Surprisingly, chiasma frequencies in both arms of 4R were reduced. Similarly, the short arm of metacentric chromosome 2R often failed to form chiasmata despite normal synapsis. Chromosomes 1R, 3R, and 7R showed a regular meiotic behavior. These observations are discussed in the context of the behavior that these chromosomes show in rye itself.
Collapse
|
6
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
7
|
Mézard C, Jahns MT, Grelon M. Where to cross? New insights into the location of meiotic crossovers. Trends Genet 2015; 31:393-401. [PMID: 25907025 DOI: 10.1016/j.tig.2015.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
During meiosis, the repair of induced DNA double-strand breaks (DSBs) produces crossovers (COs). COs are essential for the proper segregation of homologous chromosomes at the first meiotic division. In addition, COs generate new combinations of genetic markers in the progeny. CO localization is tightly controlled, giving rise to patterns that are specific to each species. The underlying mechanisms governing CO location, however, are poorly understood. Recent studies highlight the complexity of the multiple interconnected factors involved in shaping the CO landscape and demonstrate that the mechanisms that control CO distribution can vary from species to species. Here, we provide an overview of the recent findings related to CO distribution and discuss their impact on our understanding of the control of meiotic recombination.
Collapse
Affiliation(s)
- Christine Mézard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France.
| |
Collapse
|
8
|
Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosoma 2015; 124:397-415. [PMID: 25894966 DOI: 10.1007/s00412-015-0511-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.
Collapse
|
9
|
Sakuno T, Watanabe Y. Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis. Dev Cell 2015; 32:220-30. [PMID: 25579976 DOI: 10.1016/j.devcel.2014.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
Abstract
In meiosis, cohesin is required for sister chromatid cohesion, as well as meiotic chromosome axis assembly and recombination. However, mechanisms underlying the multifunctional nature of cohesin remain elusive. Here, we show that fission yeast casein kinase 1 (CK1) plays a crucial role in assembling the meiotic chromosome axis (so-called linear element: LinE) and promoting recombination. An in vitro phosphorylation screening assay identified meiotic cohesin subunit Rec11/SA3 as an excellent substrate of CK1. The phosphorylation of Rec11 by CK1 mediates the interaction with the Rec10/Red1/SCP2 axis component, a key step in meiotic chromosome axis assembly, and is dispensable for sister chromatid cohesion. Crucially, the expression of Rec11-Rec10 fusion protein nearly completely bypasses the requirement for CK1 or cohesin phosphorylation for LinE assembly and recombination. This study uncovers a central mechanism of the cohesin-dependent assembly of the meiotic chromosome axis and recombination apparatus that acts independently of sister chromatid cohesion.
Collapse
Affiliation(s)
- Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Science, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
10
|
Meyer RE, Algazeery A, Capri M, Brazier H, Ferry C, Aït-Ahmed O. Drosophila Yemanuclein associates with the cohesin and synaptonemal complexes. J Cell Sci 2014; 127:4658-66. [PMID: 25189620 DOI: 10.1242/jcs.152520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis is characterized by two chromosome segregation rounds (meiosis I and II), which follow a single round of DNA replication, resulting in haploid genome formation. Chromosome reduction occurs at meiosis I. It relies on key structures, such as chiasmata, which are formed by repair of double-strand breaks (DSBs) between the homologous chromatids. In turn, to allow for segregation of homologs, chiasmata rely on the maintenance of sister chromatid cohesion. In most species, chiasma formation requires the prior synapsis of homologous chromosome axes, which is mediated by the synaptonemal complex, a tripartite proteinaceous structure specific to prophase I of meiosis. Yemanuclein (Yem) is a maternal factor that is crucial for sexual reproduction. It is required in the zygote for chromatin assembly of the male pronucleus, where it acts as a histone H3.3 chaperone in complex with Hira. We report here that Yem associates with the synaptonemal complex and the cohesin complex. A genetic interaction between yem(1) (V478E) and the Spo11 homolog mei-W68, modified a yem(1) dominant effect on crossover distribution, suggesting that Yem has an early role in meiotic recombination. This is further supported by the impact of yem mutations on DSB kinetics. A Hira mutation gave a similar effect, presumably through disruption of Hira-Yem complex.
