2
|
Wang LB, Li ZK, Wang LY, Xu K, Ji TT, Mao YH, Ma SN, Liu T, Tu CF, Zhao Q, Fan XN, Liu C, Wang LY, Shu YJ, Yang N, Zhou Q, Li W. A sustainable mouse karyotype created by programmed chromosome fusion. Science 2022; 377:967-975. [PMID: 36007034 DOI: 10.1126/science.abm1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.
Collapse
Affiliation(s)
- Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tian-Tian Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Huan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Cheng-Fang Tu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Qian Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Xu-Ning Fan
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Li-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - You-Jia Shu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
3
|
Montembault E, Claverie MC, Bouit L, Landmann C, Jenkins J, Tsankova A, Cabernard C, Royou A. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nat Commun 2017; 8:326. [PMID: 28835609 PMCID: PMC5569077 DOI: 10.1038/s41467-017-00337-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a “chromatid separation checkpoint” that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone. Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.
Collapse
Affiliation(s)
- Emilie Montembault
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| | - Marie-Charlotte Claverie
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Lou Bouit
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Cedric Landmann
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - James Jenkins
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Anna Tsankova
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Anne Royou
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
5
|
Yasui M, Koyama N, Koizumi T, Senda-Murata K, Takashima Y, Hayashi M, Sugimoto K, Honma M. Live cell imaging of micronucleus formation and development. Mutat Res 2010; 692:12-18. [PMID: 20691709 DOI: 10.1016/j.mrfmmm.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
The micronucleus (MN) test is widely used to biomonitor humans exposed to clastogens and aneugens, but little is known about MN development. Here we used confocal time-lapse imaging and a fluorescent human lymphoblastoid cell line (T105GTCH), in which histone H3 and α-tubulin stained differentially, to record the emergence and behavior of micronuclei (MNi) in cells exposed to MN-inducing agents. In mitomycin C (MMC)-treated cells, MNi originated in early anaphase from lagging chromosome fragments just after chromosome segregation. In γ-ray-treated cells showing multipolar cell division, MN originated in late anaphase from lagging chromosome fragments generated by the abnormal cell division associated with supernumerary centrosomes. In vincristine(VC)-treated cells, MN formation was similar to that in MMC-treated cells, but MNi were also derived from whole chromosomes that did not align properly on the metaphase plate. Thus, the MN formation process induced by MMC, γ-rays, and VC, were strikingly different, suggesting that different mechanisms were involved. MN stability, however, was similar regardless of the treatment and unrelated to MN formation mechanisms. MNi were stable in daughter cells, and MN-harboring cells tended to die during cell cycle progression with greater frequency than cells without MN. Because of their persistence, MN may have significant impact on cells, causing genomic instability and abnormally transcribed genes.
Collapse
Affiliation(s)
- Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zybina EV, Zybina TG. Modifications of nuclear envelope during differentiation and depolyploidization of rat trophoblast cells. Micron 2007; 39:593-606. [PMID: 17627829 DOI: 10.1016/j.micron.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 01/05/2023]
Abstract
An increased activity of membranes of the nuclear envelope (NE) was observed electron microscopically in the trophoblast cells of the rat placenta. The activity of the membranes was manifested as formation of various NE derivatives, such as the annulate lamellae (AL), the intranuclear tubules, and the concentric membranous structures. At the period of terminal differentiation of the secondary giant trophoblast cells (SGTC) the NE derivatives play active role in subdivision of the initial highly polyploid nuclei into the numerous low-ploidy fragments. (3)H-thymidine labeling showed that attenuation of the DNA replication precedes the nuclear fragmentation. In the course of the nuclear fragmentation the narrow deep NE invaginations subdivide the nucleus into the separate lobes that subsequently are detached from the initial nucleus. By the beginning of the fragmentation, the accumulated membranous structures, i.e. the intranuclear AL, tubules, clusters of pore complexes, etc., seem to be the source of the reserve material that is necessary for formation of the great amount of the NE membranes of the newly formed nuclear fragments. Thus, the intranuclear membranous structures that seem to increase the active surface of the growing endopolyploid nucleus at the earlier stage of differentiation then take part in genome isolation that results in formation of a multinucleate cell with diploid and low-polyploid nuclei. The outer NE membrane of the initial nucleus plays an active role in compartmentalization of cytoplasmic areas around the nuclear fragments within the giant polykaryocyte. Apart from the membranous structures the bundles of intermediate filaments (IF) located in the cytoplasm perinuclear zones seem to participate in the nuclear fragmentation. These processes are likely to provide formation of the giant polykaryocytes incapable for further proliferation.
Collapse
Affiliation(s)
- Eugenia V Zybina
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | |
Collapse
|