1
|
García-Martínez OI, Geisinger A, de Los Santos E, Santiñaque FF, Folle GA, Pórfido JL, Meikle MN, Schlapp G, Crispo M, Benavente R, Rodríguez-Casuriaga R. Mouse modeling of familial human SYCE1 c.197-2A>G splice site mutation leads to meiotic recombination failure and non-obstructive azoospermia. Mol Hum Reprod 2025; 31:gaaf002. [PMID: 39909494 DOI: 10.1093/molehr/gaaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/24/2024] [Indexed: 02/07/2025] Open
Abstract
Infertility affects a considerable number of couples at reproductive age, with an incidence of 10-15%. Approximately 25% of cases are classified as idiopathic infertility. Often, errors during the meiotic stage appear to be related to idiopathic infertility. A crucial component during the first meiotic prophase is the synaptonemal complex (SC), which plays a fundamental role in homologous chromosome pairing and meiotic recombination. In many studies with infertile patients, mutations affecting SC-coding genes have been identified. The generation of humanized models has high physiological relevance, helping to clarify the molecular bases of pathology, which in turn is essential for the development of therapeutic procedures. Here, we report the generation and characterization of genetically modified mice carrying a mutation equivalent to SYCE1 c.197-2A>G, previously found in male infertile patients, aiming to determine the actual effects of this mutation on reproductive capacity and to study the underlying molecular mechanisms. Homozygous mutants were infertile. SYCE1 protein was not detected and Syce1 transcript presented minimal levels, suggesting transcript degradation underlying the infertility mechanism. Additionally, homozygous mutants showed impaired homologous chromosome synapsis, meiotic arrest before the pachytene stage, and increased apoptosis of meiotic cells. This study validates the variant as pathogenic and causative of infertility, since the observed dramatic phenotype was attributable to this single homozygous point mutation, when compared to WT and heterozygous littermates. Moreover, although this homozygous point mutation has been only found in infertile men thus far, we anticipate that if it were present in women, it would cause infertility as well, as homozygous female mice also exhibited an infertility phenotype.
Collapse
Affiliation(s)
- Omar Ignacio García-Martínez
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Eliana de Los Santos
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - Gustavo A Folle
- Flow Cytometry and Cell Sorting Core, IIBCE, Montevideo, Uruguay
| | - Jorge Luis Pórfido
- Laboratory Animal Biotechnology Unit (UBAL), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Laboratory Animal Biotechnology Unit (UBAL), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Laboratory Animal Biotechnology Unit (UBAL), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit (UBAL), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ricardo Benavente
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
2
|
Kursel LE, Goktepe K, Rog O. Skp1 is a conserved structural component of the meiotic synaptonemal complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600447. [PMID: 38979327 PMCID: PMC11230192 DOI: 10.1101/2024.06.24.600447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The synaptonemal complex (SC) is a meiotic interface that assembles between parental chromosomes and is essential for the formation of gametes. While the dimensions and ultrastructure of the SC are conserved across eukaryotes, its protein components are highly divergent. Recently, an unexpected component of the SC has been described in the nematode C. elegans: the Skp1-related proteins SKR-1/2, which are components of the Skp1, Cullin, F-box (SCF) ubiquitin ligase. Here, we find that the role of SKR-1 in the SC is conserved in nematodes. The P. pacificus Skp1 ortholog, Ppa-SKR-1, colocalizes with other SC proteins throughout meiotic prophase, where it occupies the middle of the SC. Like in C. elegans, the dimerization interface of Ppa-SKR-1 is required for its SC function. A dimerization mutant, Ppa-skr-1 F105E , fails to assemble SC and is almost completely sterile. Interestingly, the evolutionary trajectory of SKR-1 contrasts with other SC proteins. Unlike most SC proteins, SKR-1 is highly conserved in nematodes. Our results suggest that the structural role of SKR-1 in the SC has been conserved since the common ancestor of C. elegans and P. pacificus, and that rapidly evolving SC proteins have maintained the ability to interact with SKR-1 for at least 100 million years.