Collapse
Affiliation(s)
- Régis E Meyer
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Ahmed Algazeery
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Michèle Capri
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Hélène Brazier
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Christine Ferry
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Ounissa Aït-Ahmed
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM U1040/Hôpital Saint-Eloi CHRU, 34295 Montpellier, France
| |
Collapse
|
11
|
Weng KA, Jeffreys CA, Bickel SE. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. PLoS Genet 2014; 10:e1004607. [PMID: 25211017 PMCID: PMC4161318 DOI: 10.1371/journal.pgen.1004607] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages at the same rate at which they are lost.
Collapse
Affiliation(s)
- Katherine A. Weng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Charlotte A. Jeffreys
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
12
|
Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:856230. [PMID: 25147749 PMCID: PMC4132317 DOI: 10.1155/2014/856230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.
Collapse
|
13
|
Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 2014; 5:3-10. [PMID: 24637401 DOI: 10.4161/nucl.27819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pairing of homologous chromosome is a unique event in meiosis that is essential for both haploidization of the genome and genetic recombination. Rapid chromosome movements during meiotic prophase are a key feature of the pairing process. This is usually telomere-led, and in metazoans is dependent upon microtubules and dynein. Chromosome movements culminate in the formation of a meiotic "bouquet" in which nuclear envelope-associated telomeres are clustered at the centrosomal pole of the nucleus. Bouquet formation is thought to facilitate homolog pairing. Recent studies reveal that coupling of telomeres to cytoplasmic dynein is mediated by SUN1 in the inner nuclear membrane (INM) and KASH5 a novel protein of the outer nuclear membrane (ONM). Together SUN1 and KASH5 assemble to form a transluminal LINC (linker of the nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes. SUN1 forms attachment sites for telomeres at the INM while KASH5 functions as a dynein adaptor at the ONM. In mice deficient in KASH5, homologous chromosome pairing does not occur. The result is that meiosis is arrested at the leptotene/zygotene stage of meiotic prophase 1, and as a consequence both male and female mice are infertile. This study demonstrates an essential role for dynein directed telomere movement during meiotic prophase.
Collapse
Affiliation(s)
| | - Brian Burke
- Institute of Medical Biology; Immunos; Singapore
| |
Collapse
|
14
|
Lilienthal I, Kanno T, Sjögren C. Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLoS Genet 2013; 9:e1003898. [PMID: 24244180 PMCID: PMC3820751 DOI: 10.1371/journal.pgen.1003898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways. Most eukaryotic cells are diploid, which means that they contain two copies of each chromosome – one from each parent. In order to preserve the chromosome number from generation to generation, diploid organisms employ a process called meiosis to form gametes containing only one copy of each chromosome. During sexual reproduction, two gametes (sperm and eggs in mammals) fuse to form a zygote with the same chromosome number as the parents. This zygote will develop into a new organism that has genetic characteristics unique from, but still related to, both parents. The reduction of chromosome number and the reshuffling of genetic traits during meiosis depend on the repair of naturally occurring DNA breaks. Improper break repair during meiosis may block meiosis altogether or form genetically instable gametes, leading to fertility problems or defects in the offspring. The study presented here demonstrates the importance of the evolutionarily conserved Smc5/6 protein complex in upholding the integrity of meiotic repair processes. Our results show that cells deficient in components of the Smc5/6 complex lead to inviable meiotic products. Cells lacking functional Smc5/6 complex are unable to direct DNA repair to the proper template and accumulate abnormal repair intermediates, which inhibit the reductive division.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Takaharu Kanno
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Camilla Sjögren
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
15
|
Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 2013; 9:e1003637. [PMID: 23874232 PMCID: PMC3715423 DOI: 10.1371/journal.pgen.1003637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. Sexual reproduction entails an intricate 2-step division called meiosis in which homologous chromosomes and sister chromatids are sequentially segregated to yield gametes (eggs and sperm) with exactly one copy of each chromosome. The Drosophila meiosis protein SOLO is essential for cohesion between sister chromatids. SOLO localizes to centromeres throughout meiosis where it collaborates with the conserved cohesin complex to enable sister centromeres to orient properly – to the same pole during the first division and to opposite poles during the second division. In solo mutants, sister chromatids become disconnected early in meiosis and segregate randomly through both meiotic divisions generating gametes with random (and mostly wrong) numbers of chromosomes. In this study we show that SOLO also localizes to chromosome arms where it is required to construct stable synaptonemal complexes that connect homologs while they recombine. In addition, SOLO is required to prevent crossovers between sister chromatids, as only homolog crossovers are useful for forming the interhomolog connections (chiasmata) needed for homolog segregation. SOLO collaborates with cohesin for these tasks as well. We propose that SOLO is a subunit of a specialized meiotic cohesin complex and a multi-purpose cohesion protein that regulates several meiotic processes needed for proper chromosome segregation.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
16
|
Berkowitz KM, Sowash AR, Koenig LR, Urcuyo D, Khan F, Yang F, Wang PJ, Jongens TA, Kaestner KH. Disruption of CHTF18 causes defective meiotic recombination in male mice. PLoS Genet 2012; 8:e1002996. [PMID: 23133398 PMCID: PMC3486840 DOI: 10.1371/journal.pgen.1002996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/13/2012] [Indexed: 12/23/2022] Open
Abstract
CHTF18 (chromosome transmission fidelity factor 18) is an evolutionarily conserved subunit of the Replication Factor C-like complex, CTF18-RLC. CHTF18 is necessary for the faithful passage of chromosomes from one daughter cell to the next during mitosis in yeast, and it is crucial for germline development in the fruitfly. Previously, we showed that mouse Chtf18 is expressed throughout the germline, suggesting a role for CHTF18 in mammalian gametogenesis. To determine the role of CHTF18 in mammalian germ cell development, we derived mice carrying null and conditional mutations in the Chtf18 gene. Chtf18-null males exhibit 5-fold decreased sperm concentrations compared to wild-type controls, resulting in subfertility. Loss of Chtf18 results in impaired spermatogenesis; spermatogenic cells display abnormal morphology, and the stereotypical arrangement of cells within seminiferous tubules is perturbed. Meiotic recombination is defective and homologous chromosomes separate prematurely during prophase I. Repair of DNA double-strand breaks is delayed and incomplete; both RAD51 and γH2AX persist in prophase I. In addition, MLH1 foci are decreased in pachynema. These findings demonstrate essential roles for CHTF18 in mammalian spermatogenesis and meiosis, and suggest that CHTF18 may function during the double-strand break repair pathway to promote the formation of crossovers. Meiosis is the specialized process of cell division during germ cell development that results in formation of eggs and sperm. Genetic exchange between maternal and paternal chromosomes occurs during meiosis in a process called homologous recombination, in which DNA double- strand breaks are made and then repaired to allow DNA crossovers to form. These are essential processes that keep homologous chromosomes joined until anaphase I and ensure proper chromosome segregation. Errors in meiotic recombination lead to chromosome mis-segregation and ultimately aneuploidy, an abnormal chromosome number. Although it is well known that defects in these processes contribute greatly to infertility, birth defects, and pregnancy loss in humans, their molecular basis is not well understood. We demonstrate here a Chtf18 mutant mouse that exhibits subfertility and defects in meiotic recombination. Specifically, DNA double-strand breaks are incompletely repaired, DNA crossovers are significantly decreased, and homologous chromosomes separate during prophase I in Chtf18-null males. Our findings suggest roles for CHTF18 in DNA double-strand break repair and crossover formation, functions in mammals not previously known.
