1
|
Schweighofer J, Mulay B, Hoffmann I, Vogt D, Pesenti ME, Musacchio A. Interactions with multiple inner kinetochore proteins determine mitotic localization of FACT. J Cell Biol 2025; 224:e202412042. [PMID: 40094435 PMCID: PMC11912937 DOI: 10.1083/jcb.202412042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The FAcilitates Chromatin Transcription (FACT) complex is a dimeric histone chaperone that operates on chromatin during transcription and replication. FACT also interacts with a specialized centromeric nucleosome containing the histone H3 variant centromere protein A (CENP-A) and with CENP-TW, two subunits of the constitutive centromere-associated network (CCAN), a 16-protein complex associated with CENP-A. The significance of these interactions remains elusive. Here, we show that FACT has multiple additional binding sites on CCAN. The interaction with CCAN is strongly stimulated by casein kinase II phosphorylation of FACT. Mitotic localization of FACT to kinetochores is strictly dependent on specific CCAN subcomplexes. Conversely, CENP-TW requires FACT for stable localization. Unexpectedly, we also find that DNA readily displaces FACT from CCAN, supporting the speculation that FACT becomes recruited through a pool of CCAN that is not stably integrated into chromatin. Collectively, our results point to a potential role of FACT in chaperoning CCAN during transcription or in the stabilization of CCAN at the centromere during the cell cycle.
Collapse
Affiliation(s)
- Julia Schweighofer
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Bhagyashree Mulay
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion E. Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
2
|
Wang J, Fang X, Xing Y, Ding M, Zhu L, Wang M. KDM1A-mediated ZFP64 demethylation activates CENPL to promote epithelial ovarian cancer progression. Cytotechnology 2025; 77:10. [PMID: 39628712 PMCID: PMC11609140 DOI: 10.1007/s10616-024-00671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Lysine-specific histone demethylase 1A (KDM1A) has emerged as an attractive therapeutic target for treating various cancers, owing to its observed overexpression. However, its function in epithelial ovarian cancer (EOC) remains uncertain. The current study sought to investigate the function of KDM1A on malignant phenotypes of EOC cells as well as the underlying mechanism. Colony formation assay, cell counting kit-8, wound healing, Transwell assays, and TUNEL assays were performed to investigate the effects of KDM1A, Zinc finger protein 64 (ZFP64), and centromere protein L (CENPL) in vitro, while subcutaneous tumor formation models were established in nude mice to evaluate their roles in vivo. KDM1A, ZFP64, and CENPL were overexpressed in EOC tissues and cells. Knockdown of KDM1A, ZFP64, or CENPL inhibited the biological behavior of EOC cells. In addition, chromatin immunoprecipitation showed that KDM1A stimulated ZFP64 expression by removing the H3K9me2 mark from its promoter. Restoration of ZFP64 promoted EOC cell malignant phenotype in the presence of KDM1A knockdown. ZFP64 activated CENPL transcription. Reactivation of CENPL promoted the growth of EOC cells in vivo inhibited by knockdown of ZFP64. Collectively, KDM1A promoted EOC cell proliferation, migration, and invasion, and reduced apoptosis by activating the ZFP64/CENPL axis, which triggered EOC progression. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00671-w.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Xinjian Fang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Yajun Xing
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Meiqing Ding
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Liangxue Zhu
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| | - Mingyun Wang
- Department of Oncology, Gaochun People’s Hospital Affiliated to Jiangsu Health Vocational College, No. 53, Maoshan Road, Gaochun Economic Development Zone, Nanjing, 211306 Jiangsu People’s Republic of China
| |
Collapse
|
3
|
Tek AL, Nagaki K, Yıldız Akkamış H, Tanaka K, Kobayashi H. Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor. Life Sci Alliance 2024; 7:e202402802. [PMID: 39353738 PMCID: PMC11447526 DOI: 10.26508/lsa.202402802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
Collapse
Affiliation(s)
- Ahmet L Tek
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hümeyra Yıldız Akkamış
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Japan
| |
Collapse
|
4
|
Li G, Shen J, Cheng W, Wang X, Wang D, Song Y, Chen Y, Li X, Zhang M, Ding Y, Ma X, Qian Q, Zhang G, Ji J, Liu B. CENPK orchestrates ovarian cancer progression via GOLPH3-Mediated activation of mTOR signaling. Mol Cell Endocrinol 2024; 589:112253. [PMID: 38670220 DOI: 10.1016/j.mce.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ovarian cancer stands as a formidable clinical challenge, with limited therapeutic options. This investigation delves into the intricate molecular mechanisms governing ovarian cancer progression and uncovers Centromere Protein K (CENPK) as a central figure in disease pathogenesis. Elevated CENPK levels within ovarian cancer tissues conspicuously align with adverse clinical outcomes, positioning CENPK as a promising prognostic biomarker. Deeper exploration reveals a direct transcriptional connection between CENPK and the E2F1 transcription factor and clearly establishes E2F1's role as the master regulator of CENPK expression in ovarian cancer. Our inquiry revealing a suppression of tumor-promoting signaling pathways, most notably the mTOR pathway, upon CENPK silencing. Intriguingly, CENPK renders ovarian cancer cells more responsive to the mTOR inhibitor rapamycin, introducing a promising avenue for therapeutic intervention. In summation, our study unravels the multifaceted role of CENPK in ovarian cancer progression. It emerges as a prognostic indicator, a pivotal mediator of cell proliferation and tumorigenicity, and a regulator of the mTOR pathway, shedding light on potential therapeutic avenues for this formidable disease.
Collapse
Affiliation(s)
- Gaolian Li
- Department of Gynaecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, 434100, China
| | - Jing Shen
- Department of Gynaecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, 434100, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoshuo Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Geng Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
6
|
Si LH, Sun GC, Liu ZW, Gu SY, Yan CH, Xu JY, Jia Y. High expression levels of centromere protein O participates in cell proliferation of human ovarian cancer. J Ovarian Res 2024; 17:126. [PMID: 38890751 PMCID: PMC11184697 DOI: 10.1186/s13048-024-01452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Ovarian cancer is a common malignant tumor in women, with a high mortality rate ranking first among gynecological tumors. Currently, there is insufficient understanding of the causes, pathogenesis, recurrence and metastasis of ovarian cancer, and early diagnosis and treatment still face great challenges. The sensitivity and specificity of existing ovarian cancer screening methods are still unsatisfactory. Centromere protein O (CENP-O) is a recently discovered structural centromere protein that is involved in cell death and is essential for spindle assembly, chromosome separation, and checkpoint signaling during mitosis. The abnormal high expression of CENP-O was detected in various tumors such as bladder cancer and gastric cancer, and it participates in the regulation of tumor cell proliferation. In this study, we detect the expression abundance of CENP-O mRNA in different ovarian cancer cells ( ES-2, A2780, Caov-3, OVCAR-3 and SK-OV-3). The biological function changes of cell proliferation and apoptosis were detected and the role of CENP-O in ovarian cancer cell proliferation and apoptosis was explored by knocking down the expression of CENP-O gene. The results showed that CENP-O gene was significantly expressed in 5 types of ovarian cancer cell lines. After knocking down the CENP-O gene, the proliferation and cloning ability of ovarian cancer cells decreased, and the apoptosis increased. This study indicates that CENP-O has the potential to be a molecular therapeutic target, and downregulating the expression of CENP-O gene can break the unlimited proliferation ability of cancer cells and promote their apoptosis, providing a foundation and new ideas for subsequent molecular mechanism research and targeted therapy.