Collapse
Affiliation(s)
- Lisa E. Kursel
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Kaan Goktepe
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| |
Collapse
|
3
|
Pal S, Paladhi P, Dutta S, Mullick RB, Bose G, Ghosh P, Chattopadhyay R, Ghosh S. Novel Mutations Reduce Expression of Meiotic Regulators SYCE1 and BOLL in Testis of Azoospermic Men from West Bengal, India. Reprod Sci 2024; 31:1069-1088. [PMID: 37957469 DOI: 10.1007/s43032-023-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
We investigated the polymorphisms/mutations in synaptonemal complex central element protein 1 (SYCE1) and CDC25A mRNA-binding protein (BOLL) to test whether they increase the risk of azoospermia among Bengali-speaking men from West Bengal, India. Sanger's dideoxy sequencing was used to genotype 140 azoospermic individuals who tested negative for Y chromosome microdeletion and 120 healthy controls. In both cases and controls, qRT-PCR was used to determine the expression summary of SYCE1 and BOLL. The perceived harmful consequences of identified mutations were inferred using in silico analysis. Suitable statistical approaches were used to conduct the association study. We found SYCE1 177insT (ON245141), 10650T > G (ON257012), 10093insT (ON257013), 10653insG (ON292504), rs10857748A > G, rs10857749G > A, and rs10857750T > A and BOLL 7708T > A (ON245141insT), rs72918816T > C, and rs700655C > T variants with the prevalence of azoospermia. Data from qRT-PCR and in silico studies projected that the variations would either disrupt the transcript's natural splice junctions or cause probable damage to the structure of the genes' proteins. SYCE1 gene variants [177insT (ON245141), 10650T > G (ON257012), 10093insT (ON257013), 10653insG (ON292504), rs10857748A > G, rs10857749G > A, rs10857750T > A] and BOLL gene variants [7708T > A (ON245141insT), rs72918816T > C, rs700655C > T] reduce the expression of respective gene in testicular tissue among azoospermic male as revealed from qRT-PCR result. These genetic variations could be utilized as screening tools for male infertility to determine the best course of treatment in routine ART practise.
Collapse
Affiliation(s)
- Samudra Pal
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan, Ballygunge Science College Campus, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Pranab Paladhi
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan, Ballygunge Science College Campus, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Saurav Dutta
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan, Ballygunge Science College Campus, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Rupam Basu Mullick
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan, Ballygunge Science College Campus, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Gunja Bose
- Institute of Reproductive Medicine (IRM), HB-36/A/3 1St Cross Rd Bidhannagar, Sector III, Bidhannagar, Kolkata, West Bengal, 700106, India
| | - Papiya Ghosh
- Department of Zoology, Bijoy Krishna Girls' College Affiliated to University of Calcutta), Howrah, West Bengal, India
| | - Ratna Chattopadhyay
- Institute of Reproductive Medicine (IRM), HB-36/A/3 1St Cross Rd Bidhannagar, Sector III, Bidhannagar, Kolkata, West Bengal, 700106, India
| | - Sujay Ghosh
- Cytogenetics & Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath-Palit-Siksha-Prangan, Ballygunge Science College Campus, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
4
|
Kursel LE, Martinez JEA, Rog O. A suppressor screen in C. elegans identifies a multiprotein interaction that stabilizes the synaptonemal complex. Proc Natl Acad Sci U S A 2023; 120:e2314335120. [PMID: 38055743 PMCID: PMC10723054 DOI: 10.1073/pnas.2314335120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Successful chromosome segregation into gametes depends on tightly regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here, we describe a genetic interaction in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3, and SYP-4. We identified the interaction through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors suggest a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underlie meiotic chromosome interactions.
Collapse
Affiliation(s)
- Lisa E. Kursel
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| | - Jesus E. Aguayo Martinez
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| |
Collapse
|
5
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Bui MD, Luong TLA, Tran HD, Duong TTH, Nguyen TN, Nguyen DT, Nguyen TD, Nong VH. A Novel Frameshift Microdeletion of the TEX12 Gene Caused Infertility in Two Brothers with Nonobstructive Azoospermia. Reprod Sci 2023; 30:2876-2881. [PMID: 37012491 DOI: 10.1007/s43032-023-01226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
Male infertility is a growing health problem, which affects approximately 7% of the global male population. Nonobstructive azoospermia (NOA) is one of the most severe forms of male infertility caused by genetic defects, including chromosome structural abnormalities, Y chromosome microdeletions, or single-gene alterations. However, the etiology of up to 40% of NOA cases is unidentified. By whole-exome sequencing, we detected a homozygous 5-bp-deletion variant in exon 4 of the TEX12 gene (c.196-200del, p.L66fs, NM_031275.4) in two brothers with NOA of a nonconsanguineous Vietnamese family. This deletion variant of 5 nucleotides (ATTAG) results in a premature stop codon in exon 4 and truncation of the C-terminal. Segregation analysis by Sanger sequencing confirmed that the deletion variant was inherited in an autosomal recessive pattern. The 1st and 3rd infertile sons were homozygous for the deletion, whereas the 2nd fertile son and both parents were heterozygous. The new deletion mutation identified in TEX12 gene caused loss of function of TEX12 gene. The loss of TEX12 function has already caused infertility in male mice. Therefore, we concluded that the loss of TEX12 function may cause infertility in men. To our knowledge, this is the first case reported so far indicating disruption of human TEX12, which leads to infertility in men.
Collapse
Affiliation(s)
- Minh Duc Bui
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Huu Dinh Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Thu Ha Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thy Ngoc Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dang Ton Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thuy Duong Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Van Hai Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
7
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
8
|
Kursel LE, Martinez JEA, Rog O. A suppressor screen in C. elegans identifies a multi-protein interaction interface that stabilizes the synaptonemal complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554166. [PMID: 37662357 PMCID: PMC10473659 DOI: 10.1101/2023.08.21.554166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Successful chromosome segregation into gametes depends on tightly-regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here we describe a novel interaction interface in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3 and SYP-4. We identified the interface through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors point to a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underly meiotic chromosome interactions.