Collapse
Affiliation(s)
- Karen M Berkowitz
- Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Llano E, Herrán Y, García-Tuñón I, Gutiérrez-Caballero C, de Álava E, Barbero JL, Schimenti J, de Rooij DG, Sánchez-Martín M, Pendás AM. Meiotic cohesin complexes are essential for the formation of the axial element in mice. J Cell Biol 2012; 197:877-85. [PMID: 22711701 PMCID: PMC3384418 DOI: 10.1083/jcb.201201100] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022] Open
Abstract
Cohesin is a conserved multisubunit protein complex that participates in chromosome segregation, DNA damage repair, chromatin regulation, and synaptonemal complex (SC) formation. Yeast, but not mice, depleted of the cohesin subunit Rec8 are defective in the formation of the axial elements (AEs) of the SC, suggesting that, in mammals, this function is not conserved. In this paper, we show that spermatocytes from mice lacking the two meiosis-specific cohesin subunits RAD21L and REC8 were unable to initiate RAD51- but not DMC1-mediated double-strand break repair, were not able to assemble their AEs, and arrested as early as the leptotene stage of prophase I, demonstrating that cohesin plays an essential role in AE assembly that is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Yurema Herrán
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique de Álava
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Luis Barbero
- Departamento de Proliferación Celular y Desarrollo. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - John Schimenti
- Center for Vertebrate Genomics, Cornell University, Ithaca, NY 14850
| | - Dirk G. de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Manuel Sánchez-Martín
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M. Pendás
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
18
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
19
|
Fayrer-Hosken R, Stanley A, Hill N, Heusner G, Christian M, De La Fuente R, Baumann C, Jones L. Effect of feeding fescue seed containing ergot alkaloid toxins on stallion spermatogenesis and sperm cells. Reprod Domest Anim 2012; 47:1017-26. [PMID: 22524585 DOI: 10.1111/j.1439-0531.2012.02008.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular effects of tall fescue grass-associated toxic ergot alkaloids on stallion sperm and colt testicular tissue were evaluated. This was a continuation of an initial experiment where the effects of toxic ergot alkaloids on the stallion spermiogram were investigated. The only spermiogram parameter in exposed stallions that was affected by the toxic ergot alkaloids was a decreased gel-free volume of the ejaculate. This study examined the effect of toxic ergot alkaloids on chilling and freezing of the stallion sperm cells. The effect of toxic ergot alkaloids on chilled extended sperm cells for 48 h at 5°C was to make the sperm cells less likely to undergo a calcium ionophore-induced acrosome reaction. The toxic ergot alkaloids had no effect on the freezability of sperm cells. However, if yearling colts were fed toxic ergot alkaloids, then the cytological analysis of meiotic chromosome synapsis revealed a significant increase in the proportion of pachytene spermatocytes showing unpaired sex chromosomes compared to control spermatocytes. There was little effect of ergot alkaloids on adult stallions, but there might be a significant effect on yearling colts.
Collapse
Affiliation(s)
- R Fayrer-Hosken
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kouznetsova A, Benavente R, Pastink A, Höög C. Meiosis in mice without a synaptonemal complex. PLoS One 2011; 6:e28255. [PMID: 22164254 PMCID: PMC3229524 DOI: 10.1371/journal.pone.0028255] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/04/2011] [Indexed: 01/14/2023] Open
Abstract
The synaptonemal complex (SC) promotes fusion of the homologous chromosomes (synapsis) and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1(-/-)Sycp3(-/-), here called SC-null) in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
21
|
Baumann C, Daly CM, McDonnell SM, Viveiros MM, De La Fuente R. Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis. Chromosoma 2011; 120:227-44. [PMID: 21274552 PMCID: PMC3100478 DOI: 10.1007/s00412-010-0306-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 12/03/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
Abstract
Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348, USA
| | | | | | | | | |
Collapse
|
22
|
Hultén MA. On the origin of crossover interference: A chromosome oscillatory movement (COM) model. Mol Cytogenet 2011; 4:10. [PMID: 21477316 PMCID: PMC3103480 DOI: 10.1186/1755-8166-4-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.