Collapse
Affiliation(s)
- Li-Hui Si
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Guang-Chao Sun
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi-Wei Liu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Shi-Yu Gu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Chu-Han Yan
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Jin-Yuan Xu
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
He K, Xie MY, Gao XJ, Wang H, Li JD. The Correlation of Centromere Protein Q with Diagnosis and Prognosis in Hepatocellular Carcinoma. Pharmgenomics Pers Med 2024; 17:271-288. [PMID: 38827182 PMCID: PMC11141762 DOI: 10.2147/pgpm.s456965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the major types of liver cancer. Previous studies have shown that the centromere protein family is associated with malignant biological behaviors such as HCC proliferation. As a member of the centromere protein family, centromere protein Q (CENPQ) is closely associated with immunotherapy and immune cell infiltration in various tumors. However, the role and mechanism of CENPQ in HCC remain unclear. Methods Multiple public databases and RT-qPCR were used to study the expression of CENPQ in HCC. Based on TCGA data, the correlation between CENPQ and clinicopathological characteristics and prognosis of HCC patients was analyzed, and its diagnostic value was evaluated. The potential biological functions of CENPQ in HCC were explored by functional enrichment analysis of differentially expressed genes. The distribution of tumor-infiltrating immune cell types was assessed using single-sample GSEA, and immune checkpoint gene expression was analyzed using Spearman correlation. Subsequently, loss-of-function experiments were performed to determine the function of CENPQ on the cell cycle and proliferation of HCC cells in vitro. Results CENPQ was found highly expressed in HCC and correlated with weight, BMI, age, AFP, T stage, pathologic stage, histologic grade, and prothrombin time (all p < 0.05). ROC and Kaplan-Meier analyses indicated that CENPQ may be potentially used as a diagnostic marker for HCC (AUC = 0.881), and its upregulation is associated with decreased OS (p = 0.002), DSS (p < 0.001), and PFI (p = 0.002). Functional enrichment analysis revealed an association of CENPQ with biological processes such as immune cell infiltration, cell cycle, and hippo-merlin signaling deregulation in HCC. Furthermore, knockdown of CENPQ manifested in HCC cells with G0/1 phase cycle arrest and decreased proliferative capacity. Conclusion CENPQ expression was higher in HCC tissues than in normal liver tissues. It was significantly associated with poor prognosis, immune cell infiltration, cell cycle, and proliferation. Therefore, CENPQ may become a promising prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng-yi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xiao-jin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Hao Wang
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jing-dong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
8
|
Xie W, Zhang L, Shen J, Lai F, Han W, Liu X. Knockdown of CENPM activates cGAS-STING pathway to inhibit ovarian cancer by promoting pyroptosis. BMC Cancer 2024; 24:551. [PMID: 38693472 PMCID: PMC11064423 DOI: 10.1186/s12885-024-12296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.
Collapse
Affiliation(s)
- Wei Xie
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Junjing Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Fengdi Lai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Wenling Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
9
|
Mohanty S, Bhadane R, Kumar S. Bioinformatics insights into CENP-T and CENP-W protein-protein interaction disruptive amino acid substitution in the CENP-T-W complex. J Cell Biochem 2023; 124:1870-1885. [PMID: 37943107 DOI: 10.1002/jcb.30495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Kinetochores are multi-protein assemblies present at the centromere of the human chromosome and play a crucial role in cellular mitosis. The CENP-T and CENP-W chains form a heterodimer, which is an integral part of the inner kinetochore, interacting with the linker DNA on one side and the outer kinetochore on the other. Additionally, the CENP-T-W dimer interacts with other regulatory proteins involved in forming inner kinetochores. The specific roles of different amino acids in the CENP-W at the protein-protein interaction (PPI) interface during the CENP-T-W dimer formation remain incompletely understood. Since cell division goes awry in diseases like cancer, this CENP-T-W partnership is a potential target for new drugs that could restore healthy cell division. We employed molecular docking, binding free energy calculations, and molecular dynamics (MD) simulations to investigate the disruptive effects of amino acids substitutions in the CENP-W chain on CENP-T-W dimer formation. By conducting a molecular docking study and analysing hydrogen bonding interactions, we identified key residues in CENP-W (ASN-46, ARG-53, LEU-83, SER-86, ARG-87, and GLY-88) for further investigation. Through site-directed mutagenesis and subsequent binding free energy calculations, we refined the selection of mutant. We chose four mutants (N46K, R53K, L83K, and R87E) of CENP-W to assess their comparative potential in forming CENP-T-W dimer. Our analysis from 250 ns long revealed that the substitution of LEU83 and ARG53 residues in CENP-W with the LYS significantly disrupts the formation of CENP-T-W dimer. In conclusion, LEU83 and ARG53 play a critical role in CENP-T and CENP-W dimerization which is ultimately required for cellular mitosis. Our findings not only deepen our understanding of cell division but also hint at exciting drug-target possibilities.
Collapse
Affiliation(s)
- Suryakanta Mohanty
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, India
| | - Rajendra Bhadane
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, India
| |
Collapse
|
10
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
11
|
Kale S, Boopathi R, Belotti E, Lone IN, Graies M, Schröder M, Petrova M, Papin C, Bednar J, Ugrinova I, Hamiche A, Dimitrov S. The CENP-A nucleosome: where and when it happens during the inner kinetochore's assembly. Trends Biochem Sci 2023; 48:849-859. [PMID: 37596196 DOI: 10.1016/j.tibs.2023.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.
Collapse
Affiliation(s)
- Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey.
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; Laboratoire de Biologie et de Modelisation de la Cellule (LBMC), CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Mohamed Graies
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maria Schröder
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Christophe Papin
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France
| | - Jan Bednar
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France.