Collapse
Affiliation(s)
- Lisa E. Kursel
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Jesus E. Aguayo Martinez
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| |
Collapse
|
9
|
Crichton JH, Dunce JM, Dunne OM, Salmon LJ, Devenney PS, Lawson J, Adams IR, Davies OR. Structural maturation of SYCP1-mediated meiotic chromosome synapsis by SYCE3. Nat Struct Mol Biol 2023; 30:188-199. [PMID: 36635604 PMCID: PMC7614228 DOI: 10.1038/s41594-022-00909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
In meiosis, a supramolecular protein structure, the synaptonemal complex (SC), assembles between homologous chromosomes to facilitate their recombination. Mammalian SC formation is thought to involve hierarchical zipper-like assembly of an SYCP1 protein lattice that recruits stabilizing central element (CE) proteins as it extends. Here we combine biochemical approaches with separation-of-function mutagenesis in mice to show that, rather than stabilizing the SYCP1 lattice, the CE protein SYCE3 actively remodels this structure during synapsis. We find that SYCP1 tetramers undergo conformational change into 2:1 heterotrimers on SYCE3 binding, removing their assembly interfaces and disrupting the SYCP1 lattice. SYCE3 then establishes a new lattice by its self-assembly mimicking the role of the disrupted interface in tethering together SYCP1 dimers. SYCE3 also interacts with CE complexes SYCE1-SIX6OS1 and SYCE2-TEX12, providing a mechanism for their recruitment. Thus, SYCE3 remodels the SYCP1 lattice into a CE-binding integrated SYCP1-SYCE3 lattice to achieve long-range synapsis by a mature SC.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James M Dunce
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Lucy J Salmon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jennifer Lawson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
A cryo-fixation protocol to study the structure of the synaptonemal complex. Chromosome Res 2022; 30:385-400. [PMID: 35486207 DOI: 10.1007/s10577-022-09689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Genetic variability in sexually reproducing organisms results from an exchange of genetic material between homologous chromosomes. The genetic exchange mechanism is dependent on the synaptonemal complex (SC), a protein structure localized between the homologous chromosomes. The current structural models of the mammalian SC are based on electron microscopy, superresolution, and expansion microscopy studies using chemical fixatives and sample dehydration of gonads, which are methodologies known to produce structural artifacts. To further analyze the structure of the SC, without chemical fixation, we have adapted a cryo-fixation method for electron microscopy where pachytene cells are isolated from mouse testis by FACS, followed by cryo-fixation, cryo-substitution, and electron tomography. In parallel, we performed conventional chemical fixation and electron tomography on mouse seminiferous tubules to compare the SC structure obtained with the two fixation methods. We found several differences in the structure and organization of the SC in cryo-fixed samples when compared to chemically preserved samples. We found the central region of the SC to be wider and the transverse filaments to be more densely packed in the central region of the SC.
Collapse
|
11
|
Wang Q, Yan Q, Nan J, Wang J, Zhang Y, Zhao X. Syce1 and Syce3 regulate testosterone and dihydrotestosterone synthesis via steroidogenic pathways in mouse Sertoli and Leydig cells. J Steroid Biochem Mol Biol 2022; 223:106135. [PMID: 35697131 DOI: 10.1016/j.jsbmb.2022.106135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Testosterone (T) and dihydrotestosterone (DHT) are the main hormones regulating reproduction and development of male animals. Although their synthesis and secretion are regulated by the endocrine system [hypothalamic-pituitary-gonadal (adrenal) axis], it is also possible to synthesize T and DHT from the induction of two proteins: Syce1 and Syce3. As central elements of the synaptonemal complex (SC), Syce1 and Syce3 play a key role in the association of homologous chromosomes during meiosis. However, Syce1 and Syce3 also promote the synthesis of T and DHT, although potential mechanisms have yet to be revealed. In this study, Leydig and Sertoli cells, which are responsible for the production and regulation of steroid hormones in testis, were transfected with recombinant Syce1/Syce3 and silence sequence. Our results revealed the highest expression of Syce1 and Syce3 in spermatogenic cells of the testis. Moreover, overexpression or knockdown of Syce1 and Syce3 in Sertoli and Leydig cells resulted in activation or suppression of steroidogenic genes Star and Hsd3b, which are involved in a steroidogenic pathway that upregulates T synthesis. Upregulated expression of Syce1 resulted in a significant increase in Srd5a1, which can promote DHT secretion. Interestingly, Syce1 and Syce3 overexpression synergistically promoted each other's abundance. Our results define a previously unknown mechanism of Syce1 and Syce3 dependent activation of steroidogenic signaling in Sertoli and Leydig cells.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Jinghong Nan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Jie Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Coiled-coil structure of meiosis protein TEX12 and conformational regulation by its C-terminal tip. Commun Biol 2022; 5:921. [PMID: 36071143 PMCID: PMC9452514 DOI: 10.1038/s42003-022-03886-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022] Open
