1
|
Havaš Auguštin D, Šarac J, Reidla M, Tamm E, Grahovac B, Kapović M, Novokmet N, Rudan P, Missoni S, Marjanović D, Korolija M. Refining the Global Phylogeny of Mitochondrial N1a, X, and HV2 Haplogroups Based on Rare Mitogenomes from Croatian Isolates. Genes (Basel) 2023; 14:1614. [PMID: 37628665 PMCID: PMC10454736 DOI: 10.3390/genes14081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been used for decades as a predominant tool in population genetics and as a valuable addition to forensic genetic research, owing to its unique maternal inheritance pattern that enables the tracing of individuals along the maternal lineage across numerous generations. The dynamic interplay between evolutionary forces, primarily genetic drift, bottlenecks, and the founder effect, can exert significant influence on genetic profiles. Consequently, the Adriatic islands have accumulated a subset of lineages that exhibits remarkable absence or rarity within other European populations. This distinctive genetic composition underscores the islands' potential as a significant resource in phylogenetic research, with implications reaching beyond regional boundaries to contribute to a global understanding. In the initial attempt to expand the mitochondrial forensic database of the Croatian population with haplotypes from small isolated communities, we sequenced mitogenomes of rare haplogroups from different Croatian island and mainland populations using next-generation sequencing (NGS). In the next step and based on the obtained results, we refined the global phylogeny of haplogroup N1a, HV2, and X by analyzing rare haplotypes, which are absent from the current phylogenetic tree. The trees were based on 16 novel and 52 previously published samples, revealing completely novel branches in the X and HV2 haplogroups and a new European cluster in the ancestral N1a variant, previously believed to be an exclusively African-Asian haplogroup. The research emphasizes the importance of investigating geographically isolated populations and their unique characteristics within a global context.
Collapse
Affiliation(s)
- Dubravka Havaš Auguštin
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Jelena Šarac
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Maere Reidla
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | - Erika Tamm
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | | | | | | | - Pavao Rudan
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Saša Missoni
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Damir Marjanović
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Genetics and Bioengineering Department, International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marina Korolija
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Bianco E, Laval G, Font-Porterias N, García-Fernández C, Dobon B, Sabido-Vera R, Sukarova Stefanovska E, Kučinskas V, Makukh H, Pamjav H, Quintana-Murci L, Netea MG, Bertranpetit J, Calafell F, Comas D. Recent Common Origin, Reduced Population Size, and Marked Admixture Have Shaped European Roma Genomes. Mol Biol Evol 2020; 37:3175-3187. [PMID: 32589725 DOI: 10.1093/molbev/msaa156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.
Collapse
Affiliation(s)
- Erica Bianco
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, UMR 2000, CNRS, Institut Pasteur, Paris, France
| | - Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Carla García-Fernández
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Begoña Dobon
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Sabido-Vera
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Emilija Sukarova Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Science and Arts, Skopje, Macedonia
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Halyna Makukh
- Institute of Hereditary Pathology of the Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - Horolma Pamjav
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, UMR 2000, CNRS, Institut Pasteur, Paris, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jaume Bertranpetit
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Barbarić L, Lipovac K, Sukser V, Rožić S, Korolija M, Zimmermann B, Parson W. Maternal perspective of Croatian genetic diversity. Forensic Sci Int Genet 2020; 44:102190. [DOI: 10.1016/j.fsigen.2019.102190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/29/2023]
|
4
|
Ahmic A, Kalamujic B, Ismailovic A, Lasic L, Halilovic E, Mujkic I, Pojskic N. Mitochondrial DNA diversity of the Roma from northeastern Bosnia, Bosnia and Herzegovina. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2018; 69:347-356. [PMID: 30477712 DOI: 10.1016/j.jchb.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
This study is the first report on the mtDNA diversity in the Roma population from Bosnia. The main aim of this study was to analyse the mtDNA diversity in the studied population, evaluate the genetic relations with other European Roma populations, and analyse the influences of the Roma gene flow on the mitochondrial profile of the Roma from northeastern Bosnia. MtDNA variability in the analysed population has been studied by means of hypervariable segment I and II (HVSI/II) of the control region sequencing and analysis of restriction fragment-length polymorphisms of the coding region. Our results show that genetic structure of the Roma from northeastern Bosnia has a combination of lineages of three main layers: specific founder of Indian origin (M5a1 and M35b) and founder non-M lineages of Indian/European origin (H7a, X2b and X2d) and lineages of European/Middle East origin (H, H1, H11a, V, T2b, K1b and W). The distribution of the haplogroups in the gene pool of the comparative European Roma populations indicates the separate origin of the Bosnian Roma and the Bulgarian Vlax and Croatian Vlax Roma. The data suggest that mitochondrial gene pool of the Roma population from northeastern Bosnia might be a consequence of early parting and the later different migration routes that are part of their demographic history. Our data confirm the high genetic heterogeneity of the Roma populations that can be shaped by effects of genetic drift, isolation and low effective population size, and this correlates with the migratory history of the Roma.