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey; Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
12
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
13
|
Chen J, Lian Y, Zhao B, Han J, Li X, Wu J, Hou M, Yue M, Zhang K, Liu G, Tu M, Ruan W, Ji S, An Y. Deciphering the Prognostic and Therapeutic Significance of Cell Cycle Regulator CENPF: A Potential Biomarker of Prognosis and Immune Microenvironment for Patients with Liposarcoma. Int J Mol Sci 2023; 24:ijms24087010. [PMID: 37108172 PMCID: PMC10139200 DOI: 10.3390/ijms24087010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Liposarcoma (LPS) is one of the most common subtypes of sarcoma with a high recurrence rate. CENPF is a regulator of cell cycle, differential expression of which has been shown to be related with various cancers. However, the prognostic value of CENPF in LPS has not been deciphered yet. Using data from TCGA and GEO datasets, the expression difference of CENPF and its effects on the prognosis or immune infiltration of LPS patients were analyzed. As results show, CENPF was significantly upregulated in LPS compared to normal tissues. Survival curves illustrated that high CENPF expression was significantly associated with adverse prognosis. Univariate and multivariate analysis suggested that CENPF expression could be an independent risk factor for LPS. CENPF was closely related to chromosome segregation, microtubule binding and cell cycle. Immune infiltration analysis elucidated a negative correlation between CENPF expression and immune score. In conclusion, CENPF not only could be considered as a potential prognostic biomarker but also a potential malignant indicator of immune infiltration-related survival for LPS. The elevated expression of CENPF reveals an unfavorable prognostic outcome and worse immune score. Thus, therapeutically targeting CENPF combined with immunotherapy might be an attractive strategy for the treatment of LPS.
Collapse
Affiliation(s)
- Jiahao Chen
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yingying Lian
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Binbin Zhao
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jiayang Han
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Xinyu Li
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jialin Wu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengwen Hou
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Man Yue
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Kaifeng Zhang
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Guangchao Liu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengjie Tu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaoping Ji
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yang An
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| |
Collapse
|
14
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
15
|
Jian Y, Nie L, Liu S, Jiang Y, Dou Z, Liu X, Yao X, Fu C. The fission yeast kinetochore complex Mhf1-Mhf2 regulates the spindle assembly checkpoint and faithful chromosome segregation. J Cell Sci 2023; 136:286678. [PMID: 36537249 DOI: 10.1242/jcs.260124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Sikai Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| |
Collapse
|
16
|
Lv J, Kelliher T. Recent Advances in Engineering of In Vivo Haploid Induction Systems. Methods Mol Biol 2023; 2653:365-383. [PMID: 36995637 DOI: 10.1007/978-1-0716-3131-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Doubled haploid (DH) technology is an important approach to accelerate genetic gain via a shortened breeding cycle, which relies on the ability to generate haploid cells that develop into haploids or doubled haploid embryos and plants. Both in vitro and in vivo (in seed) methods can be used for haploid production. In vitro culture of gametophytes (microspores and megaspores) or their surrounding floral tissues or organs (anthers, ovaries, or ovules) has generated haploid plants in wheat, rice, cucumber, tomato, and many other crops. In vivo methods utilize pollen irradiation or wide crossing or in certain species leverage genetic mutant haploid inducer lines. Haploid inducers were widespread in corn and barley, and recent cloning of the inducer genes and identification of the causal mutations in corn have led to the establishment of in vivo haploid inducer systems via genome editing of orthologous genes in more diverse species. Further combination of DH and genome editing technology led to the development of novel breeding technologies such as HI-EDIT™. In this chapter, we will review in vivo haploid induction and new breeding technologies that combine haploid induction and genome editing.
Collapse
Affiliation(s)
- Jian Lv
- Syngenta Biotechnology China Co., Ltd, Changping, Beijing, China.
| | | |
Collapse
|
17
|
He K, Xie M, Li J, He Y, Yin Y. CENPO is Associated with Immune Cell Infiltration and is a Potential Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:7493-7510. [PMID: 36187159 PMCID: PMC9521242 DOI: 10.2147/ijgm.s382234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 12/08/2022] Open
Abstract
Purpose To examine the expression, clinical significance, and potential regulatory mechanism of centromere protein O (CENPO) in hepatocellular carcinoma (HCC). Methods CENPO expression in pan-cancer was studied using the TCGA-GTEx database, in HCC and normal liver tissues using the GEO and TCGA databases, and in clinical HCC samples by RT-qPCR. The diagnostic value of CENPO was assessed using receiver operating characteristic curves. Univariate and multivariate regression analyses of factors associated with HCC prognosis were performed. CENPO function and its mechanism in HCC were explored using GO, KEGG, and GSEA analyses of differentially expressed genes (DEGs). Association of CENPO expression with immune cell infiltration and immune checkpoint-associated molecules was conducted using TCGA data and the TIMER2.0 database. Relationships between CENPO expression and DNA methylation were analyzed using the UALCAN and cBioPortal databases. CENPO expression in HCC cell lines was detected using RT-qPCR. Results CENPO is upregulated in most cancers, including HCC and cell lines, and is a potential biomarker for HCC diagnosis (AUC = 0.936, 95% CI: 0.911–0.960). Higher CENPO expression was associated with poorer outcomes in patients with HCC (OS, p = 0.004; DSS, p = 0.002; PFI, p < 0.001), and CENPO was an independent predictor of factors influencing overall survival in HCC. DEGs between samples with high and low CENPO levels were enriched in various biological processes, including activation of the G2M checkpoint and other signaling pathways, while CENPO expression correlated with HCC immune cell infiltration and immune checkpoint-associated molecules, as well as CENPO promoter methylation (p < 0.001). Conclusion In HCC and cell lines, CENPO is overexpressed, a potential diagnostic marker and an indicator of poor prognosis. CENPO may regulate HCC development by influencing nuclear division and tumor immune infiltration and is regulated by methylation, making it a potential target for HCC immunotherapy.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Mengyi Xie
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
- Correspondence: Jingdong Li, Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, 637000, People’s Republic of China, Tel +86 18215521587, Fax +86 817-2222856, Email
| | - Yi He
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yaolin Yin
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| |
Collapse
|
18
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Upregulation of Centromere Proteins as Potential Biomarkers for Esophageal Squamous Cell Carcinoma Diagnosis and Prognosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3758731. [PMID: 35496042 PMCID: PMC9046002 DOI: 10.1155/2022/3758731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) has a high incidence and low survival rate, necessitating the identification of novel specific biomarkers. Centromere-associated proteins (CENPs) have been reported to be biomarkers for many cancers, but their roles in ESCC have seldom been investigated. Here, the potential clinical roles of CENPs in ESCC patients were demonstrated by a systematic bioinformatics analysis. Most CENP-encoding genes were differentially expressed between tumor and normal tissues. CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR were upregulated universally in the three datasets. Survival analysis demonstrated that high expression of CENPE and CENPQ was positively correlated with the outcomes of ESCC patients. The CENPE-based forecast model was more accurate than the tumor-node-metastasis (TNM) staging-based model, which was classified as stage I/II vs. III/IV. More importantly, the forecast model based on the commonly upregulated CENPs exhibited a much higher area under the curve (AUC) value (0.855) than the currently known TTL, ZNF750, AC016205.1, and BOLA3 biomarkers. The nomogram model integrating the CENPs, TNM stage, and sex was highly accurate in the prognosis of ESCC patients (
). Besides, gene set enrichment analysis (GSEA) demonstrated that CENPE expression is significantly correlated with cell cycle, G2/M checkpoint, mitotic spindle, p53, etc. Finally, in validation experiments, we also found that CENPE and CENPQ were significantly overexpressed in esophageal cancer cells. Taken together, these results clearly suggest that CENPs are clinically promising diagnostic and prognostic biomarkers for ESCC patients.