Abstract
Meiosis protein TEX12 is an essential component of the synaptonemal complex (SC), which mediates homologous chromosome synapsis. It is also recruited to centrosomes in meiosis, and aberrantly in certain cancers, leading to centrosome dysfunction. Within the SC, TEX12 forms an intertwined complex with SYCE2 that undergoes fibrous assembly, driven by TEX12’s C-terminal tip. However, we hitherto lack structural information regarding SYCE2-independent functions of TEX12. Here, we report X-ray crystal structures of TEX12 mutants in three distinct conformations, and utilise solution light and X-ray scattering to determine its wild-type dimeric four-helical coiled-coil structure. TEX12 undergoes conformational change upon C-terminal tip mutations, indicating that the sequence responsible for driving SYCE2-TEX12 assembly within the SC also controls the oligomeric state and conformation of isolated TEX12. Our findings provide the structural basis for SYCE2-independent roles of TEX12, including the possible regulation of SC assembly, and its known functions in meiotic centrosomes and cancer. The X-ray crystal structures of C-terminal mutants of the coiled-coil protein cancer testis antigen TEX12 in combination with modeling of the TEX12 wild-type dimer reveal the protein’s control of its oligomeric state, which resembles assembly of its complex with synaptonemal complex central element protein SYCE2.
Collapse
|
13
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
14
|
Huang Y, Tian R, Xu J, Ji Z, Zhang Y, Zhao L, Yang C, Li P, Zhi E, Bai H, Han S, Luo J, Zhao J, Zhang J, Zhou Z, Li Z, Yao C. Novel copy number variations within SYCE1 caused meiotic arrest and non-obstructive azoospermia. BMC Med Genomics 2022; 15:137. [PMID: 35718780 PMCID: PMC9208180 DOI: 10.1186/s12920-022-01288-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/06/2022] [Indexed: 01/26/2023] Open
Abstract
Background Non-obstructive azoospermia (NOA) is the most severe disease in male infertility, but the genetic causes for majority of NOA remain unknown. Methods Two Chinese NOA-affected patients were recruited to identify the genetic causal factor of infertility. Whole-exome sequencing (WES) was conducted in the two patients with NOA. Sanger sequencing and CNV array were used to ascertain the WES results. Hematoxylin and eosin (H&E) staining and immunofluorescence (IF) were carried out to evaluate the stage of spermatogenesis arrested in the affected cases. Results Novel heterozygous deletion (LOH) within SYCE1 (seq[GRCh37] del(10)(10q26.3)chr10:g.135111754_135427143del) and heterozygous loss of function (LoF) variant in SYCE1 (NM_001143763: c.689_690 del:p.F230fs) were identified in one NOA-affected patient. While homozygous deletion within SYCE1 (seq[GRCh37] del(10)(10q26.3)chr10:g.135340247_135379115del) was detected in the other patient with meiotic arrest. H&E and IF staining demonstrated that the spermatogenesis was arrested at pachytene stage in the two patients with NOA, suggesting these two novel CNVs within SYCE1 could lead to meiotic defect and NOA. Conclusions We identified that two novel CNVs within SYCE1 are associated with meiotic arrest and male infertility. Thus, our study expands the knowledge of variants in SYCE1 and provides a new insight to understand the genetic etiologies of NOA. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01288-8.
Collapse
Affiliation(s)
- Yuhua Huang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ruhui Tian
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Junwei Xu
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhiyong Ji
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuxiang Zhang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Liangyu Zhao
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chao Yang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Peng Li
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Erlei Zhi
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Haowei Bai
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Sha Han
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jiaqiang Luo
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jingpeng Zhao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Zhang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510620, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zheng Li
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China. .,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Chencheng Yao
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
15
|
Zhang R, Liu Y, Gao J. Phase separation in controlling meiotic chromosome dynamics. Curr Top Dev Biol 2022; 151:69-90. [PMID: 36681478 DOI: 10.1016/bs.ctdb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.
Collapse
Affiliation(s)
- Ruirui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China.