Collapse
Affiliation(s)
- Adisa Ahmic
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla 75000, Bosnia and Herzegovina.
| | - Belma Kalamujic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo 73000, Bosnia and Herzegovina
| | - Anel Ismailovic
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla 75000, Bosnia and Herzegovina
| | - Lejla Lasic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo 73000, Bosnia and Herzegovina
| | - Emir Halilovic
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla 75000, Bosnia and Herzegovina
| | - Irma Mujkic
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla 75000, Bosnia and Herzegovina
| | - Naris Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo 73000, Bosnia and Herzegovina
| |
Collapse
|
5
|
Šebest L, Baldovič M, Frtús A, Bognár C, Kyselicová K, Kádasi Ľ, Beňuš R. Detection of mitochondrial haplogroups in a small avar-slavic population from the eigth-ninth century AD. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:536-553. [PMID: 29345305 DOI: 10.1002/ajpa.23380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/31/2017] [Accepted: 12/09/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVES In the sixth century AD, Avars came to Central Europe from middle Eurasian steppes and founded a strong Empire called the Avar Khagante (568-799/803 AD) in the Pannonian basin. During the existence of this empire, they undertook many military and pugnacious campaigns. In the seventh century, they conquered the northern territory inhabited by Slavs, who were further recruited in Avar military and were commissioned with obtaining food supplies. During almost 200 years of Avar domination, a significant influence by the Avar culture (especially on the burial rite) and assimilation with indigenous population (occurrence of "East Asian"cranial features) could be noticed in this mixed area, which is supported by achaeological and anthropologcal research. Therefore we expected higher incidence of east Eurasian haplogroups (introduced by Avars) than the frequencies detected in present-day central European populations. MATERIALS AND METHODS Mitochondrial DNA from 62 human skeletal remains excavated from the Avar-Slavic burial site Cífer-Pác (Slovakia) dated to the eighth and ninth century was analyzed by the sequencing of hypervariable region I and selected parts of coding region. Obtained haplotypes were compared with other present-day and historical populations and genetic distances were calculated using standard statistical method. RESULTS AND DISCUSSION In total, the detection of mitochondrial haplogroups was possible in 46 individuals. Our results prooved a higher frequency of east Eurasian haplogroups in our analyzed population (6.52%) than in present-day central European populations. However, it is almost three times lower than the frequency of east Eurasian haplogroups detected in other medieval Avar populations. The statistical analysis showed a greater similarity and the lowest genetic distances between the Avar-Slavic burial site Cifer-Pac and medieval European populations than the South Siberian, East and Central Asian populations. CONCLUSION Our results indicate that the transfer of Avar genetic variation through their mtDNA was rather weak in the analyzed mixed population.
Collapse
Affiliation(s)
- Lukáš Šebest
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Marian Baldovič
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Adam Frtús
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Csaba Bognár
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Klaudia Kyselicová
- Faculty of Medicine, Institute of Physiology, Comenius University, Sasinkova 2, Bratislava 813 72, Slovak Republic.,Department of Anthropology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Ľudevít Kádasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic.,Biomedical Research Center Slovak Academy of Sciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - Radoslav Beňuš
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| |
Collapse
|
6
|
Ehler E, Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. J Forensic Leg Med 2017; 48:46-52. [PMID: 28454050 DOI: 10.1016/j.jflm.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 01/27/2023]
Abstract
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.