Collapse
Affiliation(s)
- Maj A Hultén
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, CMM L8:02, Karolinska Institutet, Karolinska University Hospital, Solna, S-17 1 76 Stockholm, Sweden.
| |
Collapse
|
23
|
Qiao H, Lohmiller LD, Anderson LK. Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosome Res 2011; 19:193-207. [PMID: 21234670 DOI: 10.1007/s10577-010-9184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523-1878, USA
| | | | | |
Collapse
|
24
|
Abstract
Apart from a personal tragedy, could Down syndrome, cancer and infertility possibly have something in common? Are there links between a syndrome with physical and mental problems, a tumor growing out of control and the incapability to reproduce? These questions can be answered if we look at the biological functions of a protein complex, named cohesin, which is the main protagonist in the regulation of sister chromatid cohesion during chromosome segregation in cell division. The establishment, maintenance and removal of sister chromatid cohesion is one of the most fascinating and dangerous processes in the life of a cell. Errors in the control of sister chromatid cohesion frequently lead to cell death or aneuploidy. Recent results showed that cohesins also have important functions in non-dividing cells, revealing new, unexplored roles for these proteins in human syndromes, currently known as cohesinopathies. In the last 10 years, we have improved our understanding of the molecular mechanisms of the cohesin and cohesin-interacting proteins regulating the different events of sister chromatid cohesion during cell division in mitosis and meiosis.
Collapse
Affiliation(s)
- J L Barbero
- Cell Proliferation and Development Program, Chromosome Dynamics in Meiosis Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
25
|
Abstract
Sister chromatids are held together from the time of their formation in S phase until they segregate in anaphase by the cohesin complex. In meiosis of most organisms, the mitotic Mcd1/Scc1/Rad21 subunit of the cohesin complex is largely replaced by its paralog named Rec8. This article reviews the specialized functions of Rec8 that are crucial for diverse aspects of chromosome dynamics in meiosis, and presents some speculations relating to meiotic chromosome organization.
Collapse
|
26
|
Wood AJ, Severson AF, Meyer BJ. Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 2010; 11:391-404. [PMID: 20442714 PMCID: PMC3491780 DOI: 10.1038/nrg2794] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Condensin and cohesin complexes act in diverse nuclear processes in addition to their widely known roles in chromosome compaction and sister chromatid cohesion. Recent work has elucidated the contribution of condensin and cohesin to interphase genome organization, control of gene expression, metazoan development and meiosis. Despite these wide-ranging functions, several themes have come to light: both complexes establish higher-order chromosome structure by inhibiting or promoting interactions between distant genomic regions, both complexes influence the chromosomal association of other proteins, and both complexes achieve functional specialization by swapping homologous subunits. Emerging data are expanding the range of processes in which condensin and cohesin are known to participate and are enhancing our knowledge of how chromosome architecture is regulated to influence numerous cellular functions.