| |
Collapse
|
16
|
Rengaraj D, Cha DG, Lee HJ, Lee KY, Choi YH, Jung KM, Kim YM, Choi HJ, Choi HJ, Yoo E, Woo SJ, Park JS, Park KJ, Kim JK, Han JY. Dissecting chicken germ cell dynamics by combining a germ cell tracing transgenic chicken model with single-cell RNA sequencing. Comput Struct Biotechnol J 2022; 20:1654-1669. [PMID: 35465157 PMCID: PMC9010679 DOI: 10.1016/j.csbj.2022.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyeon Jeong Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| |
Collapse
|
17
|
Feng K, Ge H, Chen H, Cui C, Zhang S, Zhang C, Meng L, Guo H, Zhang L. Novel exon mutation in SYCE1 gene is associated with non-obstructive azoospermia. J Cell Mol Med 2022; 26:1245-1252. [PMID: 35023261 PMCID: PMC8831938 DOI: 10.1111/jcmm.17180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Non‐obstructive azoospermia (NOA) is a common cause of male infertility, and genetic problems, such as chromosomal abnormalities and gene mutations, are important causes of NOA. Our centre received a case of NOA, in which no mature sperm was found during microdissection testicular sperm extraction. A postoperative pathological examination revealed that testicular spermatogenesis was blocked. Target region capture combined with high‐throughput sequencing was used to screen for male infertility‐related gene mutations. Sanger sequencing further confirmed that the SYCE1 gene, a central component of the synaptonemal complex (SC) during meiosis, had a homozygous deletion mutation in the tenth exon (c.689_690del; p.F230fs). Through molecular biological studies, we discovered altered expression and nuclear localization of the endogenous mutant SYCE1. To verify the effects in vitro, wild‐ and mutated‐type SYCE1 vectors were constructed and transfected into a human cell line. The results showed that the expression and molecular weight were decreased for SYCE1 containing c.689_690del. In addition, mutated SYCE1 was abnormally located in the cytoplasm rather than in the nucleus. In summary, our research suggests that the novel homozygous mutation (c.689_690del; p.F230fs) altered the SYCE1 expression pattern and may have disturbed SC assembly, leading to male infertility and to a barrier to gamete formation. We reported for the first time that a frameshift mutation occurred in the exon region of SYCE1 in an NOA patient. This study is beneficial for accurate NOA diagnosis and the development of corresponding gene therapy strategies.
Collapse
Affiliation(s)
- Ke Feng
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Hengtao Ge
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Shan Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Reproductive Medicine Center, Henan Provincial People's Hospital Affiliated to Xinxiang Medical College, Zhengzhou, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Haibin Guo
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, China
| |
Collapse
|
18
|
Zhang FG, Zhang RR, Gao JM. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl 2021; 23:580-589. [PMID: 34528517 PMCID: PMC8577265 DOI: 10.4103/aja202153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.
Collapse
Affiliation(s)
- Feng-Guo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Rui-Rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jin-Min Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
19
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12. Nat Struct Mol Biol 2021; 28:681-693. [PMID: 34373646 PMCID: PMC7612376 DOI: 10.1038/s41594-021-00636-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023]
Abstract
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building-block and upon assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fibre assembly. SYCE2-TEX12’s building-blocks are 2:2 coiled-coils which dimerise into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibres, which intertwine within 40-nm bundled micrometre-long fibres that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behaviour typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.
Collapse
|
21
|
An M, Liu Y, Zhang M, Hu K, Jin Y, Xu S, Wang H, Lu M. Targeted next-generation sequencing panel screening of 668 Chinese patients with non-obstructive azoospermia. J Assist Reprod Genet 2021; 38:1997-2005. [PMID: 33728612 PMCID: PMC8417191 DOI: 10.1007/s10815-021-02154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed (1) to determine the molecular diagnosis rate and the recurrent causative genes of patients with non-obstructive azoospermia (NOA) using targeted next-generation sequencing (NGS) panel screening and (2) to discuss whether these genes help in the prognosis for microsurgical testicular sperm extraction (micro-TESE). METHODS We used NGS panels to screen 668 Chinese men with NOA. Micro-TESE outcomes for six patients with pathogenic mutations were followed up. Functional assays were performed for two NR5A1 variants identified: p.I224V and p.R281C. RESULTS Targeted NGS panel sequencing could explain 4/189 (2.1% by panel 1) or 10/479 (2.1% by panel 2) of the patients with NOA after exclusion of karyotype abnormalities and Y chromosome microdeletions. Almost all mutations detected were newly described except for NR5A1 p.R281C and TEX11 p.M156V. Two missense NR5A1 mutations-p.R281C and p.I244V-were proved to be deleterious by in vitro functional assays. Mutations in TEX11, TEX14, and NR5A1 genes are recurrent causes of NOA, but each gene explains only a very small percentage (less than 4/668; 0.6%). Only the patient with NR5A1 mutations produced viable spermatozoa through micro-TESE, but other patients with TEX11 and TEX14 had poor micro-TESE prognoses. CONCLUSIONS A targeted NGS panel is a feasible diagnostic method for patients with NOA. Because each gene implicated explains only a small proportion of such cases, more genes should be included to further increase the diagnostic rate. Considering previous reports, we suggest that only a few genes that are directly linked to meiosis can indicate poor micro-TESE prognosis, such as TEX11, TEX14, and SYCE1.