Collapse
|
20
|
Kitasaka H, Konuma Y, Tokoro M, Fukunaga N, Asada Y. Oocyte cytoplasmic diameter of ≥130 μm can be used to determine human giant oocytes. F&S SCIENCE 2022; 3:10-17. [PMID: 35559990 DOI: 10.1016/j.xfss.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine if a cytoplasmic diameter of ≥130 μm can help identify human giant oocytes (GOs) in clinical practice and confirm the presence of genetic abnormalities in GOs by assessing the spindle length and centromere numbers. DESIGN Case-control study. SETTING Private in vitro fertilization clinic. PATIENT(S) The subjects were women aged 20-49 years who underwent oocyte retrieval after ovarian stimulation from January 2014 to December 2020. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The oocyte diameter was measured; immunofluorescent staining was performed to assess the spindle diameter and centromere numbers. RESULT(S) Among the 254,337 oocytes examined, 561 (0.22%) had a diameter of ≥130 μm. The mean diameter ranges in the normal-sized metaphase II (MII) oocytes (MII group) and GO group were 103.0-119.0 and 132.3-175.9 μm. Spindle size could be measured in 6 GOs with 1 spindle (GO1), 10 GOs with 2 spindles (GO2), and 16 MII groups. The equatorial plane and pole-to-pole distance in the GO1 were significantly longer than in the GO2 and MII groups. The median numbers of centromeres were 86 in GOs with 1 spindle and 42 in each spindle for GOs with 2 spindles among 11 GO1s and 5 GO2s. CONCLUSION(S) This study is the first to define GOs as oocytes with a diameter of ≥130 μm and is a large-scale study surveying the incidence of GO. It is also the first study to analyze and elucidate the relationship between spindle numbers within the cytoplasm of GOs and spindle size and centromeres.
Collapse
Affiliation(s)
| | | | - Mikiko Tokoro
- Asada Institute for Reproductive Medicine, Kasugai, Aichi, Japan
| | - Noritaka Fukunaga
- Asada Ladies Clinic, Nagoya, Aichi, Japan; Asada Institute for Reproductive Medicine, Kasugai, Aichi, Japan
| | - Yoshimasa Asada
- Asada Ladies Clinic, Nagoya, Aichi, Japan; Asada Institute for Reproductive Medicine, Kasugai, Aichi, Japan
| |
Collapse
|
21
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
22
|
Deng DJ, Xia QC, Jia GS, Suo F, Chen JL, Sun L, Wang JQ, Wang SM, Du LL, Wang Y, Jin QW. Perturbation of kinetochore function using GFP-binding protein in fission yeast. G3 GENES|GENOMES|GENETICS 2021; 11:6353032. [PMID: 34849791 PMCID: PMC8527488 DOI: 10.1093/g3journal/jkab290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.
Collapse
Affiliation(s)
- Da-Jie Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qian-Cheng Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia-Li Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jin-Qing Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuang-Min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Wang J, Liu X, Chu HJ, Li N, Huang LY, Chen J. Centromere Protein I (CENP-I) Is Upregulated in Gastric Cancer, Predicts Poor Prognosis, and Promotes Tumor Cell Proliferation and Migration. Technol Cancer Res Treat 2021; 20:15330338211045510. [PMID: 34617858 PMCID: PMC8723174 DOI: 10.1177/15330338211045510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
This study aimed to investigate the expression and cellular function of the centromeric family of proteins (CENPs), especially centromere protein I (CENP-I), in gastric cancer (GC) and identified its clinical significance and cellular functions. CENP-I expression in GC was studied by cDNA microarray, quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC), and using datasets from The Cancer Genome Atlas (TCGA), UALCAN, and Gene Expression Omnibus (GEO) databases. Microarray and bioinformatic analyses identified upregulated CENP-A/E/F/H/I/K/P/W and HJURP in stomach adenocarcinoma (STAD), but not in signet ring cell carcinoma (SRCC). Significantly higher CENP-I mRNA expression was also confirmed in 40 pairs of GC tissues than in paired normal gastric tissues by qRT-PCR (P<.001). IHC showed that elevated CENP-I expression was associated with higher tumor stage, lymph node invasion, increased HER2-positive rate (36.7% vs 10.0%), and intestinal Lauren classification in 69 GC samples compared to paired paracancerous normal tissues. The survival of the high-CENP-I group members was poor compared with that of the low-CENP-I group (P = .0011). Cox univariate regression analysis identified tumor size (P = .008), HER2 status (P = .027), and CENP-I expression (P = .049) were independent prognostic factors of GC. The cellular function of CENP-I was studied in MKN45 and MKN28 GC cell lines in vitro. Cell proliferation, migration, and apoptosis were determined using CCK-8, transwell assay, TUNEL assay, and flow cytometry. Our results showed that CENP-I promoted GC cell proliferation, inhibited apoptosis, facilitated cell migration, and induced epithelial–mesenchymal transition (EMT), possibly by activating the AKT pathway. CENP-I expression was correlated with genetic signatures of the proliferative subtype of GC, characterized by intestinal Lauren classification, HER2 amplification, and TP53 mutation. In conclusion, this study revealed an elevated CENP-I expression in GC, which was associated with malignant features and poor prognosis of GC patients, and identified its function in modulating cell proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xin Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Hong-Jin Chu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ning Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Liu-Ye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jian Chen
- Medical Oncology Department, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| |
Collapse
|
24
|
Jeon HJ, Oh JS. TRF1 Depletion Reveals Mutual Regulation Between Telomeres, Kinetochores, and Inner Centromeres in Mouse Oocytes. Front Cell Dev Biol 2021; 9:749116. [PMID: 34604243 PMCID: PMC8486315 DOI: 10.3389/fcell.2021.749116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