Collapse
Affiliation(s)
- Edvard Ehler
- Department of Biology and Environmental Studies, Charles University in Prague, Faculty of Education, Magdaleny Rettigove 4, Prague, 116 39, Czech Republic; Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7, 170 00, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, V Uvalu 84, Prague, 150 06, Czech Republic; Nemocnice Na Bulovce, Institute of Legal Medicine, Budinova 2, Prague, 180 81, Czech Republic.
| |
Collapse
|
7
|
Maternal Genetic Ancestry and Legacy of 10(th) Century AD Hungarians. Sci Rep 2016; 6:33446. [PMID: 27633963 PMCID: PMC5025779 DOI: 10.1038/srep33446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
The ancient Hungarians originated from the Ural region in today’s central Russia and migrated across the Eastern European steppe, according to historical sources. The Hungarians conquered the Carpathian Basin 895–907 AD, and admixed with the indigenous communities. Here we present mitochondrial DNA results from three datasets: one from the Avar period (7th–9th centuries) of the Carpathian Basin (n = 31); one from the Hungarian conquest-period (n = 76); and a completion of the published 10th–12th century Hungarian-Slavic contact zone dataset by four samples. We compare these mitochondrial DNA hypervariable segment sequences and haplogroup results with published ancient and modern Eurasian data. Whereas the analyzed Avars represents a certain group of the Avar society that shows East and South European genetic characteristics, the Hungarian conquerors’ maternal gene pool is a mixture of West Eurasian and Central and North Eurasian elements. Comprehensively analyzing the results, both the linguistically recorded Finno-Ugric roots and historically documented Turkic and Central Asian influxes had possible genetic imprints in the conquerors’ genetic composition. Our data allows a complex series of historic and population genetic events before the formation of the medieval population of the Carpathian Basin, and the maternal genetic continuity between 10th–12th century and modern Hungarians.
Collapse
|
8
|
Turchi C, Stanciu F, Paselli G, Buscemi L, Parson W, Tagliabracci A. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization. Forensic Sci Int Genet 2016; 24:136-142. [DOI: 10.1016/j.fsigen.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 06/18/2016] [Indexed: 01/13/2023]
|
9
|
Nagy A, Sipeky C, Szalai R, Melegh BI, Matyas P, Ganczer A, Toth K, Melegh B. Marked differences in frequencies of statin therapy relevant SLCO1B1 variants and haplotypes between Roma and Hungarian populations. BMC Genet 2015; 16:108. [PMID: 26334733 PMCID: PMC4559300 DOI: 10.1186/s12863-015-0262-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/12/2015] [Indexed: 01/26/2023] Open
Abstract
Background SLCO1B1 polymorphisms are relevant in statin pharmacokinetics. Aim of this study was to investigate the genetic variability and haplotype profile of SLCO1B1 polymorphisms in Roma and Hungarian populations. Genotypes of 470 Roma and 442 Hungarian subjects for c.388A > G, c.521T > C and c.1498-1331T > C polymorphisms were determined by PCR-RFLP assay. Using these SNPs eight different haplotypes could be differentiated. Results Differences were found between Roma and Hungarians in SLCO1B1 388AA (24.5 vs. 45.5 %), GG (33.4 vs. 17.9 %) genotypes, AG + GG (75.5 vs. 54.5 %) carriers, in G allele frequency (0.545 vs. 0.362), respectively (p < 0.001). The most common SLCO1B1 haplotype was the ht8 (GTT) both in Roma (43.6 %) and in Hungarian (59.1 %) samples. The ht6 (GCT) was not present in Roma population samples Haplotype analyses showed striking differences between the Roma and Hungarian samples in ht4 (ATT, 37.2 % vs 20.8 %), ht5 (GCC, 1.15 % vs. 3.62 %) and ht8 (GTT, 43.6 % vs. 59.1 %) haplotypes (p < 0.01), respectively. Linkage disequilibrium analysis showed that the studied variants are in different linkage disequilibrium patterns depending on the ethnic origin. Conclusions Similarly to Caucasians the 388G is the minor allele in Hungarians, however, in Roma the 388A was found to be the minor allele contrary to Indians (India). The minor allele frequency of 521T > C and 1498-1331T > C SNPs are almost three times higher in Romas than in Indians (Singapore and Gujarati, respectively). Observed allele frequency for 1498-1331T > C polymorphism reflects the measured average European rates in Hungarians. The results can be applied in population specific treatment algorithms when developing effective programs for statin therapy.