Collapse
Affiliation(s)
- Miao An
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yidong Liu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Kai Hu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yan Jin
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Shiran Xu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Hongxiang Wang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
22
|
Fan X, Zhu Y, Wang N, Zhang B, Zhang C, Wang Y. Therapeutic Dose of Hydroxyurea-Induced Synaptic Abnormalities on the Mouse Spermatocyte. Front Physiol 2021; 12:666339. [PMID: 34305635 PMCID: PMC8299468 DOI: 10.3389/fphys.2021.666339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Hydroxyurea (HU) is a widely used pharmacological therapy for sickle cell disease (SCD). However, replication stress caused by HU has been shown to inhibit premeiotic S-phase DNA, leading to reproductive toxicity in germ cells. In this study, we administered the therapeutic doses of HU (i.e., 25 and 50 mg/kg) to male mice to explore whether replication stress by HU affects pachytene spermatocytes and causes the abnormalities of homologous chromosomes pairing and recombination during prophase I of meiosis. In comparison with the control group, the proportions of spermatocyte gaps were significantly different in the experimental groups injected with 25 mg/kg (p < 0.05) and 50 mg/kg of HU (p < 0.05). Moreover, the proportions of unrepaired double-stranded breaks (DSBs) observed by γH2AX staining also corresponded to a higher HU dose with a greater number of breaks. Additionally, a reduction in the counts of recombination foci on the autosomal SCs was observed in the pachytene spermatocytes. Our results reveal that HU has some effects on synaptonemal complex (SC) formation and DSB repair which suggest possible problems in fertility. Therefore, this study provides new evidence of the mechanisms underlying HU reproductive toxicity.
Collapse
Affiliation(s)
- Xiaobo Fan
- Laboratory of Molecular Cytogenetics, School of Bioengineering, Xuzhou University of Technology, Xuzhou, China
| | - Yunxia Zhu
- The Center of Reproductive Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Naixin Wang
- Laboratory of Molecular Cytogenetics, School of Bioengineering, Xuzhou University of Technology, Xuzhou, China
| | - Bing Zhang
- Laboratory of Molecular Cytogenetics, School of Bioengineering, Xuzhou University of Technology, Xuzhou, China
| | - Cui Zhang
- Laboratory of Molecular Cytogenetics, School of Bioengineering, Xuzhou University of Technology, Xuzhou, China
| | - Yanan Wang
- Laboratory of Molecular Cytogenetics, School of Bioengineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
23
|
Morton CR, Rzechorzek NJ, Maman JD, Kuramochi M, Sekiguchi H, Rambo R, Sasaki YC, Davies OR, Pellegrini L. Structural basis for the coiled-coil architecture of human CtIP. Open Biol 2021; 11:210060. [PMID: 34129781 PMCID: PMC8205527 DOI: 10.1098/rsob.210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA repair factor CtIP has a critical function in double-strand break (DSB) repair by homologous recombination, promoting the assembly of the repair apparatus at DNA ends and participating in DNA-end resection. However, the molecular mechanisms of CtIP function in DSB repair remain unclear. Here, we present an atomic model for the three-dimensional architecture of human CtIP, derived from a multi-disciplinary approach that includes X-ray crystallography, small-angle X-ray scattering (SAXS) and diffracted X-ray tracking (DXT). Our data show that CtIP adopts an extended dimer-of-dimers structure, in agreement with a role in bridging distant sites on chromosomal DNA during the recombinational repair. The zinc-binding motif in the CtIP N-terminus alters dynamically the coiled-coil structure, with functional implications for the long-range interactions of CtIP with DNA. Our results provide a structural basis for the three-dimensional arrangement of chains in the CtIP tetramer, a key aspect of CtIP function in DNA DSB repair.
Collapse
Affiliation(s)
- C R Morton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - N J Rzechorzek
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - J D Maman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - M Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - H Sekiguchi
- Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - R Rambo
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, UK
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan.,Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - O R Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - L Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
24
|
Davenport CF, Scheithauer T, Dunst A, Bahr FS, Dorda M, Wiehlmann L, Tran DDH. Genome-Wide Methylation Mapping Using Nanopore Sequencing Technology Identifies Novel Tumor Suppressor Genes in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22083937. [PMID: 33920410 PMCID: PMC8069345 DOI: 10.3390/ijms22083937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Downregulation of multiple tumor suppressor genes (TSGs) plays an important role in cancer formation. Recent evidence has accumulated that cancer progression involves genome-wide alteration of epigenetic modifications, which may cause downregulation of the tumor suppressor gene. Using hepatocellular carcinoma (HCC) as a system, we mapped 5-methylcytosine signal at a genome-wide scale using nanopore sequencing technology to identify novel TSGs. Integration of methylation data with gene transcription profile of regenerated liver and primary HCCs allowed us to identify 10 potential tumor suppressor gene candidates. Subsequent validation led us to focus on functionally characterizing one candidate—glucokinase (GCK). We show here that overexpression of GCK inhibits the proliferation of HCC cells via induction of intracellular lactate accumulation and subsequently causes energy crisis due to NAD+ depletion. This suggests GCK functions as a tumor suppressor gene and may be involved in HCC development. In conclusion, these data provide valuable clues for further investigations of the process of tumorigenesis in human cancer.
