1
|
Good K, Ausiό J. RNA Immunoprecipitation (RIP) from Purified Nuclei in Cells. Methods Mol Biol 2025; 2919:279-288. [PMID: 40257569 DOI: 10.1007/978-1-0716-4486-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Identifying and assaying protein-RNA interactions is foundational to understanding the molecules' role in both the cell and organism as a whole. Importantly, functional noncoding RNAs and their protein partners have presented RNA researchers with a new vast list of these interactions, which often do not occur through the well-described, or, canonical mechanisms, opening a floodgate of research potential for years to come. With this in mind, it is necessary to standardize assay methods, with good understanding of points of optimization. Here, we describe a simple protocol for RNA immunoprecipitation (RIP) from purified nuclei of cells. Purification of nuclei prior to RIP is important to eliminate false-positive nuclear protein-RNA interactions, especially given that specific binding to ncRNA seems to be based on cumulative electrostatic forces rather than lock-and-key binding.
Collapse
Affiliation(s)
- Katrina Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Juan Ausiό
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
2
|
You E, Danaher P, Lu C, Sun S, Zou L, Phillips IE, Rojas AS, Ho NI, Song Y, Raabe MJ, Xu KH, Richieri PM, Li H, Aston N, Porter RL, Patel BK, Nieman LT, Schurman N, Hudson BM, North K, Church SE, Deshpande V, Liss AS, Kim TK, Cui Y, Kim Y, Greenbaum BD, Aryee MJ, Ting DT. Disruption of cellular plasticity by repeat RNAs in human pancreatic cancer. Cell 2024; 187:7232-7247.e23. [PMID: 39383862 PMCID: PMC11645244 DOI: 10.1016/j.cell.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.
Collapse
Affiliation(s)
- Eunae You
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Chenyue Lu
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Siyu Sun
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luli Zou
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ildiko E Phillips
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexandra S Rojas
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Natalie I Ho
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yuhui Song
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael J Raabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Katherine H Xu
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter M Richieri
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hao Li
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natalie Aston
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rebecca L Porter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bidish K Patel
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Linda T Nieman
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | - Vikram Deshpande
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tae K Kim
- NanoString Technologies, Seattle, WA 98109, USA
| | - Yi Cui
- NanoString Technologies, Seattle, WA 98109, USA
| | - Youngmi Kim
- NanoString Technologies, Seattle, WA 98109, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Martin J Aryee
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - David T Ting
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Rabeler C, Paterna N, Potluri R, D’Alessandro LR, Bhatia A, Chen SY, Lee J, Abeje B, Lipchin B, Carone BR, Carone DM. Locus-specific differential expression of human satellite sequences in the nuclei of cancer cells and heat-shocked cells. Nucleus 2024; 15:2431239. [PMID: 39620275 PMCID: PMC11622622 DOI: 10.1080/19491034.2024.2431239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 12/08/2024] Open
Abstract
Human satellitess(HSats) are pericentric, tandemly repeating satellite DNA sequences in the human genome. While silent in normal cells, a subset of HSat2 noncoding RNA is expressed and accumulates in the nucleus of cancer cells. We developed a FISH-based approach for identification of the distribution of three subfamilies of HSat2 (A1, A2, B) sequences on individual human chromosomes. Further, using the HSat subfamily annotations in the T2T completed centromere satellite (CenSat) sequence, we isolated, defined and mapped differentially expressed sequence variants of nuclear-restricted HSat2 and HSat3 RNA from cancer cell lines and heat-shocked cells. We identified chromosome-specific and subfamily-specific expression of HSat2 and HSat3 and established a computational pipeline for differential expression analysis of tandemly repeated satellite sequences. Results suggest the differential expression of chromosome-specific HSat2 arrays in the human genome may underlie their accumulation in cancer cells and that specific HSat3 loci are upregulated upon heat shock.
Collapse
Affiliation(s)
| | | | - Rajiv Potluri
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | | | - Anusha Bhatia
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | - Shu Yi Chen
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | - Johanna Lee
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | | | | | | | - Dawn M. Carone
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
4
|
Han TW, Portz B, Young RA, Boija A, Klein IA. RNA and condensates: Disease implications and therapeutic opportunities. Cell Chem Biol 2024; 31:1593-1609. [PMID: 39303698 DOI: 10.1016/j.chembiol.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA's role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.