Collapse
Affiliation(s)
- Andrew J Wood
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
27
|
Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res 2010; 316:158-71. [PMID: 19686734 DOI: 10.1016/j.yexcr.2009.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
Abstract
HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Kouznetsova A, Wang H, Bellani M, Camerini-Otero RD, Jessberger R, Höög C. BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes. J Cell Sci 2009; 122:2446-52. [PMID: 19531582 DOI: 10.1242/jcs.049353] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcriptional silencing of the sex chromosomes during male meiosis is regarded as a manifestation of a general mechanism active in both male and female germ cells, called meiotic silencing of unsynapsed chromatin (MSUC). MSUC is initiated by the recruitment of the tumor suppressor protein BRCA1 to the axes of unsynapsed chromosomes. We now show that Sycp3, a structural component of the chromosome axis, is required for localization of BRCA1 to unsynapsed pachytene chromosomes. Importantly, we find that oocytes carrying an excess of two to three pairs of asynapsed homologous chromosomes fail to recruit enough BRCA1 to the asynapsed axes to activate MSUC. Furthermore, loss of MSUC function only transiently rescues oocytes from elimination during early postnatal development. The fact that the BRCA1-dependent synapsis surveillance system cannot respond to higher degrees of asynapsis and is dispensable for removal of aberrant oocytes argues that MSUC has a limited input as a quality control mechanism in female germ cells.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, S-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkeshik A, Sarkesik A, Yates J, Meyer BJ, Hagstrom K. Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol 2009; 19:9-19. [PMID: 19119011 DOI: 10.1016/j.cub.2008.12.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Condensin complexes organize chromosome structure and facilitate chromosome segregation. Higher eukaryotes have two complexes, condensin I and condensin II, each essential for chromosome segregation. The nematode Caenorhabditis elegans was considered an exception, because it has a mitotic condensin II complex but appeared to lack mitotic condensin I. Instead, its condensin I-like complex (here called condensin I(DC)) dampens gene expression along hermaphrodite X chromosomes during dosage compensation. RESULTS Here we report the discovery of a third condensin complex, condensin I, in C. elegans. We identify new condensin subunits and show that each complex has a conserved five-subunit composition. Condensin I differs from condensin I(DC) by only a single subunit. Yet condensin I binds to autosomes and X chromosomes in both sexes to promote chromosome segregation, whereas condensin I(DC) binds specifically to X chromosomes in hermaphrodites to regulate transcript levels. Both condensin I and II promote chromosome segregation, but associate with different chromosomal regions during mitosis and meiosis. Unexpectedly, condensin I also localizes to regions of cohesion between meiotic chromosomes before their segregation. CONCLUSIONS We demonstrate that condensin subunits in C. elegans form three complexes, one that functions in dosage compensation and two that function in mitosis and meiosis. These results highlight how the duplication and divergence of condensin subunits during evolution may facilitate their adaptation to specialized chromosomal roles and illustrate the versatility of condensins to function in both gene regulation and chromosome segregation.
Collapse
Affiliation(s)
- Gyorgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Page SL, Khetani RS, Lake CM, Nielsen RJ, Jeffress JK, Warren WD, Bickel SE, Hawley RS. Corona is required for higher-order assembly of transverse filaments into full-length synaptonemal complex in Drosophila oocytes. PLoS Genet 2008; 4:e1000194. [PMID: 18802461 PMCID: PMC2529403 DOI: 10.1371/journal.pgen.1000194] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022] Open
Abstract
The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable 'zippering' of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells.
Collapse
Affiliation(s)
- Scott L Page
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Boateng KA, Yang X, Dong F, Owen HA, Makaroff CA. SWI1 is required for meiotic chromosome remodeling events. MOLECULAR PLANT 2008; 1:620-33. [PMID: 19825567 DOI: 10.1093/mp/ssn030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis dsy10 mutant was previously identified as being defective in the synapsis of meiotic chromosomes resulting in male and female sterility. We report here the molecular analysis of the mutation and show that it represents a T-DNA insertion in the third exon of the SWI1 gene. Four mutations have now been identified in SWI1, several of which exhibit different phenotypes. For example, the swi1-1 and dyad mutations only affect meiosis in megasporocytes, while the swi1-2 and dsy10 mutations block both male and female meiosis. Furthermore, as part of a detailed cytological characterization of dsy10 meiocytes, we identified several differences during male meiosis between the swi1-2 and dys10 mutants, including variations in the formation of axial elements, the distribution of cohesin proteins and the timing of the premature loss of sister chromatid cohesion. We demonstrate that dsy10 represents a complete loss-of-function mutation, while a truncated form of SWI1 is expressed during meiosis in swi1-2 plants. We further show that dys10 meiocytes exhibit alterations in modified histone patterns, including acetylated histone H3 and dimethylated histone H3-Lysine 4.