Collapse
Affiliation(s)
- Colin F. Davenport
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Tobias Scheithauer
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Alessia Dunst
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Frauke Sophie Bahr
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
| | - Marie Dorda
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Lutz Wiehlmann
- Research Core Unit Genomics OE 9415, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (C.F.D.); (T.S.); (M.D.); (L.W.)
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany; (A.D.); (F.S.B.)
- Correspondence: ; Tel.: +49-511-532-2857; Fax: +49-511-532-2847
| |
Collapse
|
25
|
ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021671118. [PMID: 33782125 PMCID: PMC8040812 DOI: 10.1073/pnas.2021671118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous ultrastructure required to ensure cross-over (CO) formation in the majority of sexually reproducing eukaryotes. It is composed of two lateral elements adjoined by transverse filaments. Even though the general structure of the SC is conserved throughout kingdoms, phenotypic differences between mutants perpetuate the enigmatic role of the SC. Here, we have used genetic and cytogenetic approaches to show that the transverse filament protein, ZYP1, acts on multiple pathways of meiotic recombination in Arabidopsis. ZYP1 is required for CO assurance, thus ensuring that every chromosome pair receives at least one CO. ZYP1 limits the number of COs and mediates CO interference, the phenomenon that reduces the probability of multiple COs forming close together. The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5. These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis. Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.
Collapse
|
26
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Sánchez-Sáez F, Gómez-H L, Dunne OM, Gallego-Páramo C, Felipe-Medina N, Sánchez-Martín M, Llano E, Pendas AM, Davies OR. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. SCIENCE ADVANCES 2020; 6:6/36/eabb1660. [PMID: 32917591 PMCID: PMC7467691 DOI: 10.1126/sciadv.abb1660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/17/2020] [Indexed: 05/14/2023]
Abstract
Meiotic reductional division depends on the synaptonemal complex (SC), a supramolecular protein assembly that mediates homologous chromosomes synapsis and promotes crossover formation. The mammalian SC has eight structural components, including SYCE1, the only central element protein with known causative mutations in human infertility. We combine mouse genetics, cellular, and biochemical studies to reveal that SYCE1 undergoes multivalent interactions with SC component SIX6OS1. The N terminus of SIX6OS1 binds and disrupts SYCE1's core dimeric structure to form a 1:1 complex, while their downstream sequences provide a distinct second interface. These interfaces are separately disrupted by SYCE1 mutations associated with nonobstructive azoospermia and premature ovarian failure (POF), respectively. Mice harboring SYCE1's POF mutation and a targeted deletion within SIX6OS1's N terminus are infertile with failure of chromosome synapsis. We conclude that both SYCE1-SIX6OS1 binding interfaces are essential for SC assembly, thus explaining how SYCE1's reported clinical mutations give rise to human infertility.
Collapse
Affiliation(s)
- Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Cristina Gallego-Páramo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | | | - Elena Llano
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
28
|
Special issue on "recent advances in meiosis from DNA replication to chromosome segregation". Chromosoma 2020; 128:177-180. [PMID: 31616989 DOI: 10.1007/s00412-019-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Meiosis is the special division that produces haploid gametes, such as sperm and eggs. It involves a complex series of events that integrate large structural changes at the chromosome scale with fine regulation of recombination events in localized regions. To evaluate the complexity of these processes, the meiosis field covers a variety of disciplines and model organisms, making it an exciting and rapidly changing area of research. The field as a whole highlights both the conserved aspects of meiosis, as well as the marked diversity of the means taken to ensure that, ultimately, gametes will contain a balanced number of chromosomes and genetic diversity will have been produced. Studying meiosis is also critically important for the improvement of our human condition as errors of meiosis are a leading cause of infertility, miscarriage, and developmental disabilities. Finally, the complex chromosome behavior of meiosis is a genetically tractable paradigm, the study of which improves our understanding of many fundamental cellular processes including DNA repair, genome stability, cancer etiology, chromatin structure, and chromosome dynamics.This special issue on meiosis contains twenty-two papers, of which five are in-depth reviews that complement and put in context the experimental data presented in the seventeen original research articles. The content of this issue illustrates the diversity of topics covered by researchers in the field, ranging from the effects of environment and external factors on the success of meiosis, the cell cycle actors that control the meiotic divisions, the mechanism of chromosome segregation, and the mechanisms that ensure proper homologous chromosome pairing, recombination, and synapsis. Multiple organisms are covered. Also evident is the fact that more and more studies use multicellular organisms as a model system, in large part due to the increased availability of tools that were previously restricted to studies in budding and fission yeasts.
Collapse
|
29
|
Thomas JMH, Keegan RM, Rigden DJ, Davies OR. Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling. Acta Crystallogr D Struct Biol 2020; 76:272-284. [PMID: 32133991 PMCID: PMC7057219 DOI: 10.1107/s2059798320000443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.