In eukaryotic chromosomes, the centromere and telomere are two specialized structures that are essential for chromosome stability and segregation. Although centromeres and telomeres often are located in close proximity to form telocentric chromosomes in mice, it remained unclear whether these two structures influence each other. Here we show that TRF1 is required for inner centromere and kinetochore assembly in addition to its role in telomere protection in mouse oocytes. TRF1 depletion caused premature chromosome segregation by abrogating the spindle assembly checkpoint (SAC) and impairing kinetochore-microtubule (kMT) attachment, which increased the incidence of aneuploidy. Notably, TRF1 depletion disturbed the localization of Survivin and Ndc80/Hec1 at inner centromeres and kinetochores, respectively. Moreover, SMC3 and SMC4 levels significantly decreased after TRF1 depletion, suggesting that TRF1 is involved in chromosome cohesion and condensation. Importantly, inhibition of inner centromere or kinetochore function led to a significant decrease in TRF1 level and telomere shortening. Therefore, our results suggest that telomere integrity is required to preserve inner centromere and kinetochore architectures, and vice versa, suggesting mutual regulation between telomeres and centromeres.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
25
|
Shrestha RL, Rossi A, Wangsa D, Hogan AK, Zaldana KS, Suva E, Chung YJ, Sanders CL, Difilippantonio S, Karpova TS, Karim B, Foltz DR, Fachinetti D, Aplan PD, Ried T, Basrai MA. CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. J Cell Biol 2021; 220:211820. [PMID: 33620383 PMCID: PMC7905998 DOI: 10.1083/jcb.202007195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Austin Rossi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ann K Hogan
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Kimberly S Zaldana
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chelsea L Sanders
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Baktiar Karim
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Cao B, Zhao C, Zhang Y, Wang X, Ye J, Hu L, He X. The novel interaction mode among centromere sub-complex CENP-O/P/U/Q/R. J Mol Recognit 2021; 34:e2892. [PMID: 33660361 DOI: 10.1002/jmr.2892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
The kinetochore is essential for the accurate segregation of sister chromosome in the eukaryote cell. Among the kinetochore subunits, five proteins CENP-O/P/U/Q/R form a stable complex, referred to as CENP-O class, and are required for proper kinetochore function. Although the function and structure of yeast COMA complex (CENP-O/P/U/Q homologs) have been revealed extensively, the assembly mechanism and detail interactions among human CENP-O class are significantly different and remain largely unclear. Here, we identified the fragment (residues 241-360) of CENP-U and the C-terminal half of CENP-Q are essential to form a hetero-complex and interact with CENP-O/P sub-complex in vitro. We for the first time showed that CENP-R does not directly interact with CENP-O/P in vitro, but indeed interact with CENP-U and CENP-Q. Furthermore, both the N- and C-terminus of CENP-R are required for the interaction with CENP-U and CENP-Q. Our research pinpointed a novel interaction pattern that might shed light on the assembly mechanism of vertebrate CENP-O class.
Collapse
Affiliation(s)
- Beibei Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:5585-5606. [PMID: 33591950 PMCID: PMC7950261 DOI: 10.18632/aging.202487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane protein (TMEM) is a kind of integral membrane protein that spans biological membranes. The functions of most members of the TMEM family are unknown. Here, we conducted bioinformatic analysis and biological validation to investigate the role of TMEM106C in HCC. First, GEPIA and OncomineTM were used to analyze TMEM106C expression, which was verified by real-time PCR and western blot analyses. Then, the biological functions of TMEM106C were explored by CCK8 and transwell assays. The prognostic value of TMEM106C was analyzed by UALCAN. LinkedOmics was used to analyze TMEM106C pathways generated by Gene Ontology. A protein-protein interaction network (PPI) was constructed by GeneMANIA. We demonstrated that TMEM106C was overexpressed in HCC and that inhibition of TMEM106C significantly suppressed the proliferation and metastasis of HCC through targeting CENPM and DLC-1. Upregulation of TMEM106C was closely correlated with sex, tumor stage, tumor grade and prognosis. Overexpression of TMEM106C was linked to functional networks involving organelle fission and cell cycle signaling pathways through the regulation of CDK kinases, E2F1 transcription factors and miRNAs. Our data demonstrated that TMEM106C contributes to malignant characteristics and poor prognosis in HCC, which may serve as a prognostic biomarker and potential therapeutic target.
Collapse
|
28
|
Ma J, Chen X, Lin M, Wang Z, Wu Y, Li J. Bioinformatics analysis combined with experiments predicts CENPK as a potential prognostic factor for lung adenocarcinoma. Cancer Cell Int 2021; 21:65. [PMID: 33478508 PMCID: PMC7818917 DOI: 10.1186/s12935-021-01760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is the most common malignant tumor. Identification of novel diagnostic and prognostic biomarkers for lung cancer is a key research imperative. The role of centromere protein K (CENPK) in cancer is an emerging research hotspot. However, the role of CENPK in the progression of lung adenocarcinoma (LAC) is not well characterized. METHODS In this study, we identified CENPK as a potential new gene for lung cancer based on bioinformatics analysis. In addition, in vitro experiments were performed to verify the function of this gene. We investigated the expression of CENPK in LAC by analyses of datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analyses, gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted to evaluate the diagnostic and prognostic relevance of CENPK. Then, for evaluating the biological behavior and role of CENPK in lung cancer cells, we did a series of vitro experiments, such as immunohistochemistry analysis, Western blot analysis, CCK8 assay, transwell assay, flow cytometry, and wound healing assay. RESULTS We demonstrated overexpression of CENPK in LAC; in addition, increased expression of CENPK was associated with clinical progression. Moreover, CENPK was found to be an independent risk factor in patients with LAC. Furthermore, we observed activation of CENPK-related signaling pathways in patients with LAC. CONCLUSIONS Our findings indicate a potential role of CENPK in promoting tumor proliferation, invasion, and metastasis. It may serve as a novel diagnostic and prognostic biomarker in patients with LAC.
Collapse
Affiliation(s)
- Jiayu Ma
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaochuan Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Mingqiang Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiping Wang
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yahua Wu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China.