Collapse
Affiliation(s)
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Boija
- Dewpoint Therapeutics, Boston, MA, USA.
| | | |
Collapse
|
5
|
Said I, Barbash DA, Clark AG. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Genome Biol Evol 2024; 16:evae153. [PMID: 39018452 PMCID: PMC11305138 DOI: 10.1093/gbe/evae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Although repetitive DNA forms much of the human genome, its study is challenging due to limitations in assembly and alignment of repetitive short-reads. We have deployed k-Seek, software that detects tandem repeats embedded in single reads, on 2,504 human genomes from the 1,000 Genomes Project to quantify the variation and abundance of simple satellites (repeat units <20 bp). We find that the ancestral monomer of Human Satellite 3 makes up the largest portion of simple satellite content in humans (mean of ∼8 Mb). We discovered ∼50,000 rare tandem repeats that are not detected in the T2T-CHM13v2.0 assembly, including undescribed variants of telomericand pericentromeric repeats. We find broad homogeneity of the most abundant repeats across populations, except for AG-rich repeats which are more abundant in African individuals. We also find cliques of highly similar AG- and AT-rich satellites that are interspersed and form higher-order structures that covary in copy number across individuals, likely through concerted amplification via unequal exchange. Finally, we use pericentromeric polymorphisms to estimate centromeric genetic relatedness between individuals and find a strong predictive relationship between centromeric lineages and pericentromeric simple satellite abundances. In particular, ancestral monomers of Human Satellite 2 and Human Satellite 3 abundances correlate with clusters of centromeric ancestry on chromosome 16 and chromosome 9, with some clusters structured by population. These results provide new descriptions of the population dynamics that underlie the evolution of simple satellites in humans.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
7
|
Ruzanov P, Evdokimova V, Pachva MC, Minkovich A, Zhang Z, Langman S, Gassmann H, Thiel U, Orlic-Milacic M, Zaidi SH, Peltekova V, Heisler LE, Sharma M, Cox ME, McKee TD, Zaidi M, Lapouble E, McPherson JD, Delattre O, Radvanyi L, Burdach SE, Stein LD, Sorensen PH. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J Clin Invest 2024; 134:e169470. [PMID: 38530366 PMCID: PMC11060741 DOI: 10.1172/jci169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.
Collapse
Affiliation(s)
- Peter Ruzanov
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manideep C. Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alon Minkovich
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sofya Langman
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vanya Peltekova
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manju Sharma
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Pathomics Inc., Toronto, Ontario, Canada
| | - Mark Zaidi
- Pathomics Inc., Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eve Lapouble
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Olivier Delattre
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
- Diversity and Plasticity of Childhood tumors, INSERM U830, Institut Curie Research Center, PSL Research University, Paris, France
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan E.G. Burdach
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- CCC München Comprehensive Cancer Center, DKTK German Cancer Consortium, Munich, Germany
- Institute of Pathology, Translation Pediatric Cancer Research Action, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lincoln D. Stein
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Iwata T, Kishikawa T, Seimiya T, Notoya G, Suzuki T, Shibata C, Miyakawa Y, Odawara N, Funato K, Tanaka E, Yamagami M, Sekiba K, Otsuka M, Koike K, Fujishiro M. Satellite double-stranded RNA induces mesenchymal transition in pancreatic cancer by regulating alternative splicing. J Biol Chem 2024; 300:105742. [PMID: 38346537 PMCID: PMC10943486 DOI: 10.1016/j.jbc.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024] Open
Abstract
Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.
Collapse
Affiliation(s)
- Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genso Notoya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nariaki Odawara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Böğürcü-Seidel N, Ritschel N, Acker T, Németh A. Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology. Nucleus 2023; 14:2274655. [PMID: 37906621 PMCID: PMC10730139 DOI: 10.1080/19491034.2023.2274655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.