Collapse
Affiliation(s)
- Agnes Nagy
- 1st Department of Internal Medicine, University of Pecs, Pecs, Hungary.
| | - Csilla Sipeky
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary. .,Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, University of Pecs, Pecs, Hungary.
| | - Renata Szalai
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary. .,Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, University of Pecs, Pecs, Hungary.
| | - Bela Imre Melegh
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary.
| | - Petra Matyas
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary.
| | - Alma Ganczer
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary.
| | - Kalman Toth
- 1st Department of Internal Medicine, University of Pecs, Pecs, Hungary.
| | - Bela Melegh
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti 12, H-7624, Pecs, Hungary. .,Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, University of Pecs, Pecs, Hungary.
| |
Collapse
|
10
|
Davidovic S, Malyarchuk B, Aleksic JM, Derenko M, Topalovic V, Litvinov A, Stevanovic M, Kovacevic-Grujicic N. Mitochondrial DNA perspective of Serbian genetic diversity. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156:449-65. [PMID: 25418795 DOI: 10.1002/ajpa.22670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 11/08/2022]
Abstract
Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k).
Collapse
Affiliation(s)
- Slobodan Davidovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jankova-Ajanovska R, Zimmermann B, Huber G, Röck AW, Bodner M, Jakovski Z, Janeska B, Duma A, Parson W. Mitochondrial DNA control region analysis of three ethnic groups in the Republic of Macedonia. Forensic Sci Int Genet 2014; 13:1-2. [PMID: 25051224 PMCID: PMC4234079 DOI: 10.1016/j.fsigen.2014.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
A total of 444 individuals representing three ethnic groups (Albanians, Turks and Romanies) in the Republic of Macedonia were sequenced in the mitochondrial control region. The mtDNA haplogroup composition differed between the three groups. Our results showed relatively high frequencies of haplogroup H12 in Albanians (8.8%) and less in Turks (3.3%), while haplogroups M5a1 and H7a1a were dominant in Romanies (13.7% and 10.3%, respectively) but rare in the former two. This highlights the importance of regional sampling for forensic mtDNA databasing purposes. These population data will be available on EMPOP under accession numbers EMP00644 (Albanians), EMP00645 (Romanies) and EMP00646 (Turks).
Collapse
Affiliation(s)
- Renata Jankova-Ajanovska
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Bettina Zimmermann
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander W Röck
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Zlatko Jakovski
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Biljana Janeska
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Aleksej Duma
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| |
Collapse
|
12
|
Pardiñas AF, Martínez JL, Roca A, García-Vazquez E, López B. Over the sands and far away: interpreting an Iberian mitochondrial lineage with ancient Western African origins. Am J Hum Biol 2014; 26:777-83. [PMID: 25130626 DOI: 10.1002/ajhb.22601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES There is an ongoing effort to characterize the genetic links between Africa and Europe, mostly using lineages and haplotypes that are specific to one continent but had an ancient origin in the other. Mitochondrial DNA has been proven to be a very useful tool for this purpose since a high number of putatively European-specific variants of the African L* lineages have been defined over the years. Due to their geographic locations, Spain and Portugal seem to be ideal places for searching for these lineages. METHODS Five members of a minor branch of haplogroup L3f were found in recent DNA samplings in the region of Asturias (Northern Spain), which is known for its historical isolation. The frequency of L3f in this population (≈1%) is unexpectedly high in comparison with other related lineages in Europe. Complete mitochondrial DNA sequencing of these L3f lineages, as well phylogenetic and phylogeographic comparative analyses have been performed. RESULTS The L3f variant found in Asturias seems to constitute an Iberian-specific haplogroup, distantly related to lineages in Northern Africa and with a deep ancestry in Western Africa. Coalescent algorithms estimate the minimum arrival time as 8,000 years ago, and a possible route through the Gibraltar Strait. CONCLUSIONS Results are concordant with a previously proposed Neolithic connection between Southern Europe and Western Africa, which might be key to the proper understanding of the ancient links between these two continents.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, 33071, Spain
| | | | | | | | | |
Collapse
|
13
|
Sarac J, Sarić T, Auguštin DH, Jeran N, Kovačević L, Cvjetan S, Lewis AP, Metspalu E, Reidla M, Novokmet N, Vidovič M, Nevajda B, Glasnović A, Marjanović D, Missoni S, Villems R, Rudan P. Maternal genetic heritage of Southeastern Europe reveals a new Croatian isolate and a novel, local sub-branching in the x2 haplogroup. Ann Hum Genet 2014; 78:178-94. [PMID: 24621318 DOI: 10.1111/ahg.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022]
Abstract
High mtDNA variation in Southeastern Europe (SEE) is a reflection of the turbulent and complex demographic history of this area, influenced by gene flow from various parts of Eurasia and a long history of intermixing. Our results of 1035 samples (488 from Croatia, 239 from Bosnia and 130 from Herzegovina, reported earlier, and 97 Slovenians and 81 individuals from Žumberak, reported here for the first time) show that the SEE maternal genetic diversity fits within a broader European maternal genetic landscape. The study also shows that the population of Žumberak, located in the continental part of Croatia, developed some unique mtDNA haplotypes and elevated haplogroup frequencies due to distinctive demographic history and can be considered a moderate genetic isolate. We also report seven samples from the Bosnian population and one Herzegovinian sample designated as X2* individuals that could not be assigned to any of its sublineages (X2a'o) according to the existing X2 phylogeny. In an attempt to clarify the phylogeny of our X2 samples, their mitochondrial DNA has been completely sequenced. We suppose that these lineages are signs of local microdifferentiation processes that occurred in the recent demographic past in this area and could possibly be marked as SEE-specific X2 sublineages.