| |
Collapse
|
29
|
Ariyoshi M, Makino F, Watanabe R, Nakagawa R, Kato T, Namba K, Arimura Y, Fujita R, Kurumizaka H, Okumura EI, Hara M, Fukagawa T. Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C. EMBO J 2021; 40:e105671. [PMID: 33463726 DOI: 10.15252/embj.2020105671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,JEOL Ltd., Akishima, Tokyo, Japan
| | - Reito Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR) and SPring-8 Center, and JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ei-Ichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Sridhar S, Hori T, Nakagawa R, Fukagawa T, Sanyal K. Bridgin connects the outer kinetochore to centromeric chromatin. Nat Commun 2021; 12:146. [PMID: 33420015 PMCID: PMC7794384 DOI: 10.1038/s41467-020-20161-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
The microtubule-binding outer kinetochore is coupled to centromeric chromatin through CENP-CMif2, CENP-TCnn1, and CENP-UAme1 linker pathways originating from the constitutive centromere associated network (CCAN) of the inner kinetochore. Here, we demonstrate the recurrent loss of most CCAN components, including certain kinetochore linkers during the evolution of the fungal phylum of Basidiomycota. By kinetochore interactome analyses in a model basidiomycete and human pathogen Cryptococcus neoformans, a forkhead-associated domain containing protein “bridgin” was identified as a kinetochore component along with other predicted kinetochore proteins. In vivo and in vitro functional analyses of bridgin reveal its ability to connect the outer kinetochore with centromeric chromatin to ensure accurate chromosome segregation. Unlike established CCAN-based linkers, bridgin is recruited at the outer kinetochore establishing its role as a distinct family of kinetochore proteins. Presence of bridgin homologs in non-fungal lineages suggests an ancient divergent strategy exists to bridge the outer kinetochore with centromeric chromatin. The kinetochore is a multi-complex structure that helps attach chromosomes to spindle microtubules, ensuring accurate chromosome segregation during cell division. Kinetochores are thought to be evolutionarily conserved, but which components are conserved is unclear. Here, the authors report that some members of the fungal phylum of Basidomycota lack many conventional kinetochore linker proteins. Instead, they possess a human Ki67-like protein that bridges the outer part of the kinetochore to centromere DNA, which may compensate for the loss of a conventional linker.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064. .,Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
31
|
Hori T, Cao J, Nishimura K, Ariyoshi M, Arimura Y, Kurumizaka H, Fukagawa T. Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Rep 2020; 33:108388. [PMID: 33207191 DOI: 10.1016/j.celrep.2020.108388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
CENP-A incorporation is critical for centromere specification and is mediated by the chaperone HJURP. The CENP-A-targeting domain (CATD) of CENP-A specifically binds to HJURP, and this binding is conserved. However, the binding interface of CENP-A-HJURP is yet to be understood. Here, we identify the critical residues for chicken CENP-A or HJURP. The A59Q mutation in the α1-helix of chicken CENP-A causes CENP-A mis-incorporation and subsequent cell death, whereas the corresponding mutation in human CENP-A does not. We also find that W53 of HJURP, which is a contact site of A59 in CENP-A, is also essential in chicken cells. Our comprehensive analyses reveal that the affinities of HJURP to CATD differ between chickens and humans. However, the introduction of two arginine residues to the chicken HJURP αA-helix suppresses CENP-A mis-incorporation in chicken cells expressing CENP-AA59Q. Our data explain the mechanisms and evolution of CENP-A essentiality by the CENP-A-HJURP interaction.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Loginova DB, Zhuravleva AA, Silkova OG. Random chromosome distribution in the first meiosis of F1 disomic substitution line 2R(2D) x rye hybrids (ABDR, 4× = 28) occurs without bipolar spindle assembly. COMPARATIVE CYTOGENETICS 2020; 14:453-482. [PMID: 33117496 PMCID: PMC7567738 DOI: 10.3897/compcytogen.v14.i4.55827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from "interpolar" microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.
Collapse
Affiliation(s)
- Dina B. Loginova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Anastasia A. Zhuravleva
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Olga G. Silkova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| |
Collapse
|
33
|
Zheng C, Zhang T, Li D, Huang C, Tang H, Ni XF, Chen B. Upregulation of CENPM facilitates tumor metastasis via the mTOR/p70S6K signaling pathway in pancreatic cancer. Oncol Rep 2020; 44:1003-1012. [PMID: 32705259 PMCID: PMC7388243 DOI: 10.3892/or.2020.7673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a severe disease with high morbidity and mortality. However, the primary molecular mechanisms of pancreatic tumor formation and progression remain unclear. The present study using sequencing technology revealed that the centromere protein M (CENPM) gene was overexpressed in pancreatic cancer tissues. CENPM is one of the components of a complex that plays a central role in kinetochore protein assembly, mitotic progression and chromosome segregation. However, the biological function of CENPM in pancreatic cancer has yet to be determined. Hence, two effective siRNAs were designed to knock down CENPM. Notably, downregulation of CENPM inhibited pancreatic cancer cell proliferation, altered the cell cycle and limited pancreatic cancer cell migration and invasion via the mTOR/p70S6K signaling pathway. This research provides new evidence that CENPM overexpression plays a significant role in the progression of pancreatic cancer. Overall, the present findings indicated that CENPM may be a significant biomarker for predicting the development and progression of pancreatic malignancy.
Collapse
Affiliation(s)
- Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ding Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Feng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‑Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
34
|
Saito M, Kagawa N, Okumura K, Munakata H, Isogai E, Fukagawa T, Wakabayashi Y. CENP-50 is required for papilloma development in the two-stage skin carcinogenesis model. Cancer Sci 2020; 111:2850-2860. [PMID: 32535988 PMCID: PMC7419024 DOI: 10.1111/cas.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
CENP‐50/U is a component of the CENP‐O complex (CENP‐O/P/Q/R/U) and localizes to the centromere throughout the cell cycle. Aberrant expression of CENP‐50/U has been reported in many types of cancers. However, as Cenp‐50/U‐deficient mice die during early embryogenesis, its functions remain poorly understood in vivo. To investigate the role of Cenp‐50/U in skin carcinogenesis, we generated Cenp‐50/U conditional knockout (K14CreER‐Cenp‐50/Ufl/fl) mice and subjected them to the 7,12‐dimethylbenz(a)anthracene (DMBA)/terephthalic acid (TPA) chemical carcinogenesis protocol. As a result, early‐stage papillomas decreased in Cenp‐50/U‐deficient mice. In contrast, Cenp‐50/U‐deficient mice demonstrated almost the same carcinoma incidence as control mice. Furthermore, mRNA expression analysis using DMBA/TPA‐induced papillomas and carcinomas revealed that Cenp‐50/U expression levels in papillomas were significantly higher than in carcinomas. These results suggest that Cenp‐50/U functions mainly in early papilloma development and it has little effect on malignant conversion.