Collapse
Affiliation(s)
- Kingsley A Boateng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
32
|
Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med 2008; 54:57-74. [PMID: 18446647 DOI: 10.1080/19396360701881922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.
Collapse
Affiliation(s)
- Matthew L Sanderson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
33
|
Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51-66. [PMID: 17909832 PMCID: PMC2258212 DOI: 10.1007/s00412-007-0125-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/11/2023]
Abstract
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Hayley A. Webber
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Gabe Haller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | - Joel C. Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
34
|
Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet 2008; 24:86-93. [PMID: 18192063 DOI: 10.1016/j.tig.2007.11.010] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/26/2022]
Abstract
Critical events of oogenesis occur during three distinct developmental stages: meiotic initiation in the fetal ovary, follicle formation in the perinatal period, and oocyte growth and maturation in the adult. Evidence from studies in humans and mice suggests that the genetic quality of the egg may be influenced by events at each of these stages. Recent experimental studies add additional complexity, suggesting that environmental influences might adversely affect all three stages. Thus, understanding the molecular control of oogenesis during these critical developmental windows will not only contribute to an understanding of human aneuploidy, but also provide a means of assessing potential effects of environmental exposures on human reproductive health.
Collapse
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4660, USA.
| | | |
Collapse
|
35
|
Khetani RS, Bickel SE. Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 2007; 120:3123-37. [PMID: 17698920 DOI: 10.1242/jcs.009977] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte centromeres. Although SMC1 and SMC3 localization along chromosome cores appears normal during early pachytene in ord mutant oocytes, the cores disassemble as meiosis progresses. These data suggest that cohesin loading and/or accumulation at centromeres versus arms is under differential control during Drosophila meiosis. Our experiments also reveal that the alpha-kleisin C(2)M is required for the assembly of chromosome cores during pachytene but is not involved in recruitment of cohesin SMCs to the centromeres. We present a model for how chromosome cores are assembled during Drosophila meiosis and the role of ORD in meiotic cohesion, chromosome core maintenance and homologous recombination.
Collapse
Affiliation(s)
- Radhika S Khetani
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
36
|
Viera A, Gómez R, Parra MT, Schmiesing JA, Yokomori K, Rufas JS, Suja JA. Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS One 2007; 2:e783. [PMID: 17712430 PMCID: PMC1942118 DOI: 10.1371/journal.pone.0000783] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022] Open
Abstract
Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.
Collapse
Affiliation(s)
- Alberto Viera
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore: a prelude to meiosis. Cell Div 2007; 2:17. [PMID: 17550626 PMCID: PMC1899494 DOI: 10.1186/1747-1028-2-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear architecture provides a physical framework for the genetic activities of chromosomes, and changes its functional organization as the cell moves through the phases of the cell cycle. The fission yeast Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-pole body (SPB; a centrosome-equivalent structure in fungi) during mitotic interphase. In contrast, during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB. Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone signaling. Some centromere proteins disappear from the centromere in response to mating pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone signaling is also required for monopolar orientation of the kinetochore which is crucial for proper segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins remain at the centromere; the centromere remains associated with the SPB; and sister chromatids segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all normalized by activating the mating pheromone signaling pathway. Thus, action of mating pheromone on the centromere is important for coherent behavior of chromosomes in meiosis. Here we discuss repositioning and reconstruction of the centromere during the transition from mitosis to meiosis, and highlight its significance for proper progression of meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Yasushi Hiraoka
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
38
|
Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y. Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. ACTA ACUST UNITED AC 2006; 174:499-508. [PMID: 16893973 PMCID: PMC2064256 DOI: 10.1083/jcb.200605074] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Cell Biology Group, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | | | | | | | |
Collapse
|