Collapse
Affiliation(s)
- Jelena Sarac
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Verscheure S, Backeljau T, Desmyter S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA. Zookeys 2013:381-411. [PMID: 24453568 PMCID: PMC3890688 DOI: 10.3897/zookeys.365.5859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/14/2013] [Indexed: 02/02/2023] Open
Abstract
The identification of dog hair through mtDNA analysis has become increasingly important in the last 15 years, as it can provide associative evidence connecting victims and suspects. The evidential value of an mtDNA match between dog hair and its potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype’s population frequency estimate. Consequently, implementing a population study representative of the population relevant to the forensic case is vital to the correct evaluation of the evidence. This paper reviews numerous published dog mtDNA studies and shows that many of these studies vary widely in sampling strategies and data quality. Therefore, several features influencing the representativeness of a population sample are discussed. Moreover, recommendations are provided on how to set up a dog mtDNA population study and how to decide whether or not to include published data. This review emphasizes the need for improved dog mtDNA population data for forensic purposes, including targeting the entire mitochondrial genome. In particular, the creation of a publicly available database of qualitative dog mtDNA population studies would improve the genetic analysis of dog traces in forensic casework.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120, Brussels, Belgium ; University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Thierry Backeljau
- University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020, Antwerp, Belgium ; Royal Belgian Institute of Natural Sciences (OD "Taxonomy and Phylogeny" and JEMU), Vautierstraat 29, B-1000, Brussels, Belgium
| | - Stijn Desmyter
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120, Brussels, Belgium
| |
Collapse
|
15
|
Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes. PLoS One 2013; 8:e75397. [PMID: 24143169 PMCID: PMC3797067 DOI: 10.1371/journal.pone.0075397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their ancestral Indian homeland.
Collapse
|
16
|
Sipeky C, Weber A, Szabo M, Melegh BI, Janicsek I, Tarlos G, Szabo I, Sumegi K, Melegh B. High prevalence of CYP2C19*2 allele in Roma samples: study on Roma and Hungarian population samples with review of the literature. Mol Biol Rep 2013; 40:4727-35. [PMID: 23645039 DOI: 10.1007/s11033-013-2569-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
The purpose of our study was to characterise the CYP2C19*2 and CYP2C19*3 alleles in healthy Roma and Hungarian populations. DNA of 500 Roma and 370 Hungarian subjects were genotyped for CYP2C19*2 (G681A, rs4244285) and CYP2C19*3 (G636A, rs4986893) by PCR-RFLP assay and direct sequencing. Significant differences were found comparing the Roma and Hungarian populations in CYP2C19 681 GG (63.6 vs. 75.9%), GA (31.8 vs. 23.0%), AA (4.6 vs. 1.1%), GA+AA (36.4 vs. 24.1%) and A allele frequencies (0.205 vs. 0.125) (p<0.004). Striking differences were found between Roma and Hungarian samples in CYP2C19*1 (79.5 vs. 87.4%) and CYP2C19*2 (20.5 vs. 12.6%) alleles, respectively (p<0.001). None of the subjects was found to carry the CYP2C19*3 allele. Frequencies of the intermedier metabolizer phenotype defined by the *1/*2 genotype (0.318 vs. 0.230, p<0.005) and poor metabolizer predicted by the *2/*2 genotype (0.046 vs. 0.011, p<0.005) was significantly higher in Roma than in Hungarians, respectively. Genotype distribution of the Roma population was similar to those of the population of North India, however, a major difference was found in the frequency of the CYP2C19*2 allele, which is likely a result of admixture with European lineages. In conclusion, the frequencies of the CYP2C19 alleles, genotypes and corresponding extensive, intermediate and poor metabolizer phenotypes studied here in the Hungarian population are similar to those of other European Caucasian populations, but display clear differences when compared to the Roma population.