Collapse
Affiliation(s)
- Megumi Saito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Naoko Kagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Japan
| | - Kazuhiro Okumura
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Haruka Munakata
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Eriko Isogai
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Japan.,Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi Wakabayashi
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
35
|
Das A, Black BE, Lampson MA. Maternal inheritance of centromeres through the germline. Curr Top Dev Biol 2020; 140:35-54. [PMID: 32591081 DOI: 10.1016/bs.ctdb.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The centromere directs chromosome segregation but is not itself genetically encoded. In most species, centromeres are epigenetically defined by the presence of a histone H3 variant CENP-A, independent of the underlying DNA sequence. Therefore, to maintain centromeres and ensure accurate chromosome segregation, CENP-A nucleosomes must be inherited across generations through the germline. In this chapter we discuss three aspects of maternal centromere inheritance. First, we propose mechanisms for maintaining CENP-A nucleosomes through the prolonged prophase arrest in mammalian oocytes. Second, we review mechanisms by which selfish centromeres bias their transmission through female meiosis. Third, we discuss regulation of centromere size through early embryonic development.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
37
|
Hori T, Fukagawa T. Artificial generation of centromeres and kinetochores to understand their structure and function. Exp Cell Res 2020; 389:111898. [PMID: 32035949 DOI: 10.1016/j.yexcr.2020.111898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 01/19/2023]
Abstract
The centromere is an essential genomic region that provides the surface to form the kinetochore, which binds to the spindle microtubes to mediate chromosome segregation during mitosis and meiosis. Centromeres of most organisms possess highly repetitive sequences, making it difficult to study these loci. However, an unusual centromere called a "neocentromere," which does not contain repetitive sequences, was discovered in a patient and can be generated experimentally. Recent advances in genome biology techniques allow us to analyze centromeric chromatin using neocentromeres. In addition to neocentromeres, artificial kinetochores have been generated on non-centromeric loci, using protein tethering systems. These are powerful tools to understand the mechanism of the centromere specification and kinetochore assembly. In this review, we introduce recent studies utilizing the neocentromeres and artificial kinetochores and discuss current problems in centromere biology.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
39
|
Bonner MK, Haase J, Swinderman J, Halas H, Miller Jenkins LM, Kelly AE. Enrichment of Aurora B kinase at the inner kinetochore controls outer kinetochore assembly. J Cell Biol 2019; 218:3237-3257. [PMID: 31527147 PMCID: PMC6781445 DOI: 10.1083/jcb.201901004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/19/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
Outer kinetochore assembly enables chromosome attachment to microtubules and spindle assembly checkpoint (SAC) signaling in mitosis. Aurora B kinase controls kinetochore assembly by phosphorylating the Mis12 complex (Mis12C) subunit Dsn1. Current models propose Dsn1 phosphorylation relieves autoinhibition, allowing Mis12C binding to inner kinetochore component CENP-C. Using Xenopus laevis egg extracts and biochemical reconstitution, we found that autoinhibition of the Mis12C by Dsn1 impedes its phosphorylation by Aurora B. Our data indicate that the INCENP central region increases Dsn1 phosphorylation by enriching Aurora B at inner kinetochores, close to CENP-C. Furthermore, centromere-bound CENP-C does not exchange in mitosis, and CENP-C binding to the Mis12C dramatically increases Dsn1 phosphorylation by Aurora B. We propose that the coincidence of Aurora B and CENP-C at inner kinetochores ensures the fidelity of kinetochore assembly. We also found that the central region is required for the SAC beyond its role in kinetochore assembly, suggesting that kinetochore enrichment of Aurora B promotes the phosphorylation of other kinetochore substrates.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Julian Haase
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jason Swinderman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hyunmi Halas
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
41
|
Zang L, Shimada Y, Nakayama H, Chen W, Okamoto A, Koide H, Oku N, Dewa T, Shiota M, Nishimura N. Therapeutic Silencing of Centromere Protein X Ameliorates Hyperglycemia in Zebrafish and Mouse Models of Type 2 Diabetes Mellitus. Front Genet 2019; 10:693. [PMID: 31417608 PMCID: PMC6681619 DOI: 10.3389/fgene.2019.00693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia and is influenced by genetic and environmental factors. Optimum T2DM management involves early diagnosis and effective glucose-lowering therapies. Further research is warranted to improve our understanding of T2DM pathophysiology and reveal potential roles of genetic predisposition. We have previously developed an obesity-induced diabetic zebrafish model that shares common pathological pathways with humans and may be used to identify putative pharmacological targets of diabetes. Additionally, we have previously identified several candidate genes with altered expression in T2DM zebrafish. Here, we performed a small-scale zebrafish screening for these genes and discovered a new therapeutic target, centromere protein X (CENPX), which was further validated in a T2DM mouse model. In zebrafish, cenpx knockdown by morpholino or knockout by CRISPR/Cas9 system ameliorated overfeeding-induced hyperglycemia and upregulated insulin level. In T2DM mice, small-interfering RNA-mediated Cenpx knockdown decreased hyperglycemia and upregulated insulin synthesis in the pancreas. Gene expression analysis revealed insulin, mechanistic target of rapamycin, leptin, and insulin-like growth factor 1 pathway activation following Cenpx silencing in pancreas tissues. Thus, CENPX inhibition exerted antidiabetic effects via increased insulin expression and related pathways. Therefore, T2DM zebrafish may serve as a powerful tool in the discovery of new therapeutic gene targets.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Japan.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Bioinformatics, University Advanced Science Research Promotion Centre, Tsu, Mie, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ayaka Okamoto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takehisa Dewa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masayuki Shiota
- Department of Research Support Platform, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| |
Collapse
|
42
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
43
|
Arimura Y, Tachiwana H, Takagi H, Hori T, Kimura H, Fukagawa T, Kurumizaka H. The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nat Commun 2019; 10:576. [PMID: 30718488 PMCID: PMC6362020 DOI: 10.1038/s41467-019-08314-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Centromeric nucleosomes are composed of the centromere-specific histone H3 variant CENP-A and the core histones H2A, H2B, and H4. To establish a functional kinetochore, histone H4 lysine-20 (H4K20) must be monomethylated, but the underlying mechanism has remained enigmatic. To provide structural insights into H4K20 methylation, we here solve the crystal structure of a nucleosome containing an H3.1-CENP-A chimera, H3.1CATD, which has a CENP-A centromere targeting domain and preserves essential CENP-A functions in vivo. Compared to the canonical H3.1 nucleosome, the H3.1CATD nucleosome exhibits conformational changes in the H4 N-terminal tail leading to a relocation of H4K20. In particular, the H4 N-terminal tail interacts with glutamine-76 and aspartate-77 of canonical H3.1 while these interactions are cancelled in the presence of the CENP-A-specific residues valine-76 and lysine-77. Mutations of valine-76 and lysine-77 impair H4K20 monomethylation both in vitro and in vivo. These findings suggest that a CENP-A-mediated structural polymorphism may explain the preferential H4K20 monomethylation in centromeric nucleosomes. Kinetochore function depends on H4K20 monomethylation in centromeric nucleosomes but the underlying mechanism is unclear. Here, the authors provide evidence that the centromere-specific nucleosome subunit CENP-A facilitates H4K20 methylation by enabling a conformational change of the H4 N-terminal tail.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,The Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroki Takagi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
44
|
Spangenberg V, Arakelyan M, Galoyan E, Pankin M, Petrosyan R, Stepanyan I, Grishaeva T, Danielyan F, Kolomiets O. Extraordinary centromeres: differences in the meiotic chromosomes of two rock lizards species Darevskia portschinskii and Darevskia raddei. PeerJ 2019; 7:e6360. [PMID: 30723630 PMCID: PMC6359900 DOI: 10.7717/peerj.6360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023] Open
Abstract
According to the synthesis of 30 years of multidisciplinary studies, parthenogenetic species of rock lizards of genus Darevskia were formed as a result of different combination patterns of interspecific hybridization of the four bisexual parental species: Darevskia raddei, D. mixta, D. valentini, and D. portschinskii. In particular, D. portschinskii and D. raddei are considered as the parental species for the parthenogenetic species D. rostombekowi. Here for the first time, we present the result of comparative immunocytochemical study of primary spermatocyte nuclei spreads from the leptotene to diplotene stages of meiotic prophase I in two species: D. portschinskii and D. raddei. We observed similar chromosome lengths for both synaptonemal complex (SC) karyotypes as well as a similar number of crossing over sites. However, unexpected differences in the number and distribution of anti-centromere antibody (ACA) foci were detected in the SC structure of bivalents of the two species. In all examined D. portschinskii spermatocyte nuclei, one immunostained centromere focus was detected per SC bivalent. In contrast, in almost every studied D. raddei nuclei we identified three to nine SCs with additional immunostained ACA foci per SC bivalent. Thus, the obtained results allow us to identify species-specific karyotype features, previously not been detected using conventional mitotic chromosome analysis. Presumably the additional centromere foci are result of epigenetic chromatin modifications. We assume that this characteristic of the D. raddei karyotype could represent useful marker for the future studies of parthenogenetic species hybrid karyotypes related to D. raddei.