Collapse
Affiliation(s)
| | - Nadja Ritschel
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
11
|
Ponomartsev N, Zilov D, Gushcha E, Travina A, Sergeev A, Enukashvily N. Overexpression of Pericentromeric HSAT2 DNA Increases Expression of EMT Markers in Human Epithelial Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24086918. [PMID: 37108080 PMCID: PMC10138405 DOI: 10.3390/ijms24086918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Pericentromeric tandemly repeated DNA of human satellites 1, 2, and 3 (HS1, HS2, and HS3) is actively transcribed in some cells. However, the functionality of the transcription remains obscure. Studies in this area have been hampered by the absence of a gapless genome assembly. The aim of our study was to map a transcript that we have previously described as HS2/HS3 on chromosomes using a newly published gapless genome assembly T2T-CHM13, and create a plasmid overexpressing the transcript to assess the influence of HS2/HS3 transcription on cancer cells. We report here that the sequence of the transcript is tandemly repeated on nine chromosomes (1, 2, 7, 9, 10, 16, 17, 22, and Y). A detailed analysis of its genomic localization and annotation in the T2T-CHM13 assembly revealed that the sequence belonged to HSAT2 (HS2) but not to the HS3 family of tandemly repeated DNA. The transcript was found on both strands of HSAT2 arrays. The overexpression of the HSAT2 transcript increased the transcription of the genes encoding the proteins involved in the epithelial-to-mesenchymal transition, EMT (SNAI1, ZEB1, and SNAI2), and the genes that mark cancer-associated fibroblasts (VIM, COL1A1, COL11A1, and ACTA2) in cancer cell lines A549 and HeLa. Co-transfection of the overexpression plasmid and antisense nucleotides eliminated the transcription of EMT genes observed after HSAT2 overexpression. Antisense oligonucleotides also decreased transcription of the EMT genes induced by tumor growth factor beta 1 (TGFβ1). Thus, our study suggests HSAT2 lncRNA transcribed from the pericentromeric tandemly repeated DNA is involved in EMT regulation in cancer cells.
Collapse
Affiliation(s)
- Nikita Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Danil Zilov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina Gushcha
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexandra Travina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexander Sergeev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natella Enukashvily
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
12
|
A classical revival: Human satellite DNAs enter the genomics era. Semin Cell Dev Biol 2022; 128:2-14. [PMID: 35487859 DOI: 10.1016/j.semcdb.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
The classical human satellite DNAs, also referred to as human satellites 1, 2 and 3 (HSat1, HSat2, HSat3, or collectively HSat1-3), occur on most human chromosomes as large, pericentromeric tandem repeat arrays, which together constitute roughly 3% of the human genome (100 megabases, on average). Even though HSat1-3 were among the first human DNA sequences to be isolated and characterized at the dawn of molecular biology, they have remained almost entirely missing from the human genome reference assembly for 20 years, hindering studies of their sequence, regulation, and potential structural roles in the nucleus. Recently, the Telomere-to-Telomere Consortium produced the first truly complete assembly of a human genome, paving the way for new studies of HSat1-3 with modern genomic tools. This review provides an account of the history and current understanding of HSat1-3, with a view towards future studies of their evolution and roles in health and disease.
Collapse
|
13
|
Yandım C, Karakülah G. Repeat expression is linked to patient survival and exhibits single nucleotide variation in pancreatic cancer revealing LTR70:r.879A>G. Gene X 2022; 822:146344. [PMID: 35183687 DOI: 10.1016/j.gene.2022.146344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/04/2022] Open
Abstract
Despite an overwhelming number of cancer literature reporting the links between patient survival and the expression levels of genes or mutations/single nucleotide variations (SNVs) on them, there is only limited information on repeat elements, which make at least half the human genome. Here, we analysed RNA-seq data obtained from primary pancreatic cancer tissues of 51 patients and revealed that two transposons, HERVI-int and X6A_LINE, showed an upregulation trend in the patients who lived shorter, along with 56 other potential repeats which were linked to survival. We also detected expressed single nucleotide variations (SNVs) on repeats, among which LTR70:r.879A>G stands out with the effect of its presence on this particular repeat's expression levels and a significant link to overall patient survival. Interestingly, the expression of LTR70:r.879A>G correlated with different cancer genes in comparison to its reference version highlighting the involvement of BRAF and Fumerate Hydratase with this expressed SNV. This is one of the first studies revealing possible links between repeat expression and survival in cancer and it warrants further research in this avenue.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330 Balçova, İzmir, Turkey; İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340 İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340 İnciraltı, İzmir, Turkey; İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İnciraltı, İzmir, Turkey.
| |
Collapse
|
14
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
15
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|