Collapse
Affiliation(s)
- Csilla Sipeky
- Department of Medical Genetics, University of Pecs, Szigeti 12, Pecs, 7624, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de Saint Pierre M, Bravi CM, Motti JMB, Fuku N, Tanaka M, Llop E, Bonatto SL, Moraga M. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups. PLoS One 2012; 7:e43486. [PMID: 22970129 PMCID: PMC3438176 DOI: 10.1371/journal.pone.0043486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ~15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.
Collapse
Affiliation(s)
- Michelle de Saint Pierre
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pardiñas AF, Roca A, Garcia-Vazquez E, Lopez B. Mitochondrial diversity patterns and the Magdalenian resettlement of Europe: new insights from the edge of the Franco-Cantabrian refuge. J Hum Genet 2012; 57:717-26. [PMID: 22895249 DOI: 10.1038/jhg.2012.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylogeography of the mitochondrial lineages commonly found in Western Europe can be interpreted in the light of a postglacial resettlement of the continent. The center of this proposal lies in the Franco-Cantabrian glacial refuge, located in the northern Iberian Peninsula and Southwestern France. Recently, this interpretation has been confronted by the unexpected patterns of diversity found in some European haplogroups. To shed new lights on this issue, research on Iberian populations is crucial if events behind the actual genetics of the European continent are to be untangled. In this regard, the region of Asturias has not been extensively studied, despite its convoluted history with prolonged periods of isolation. As mitochondrial DNA is a kind of data that has been commonly used in human population genetics, we conducted a thorough regional study in which we collected buccal swabs from 429 individuals with confirmed Asturian ancestry. The joint analysis of these sequences with a large continent-wide database and previously published diversity patterns allowed us to discuss a new explanation for the population dynamics inside the Franco-Cantabrian area, based on range expansion theory. This approximation to previously contradictory findings has made them compatible with most proposals about the postglacial resettlement of Western Europe.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
19
|
A comparative phylogenetic study of genetics and folk music. Mol Genet Genomics 2012; 287:337-49. [PMID: 22392540 DOI: 10.1007/s00438-012-0683-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of "music-genetics" can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.
Collapse
|
20
|
Šarac J, Šarić T, Jeran N, Auguštin DH, Metspalu E, Vekarić N, Missoni S, Villems R, Rudan P. Influence of evolutionary forces and demographic processes on the genetic structure of three Croatian populations: a maternal perspective. Ann Hum Biol 2012; 39:143-55. [PMID: 22324841 DOI: 10.3109/03014460.2012.660194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Many Croatian islands are examples of genetic isolates, with low level of heterozygosity and high level of inbreeding, due to practice of endogamy. AIM The aim was to study the genetic structure of two insular and one mainland population through high-resolution phylogenetic analysis of mitochondrial DNA (mtDNA). SUBJECTS AND METHODS MtDNA polymorphisms were explored in 300 unrelated individuals from Mljet, Lastovo and the coastal city of Dubrovnik, based on SNP polymorphisms. RESULTS All mtDNA haplogroups found in the sample were of typical European origin. However, the frequency distribution of their subclades differed significantly from other Croatian and European populations. MtDNA haplotype analysis revealed only two possible founder lineages on Mljet and six on Lastovo, accounting for almost half of the sample on both islands. The island of Mljet also has the lowest reported haplotype and nucleotide diversity among Croatian isolates and the island of Lastovo, a new sublineage of a usually quite rare U1b clade. CONCLUSION The results can be explained by the effect evolutionary forces have on genetic structure, which is in line with the specific demographic histories of the islands. An additional research value of these two island isolates is the appearance of certain Mendelian disorders, highlighting their importance in epidemiological studies.