Collapse
Affiliation(s)
| | - Marine Arakelyan
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Eduard Galoyan
- Zoological Museum, Moscow State University, Moscow, Russia
| | - Mark Pankin
- Vavilov Institute of General Genetics, Moscow, Russian Federation
| | | | - Ilona Stepanyan
- Scientific Center of Zoology and Hydroecology, Yerevan, Armenia
| | | | - Felix Danielyan
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Moscow, Russian Federation
| |
Collapse
|
45
|
Nishimura K, Komiya M, Hori T, Itoh T, Fukagawa T. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. J Cell Biol 2018; 218:134-149. [PMID: 30396998 PMCID: PMC6314543 DOI: 10.1083/jcb.201805003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Although centromeres usually associate with heterochromatic repetitive sequences, such repetitive sequences are not detected around neocentromeres. Nishimura et al. performed systematic 4C analysis of cells containing differently positioned neocentromeres and demonstrate that these neocentromeres commonly associate with distant heterochromatin-rich regions at the 3D level. The centromere is an important genomic locus for chromosomal segregation. Although the centromere is specified by sequence-independent epigenetic mechanisms in most organisms, it is usually composed of highly repetitive sequences, which associate with heterochromatin. We have previously generated various chicken DT40 cell lines containing differently positioned neocentromeres, which do not contain repetitive sequences and do not associate with heterochromatin. In this study, we performed systematic 4C analysis using three cell lines containing differently positioned neocentromeres to identify neocentromere-associated regions at the 3D level. This analysis reveals that these neocentromeres commonly associate with specific heterochromatin-rich regions, which were distantly located from neocentromeres. In addition, we demonstrate that centromeric chromatin adopts a compact structure, and centromere clustering also occurs in vertebrate interphase nuclei. Interestingly, the occurrence of centromere–heterochromatin associations depend on CENP-H, but not CENP-C. Our analyses provide an insight into understanding the 3D architecture of the genome, including the centromeres.
Collapse
Affiliation(s)
- Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masataka Komiya
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takehiko Itoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Srivastava S, Foltz DR. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 2018; 127:279-290. [PMID: 29569072 PMCID: PMC6082721 DOI: 10.1007/s00412-018-0665-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.
Collapse
Affiliation(s)
- Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
47
|
Reconstitution of a 26-Subunit Human Kinetochore Reveals Cooperative Microtubule Binding by CENP-OPQUR and NDC80. Mol Cell 2018; 71:923-939.e10. [PMID: 30174292 PMCID: PMC6162344 DOI: 10.1016/j.molcel.2018.07.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore’s microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex. The kinetochore CENP-OPQUR complex is reconstituted and functionally dissected A kinetochore particle with 26 subunits and defined stoichiometry is reconstituted EM structure of an 11-subunit inner kinetochore complex reveals globular shape CENP-Q and the Ndc80 complex bind microtubules cooperatively
Collapse
|
48
|
Fission Yeast CENP-C (Cnp3) Plays a Role in Restricting the Site of CENP-A Accumulation. G3-GENES GENOMES GENETICS 2018; 8:2723-2733. [PMID: 29925533 PMCID: PMC6071599 DOI: 10.1534/g3.118.200486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The centromere is a chromosomal locus where a microtubule attachment site, termed kinetochore, is assembled in mitosis. In most eukaryotes, with the exception of holocentric species, each chromosome contains a single distinct centromere. A chromosome with an additional centromere undergoes successive rounds of anaphase bridge formation and breakage, or triggers a cell cycle arrest imposed by DNA damage and replication checkpoints. We report here a study in Schizosaccharomyces pombe to characterize a mutant (cnp3-1) in a gene encoding a homolog of mammalian centromere-specific protein, CENP-C. At the restrictive temperature 36°, the Cnp3-1 mutant protein loses its localization at the centromere. In the cnp3-1 mutant, the level of the Cnp1 (a homolog of a centromere-specific histone CENP-A) also decreases at the centromere. Interestingly, the cnp3-1 mutant is prone to promiscuous accumulation of Cnp1 at non-centromeric regions, when Cnp1 is present in excess. Unlike the wild type protein, Cnp3-1 mutant protein is found at the sites of promiscuous accumulation of Cnp1, suggesting that Cnp3-1 may stabilize or promote accumulation of Cnp1 at non-centromeric regions. From these results, we infer the role of Cnp3 in restricting the site of accumulation of Cnp1 and thus to prevent formation of de novo centromeres.
Collapse
|
49
|
Petsalaki E, Dandoulaki M, Zachos G. Chmp4c is required for stable kinetochore-microtubule attachments. Chromosoma 2018; 127:461-473. [PMID: 29968190 DOI: 10.1007/s00412-018-0675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1-77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1-Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|
50
|
Zhu J, Cheng KCL, Yuen KWY. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-A HCP-3 Deposition and De Novo Centromere Establishment in Caenorhabditis elegans Artificial Chromosomes. Epigenetics Chromatin 2018; 11:16. [PMID: 29653589 PMCID: PMC5898018 DOI: 10.1186/s13072-018-0185-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection. Results DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-AHCP−3 and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-AHCP-3 loading. Conclusions Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-AHCP−3-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Kevin Chi Lok Cheng
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|