Collapse
Affiliation(s)
- Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan M. Keegan
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Owen R. Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, England
| |
Collapse
|
30
|
Prior C, Davies OR, Bruce D, Pohl E. Obtaining Tertiary Protein Structures by the ab Initio Interpretation of Small Angle X-ray Scattering Data. J Chem Theory Comput 2020; 16:1985-2001. [PMID: 32023061 PMCID: PMC7145352 DOI: 10.1021/acs.jctc.9b01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Small angle X-ray scattering (SAXS)
is an important tool for investigating
the structure of proteins in solution. We present a novel ab initio
method representing polypeptide chains as discrete curves used to
derive a meaningful three-dimensional model from only the primary sequence and SAXS data. High resolution structures were
used to generate probability density functions for each common secondary
structural element found in proteins, which are used to place realistic
restraints on the model curve’s geometry. This is coupled with
a novel explicit hydration shell model in order to derive physically
meaningful three-dimensional models by optimizing against experimental
SAXS data. The efficacy of this model is verified on an established
benchmark protein set, and then it is used to predict the lysozyme
structure using only its primary sequence and SAXS data. The method
is used to generate a biologically plausible model of the coiled-coil
component of the human synaptonemal complex central element protein.
Collapse
Affiliation(s)
- Christopher Prior
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Owen R Davies
- Institute for Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Daniel Bruce
- Department of Biosciences Durham University, Durham DH1 3LE, United Kingdom.,Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences Durham University, Durham DH1 3LE, United Kingdom.,Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
31
|
Pashaei M, Rahimi Bidgoli MM, Zare-Abdollahi D, Najmabadi H, Haji-Seyed-Javadi R, Fatehi F, Alavi A. The second mutation of SYCE1 gene associated with autosomal recessive nonobstructive azoospermia. J Assist Reprod Genet 2020; 37:451-458. [PMID: 31916078 DOI: 10.1007/s10815-019-01660-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE It is estimated that 40-50% of infertility among human couples is due to male infertility. Azoospermia is estimated to occur in 1% of all men and to be the cause of 10-20% of male infertility. Genetic defects, including single gene effects, maybe cause of azoospermia in 20-30% of affected males. Here, we aim to identify the genetic cause of azoospermia in a man who is also affected by hereditary spastic paraplegia. METHODS The proband was subjected to whole-exome sequencing, followed by a comprehensive in silico analysis to identify the azoospermia causative gene. RESULTS A novel splice site mutation c.375-2A > G in SYCE1 that is thought to be the cause of azoospermia was identified. This variant co-segregated with azoospermia status in the family that has three additional affected males. CONCLUSION SYCE1 gene encodes synaptonemal complex (SC) central element 1 protein which contributes to the formation of the synaptonemal complex during meiosis. Syce1 null male and female mice have been shown to be infertile. There have only been two reports on the effects of SYCE1 mutations in humans; it was shown as the cause of primary ovarian failure (POI) in one and as the cause of nonobstructive azoospermia (NOA) in another. We suggest that the mutation 375-2A > G, which affects the acceptor splice site within intron 6 of SYCE1, is the likely cause of azoospermia and subsequent infertility in the family studied. The finding constitutes the third report of SYCE1mutations that affect infertility in humans and further supports its contribution to this condition.
Collapse
Affiliation(s)
- Mahdieh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Dunne OM, Davies OR. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J Biol Chem 2019; 294:9260-9275. [PMID: 31023827 PMCID: PMC6556580 DOI: 10.1074/jbc.ra119.008404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates homologous chromosome synapsis during meiosis. This zipper-like structure assembles in a continuous manner between homologous chromosome axes, enforcing a 100-nm separation along their entire length and providing the necessary three-dimensional framework for cross-over formation. The mammalian SC comprises eight components-synaptonemal complex protein 1-3 (SYCP1-3), synaptonemal complex central element protein 1-3 (SYCE1-3), testis-expressed 12 (TEX12), and six6 opposite strand transcript 1 (SIX6OS1)-arranged in transverse and longitudinal structures. These largely α-helical, coiled-coil proteins undergo heterotypic interactions, coupled with recursive self-assembly of SYCP1, SYCE2-TEX12, and SYCP2-SYCP3, to achieve the vast supramolecular SC structure. Here, we report a novel self-assembly mechanism of the SC central element component SYCE3, identified through multi-angle light scattering and small-angle X-ray scattering (SAXS) experiments. These analyses revealed that SYCE3 adopts a dimeric four-helical bundle structure that acts as the building block for concentration-dependent self-assembly into a series of discrete higher-order oligomers. We observed that this is achieved through staggered lateral interactions between self-assembly surfaces of SYCE3 dimers and through end-on interactions that likely occur through intermolecular domain swapping between dimer folds. These mechanisms are combined to achieve potentially limitless SYCE3 assembly, particularly favoring formation of dodecamers of three laterally associated end-on tetramers. Our findings extend the family of self-assembling proteins within the SC and reveal additional means for structural stabilization of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Owen R Davies
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|