Collapse
Affiliation(s)
- Jelena Šarac
- Institute for Anthropological Research, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salihović MP, Barešić A, Klarić IM, Cukrov S, Lauc LB, Janićijević B. The role of the Vlax Roma in shaping the European Romani maternal genetic history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:262-70. [DOI: 10.1002/ajpa.21566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/09/2011] [Indexed: 11/07/2022]
|
22
|
Mendizabal I, Valente C, Gusmão A, Alves C, Gomes V, Goios A, Parson W, Calafell F, Alvarez L, Amorim A, Gusmão L, Comas D, Prata MJ. Reconstructing the Indian origin and dispersal of the European Roma: a maternal genetic perspective. PLoS One 2011; 6:e15988. [PMID: 21264345 PMCID: PMC3018485 DOI: 10.1371/journal.pone.0015988] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/02/2010] [Indexed: 12/01/2022] Open
Abstract
Previous genetic, anthropological and linguistic studies have shown that Roma (Gypsies) constitute a founder population dispersed throughout Europe whose origins might be traced to the Indian subcontinent. Linguistic and anthropological evidence point to Indo-Aryan ethnic groups from North-western India as the ancestral parental population of Roma. Recently, a strong genetic hint supporting this theory came from a study of a private mutation causing primary congenital glaucoma. In the present study, complete mitochondrial control sequences of Iberian Roma and previously published maternal lineages of other European Roma were analyzed in order to establish the genetic affinities among Roma groups, determine the degree of admixture with neighbouring populations, infer the migration routes followed since the first arrival to Europe, and survey the origin of Roma within the Indian subcontinent. Our results show that the maternal lineage composition in the Roma groups follows a pattern of different migration routes, with several founder effects, and low effective population sizes along their dispersal. Our data allowed the confirmation of a North/West migration route shared by Polish, Lithuanian and Iberian Roma. Additionally, eleven Roma founder lineages were identified and degrees of admixture with host populations were estimated. Finally, the comparison with an extensive database of Indian sequences allowed us to identify the Punjab state, in North-western India, as the putative ancestral homeland of the European Roma, in agreement with previous linguistic and anthropological studies.
Collapse
Affiliation(s)
- Isabel Mendizabal
- Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Spain
| | - Cristina Valente
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Alfredo Gusmão
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Cíntia Alves
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Verónica Gomes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Goios
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Francesc Calafell
- Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, (CIBERESP), Barcelona, Spain
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - David Comas
- Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, (CIBERESP), Barcelona, Spain
- * E-mail:
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Pamjav H, Zalán A, Béres J, Nagy M, Chang YM. Genetic structure of the paternal lineage of the Roma people. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:21-9. [PMID: 21484758 DOI: 10.1002/ajpa.21454] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022]
Abstract
According to written sources, Roma (Romanies, Gypsies) arrived in the Balkans around 1,000 years ago from India and have subsequently spread through several parts of Europe. Genetic data, particularly from the Y chromosome, have supported this model, and can potentially refine it. We now provide an analysis of Y-chromosomal markers from five Roma and two non-Roma populations (N = 787) in order to investigate the genetic relatedness of the Roma population groups to one another, and to gain further understanding of their likely Indian origins, the genetic contribution of non-Roma males to the Roma populations, and the early history of their splits and migrations in Europe. The two main sources of the Roma paternal gene pool were identified as South Asian and European. The reduced diversity and expansion of H1a-M82 lineages in all Roma groups imply shared descent from a single paternal ancestor in the Indian subcontinent. The Roma paternal gene pool also contains a specific subset of E1b1b1a-M78 and J2a2-M67 lineages, implying admixture during early settlement in the Balkans and the subsequent influx into the Carpathian Basin. Additional admixture, evident in the low and moderate frequencies of typical European haplogroups I1-M253, I2a-P37.2, I2b-M223, R1b1-P25, and R1a1-M198, has occurred in a more population-specific manner.
Collapse
Affiliation(s)
- Horolma Pamjav
- Institute of Forensic Medicine, Network of Forensic Science Institutes, Ministry of Administration and Justice, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
24
|
Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B. Genetic Variability and Haplotype Profile of MDR1 (ABCB1) in Roma and Hungarian Population Samples with a Review of the Literature. Drug Metab Pharmacokinet 2011; 26:206-15. [DOI: 10.2133/dmpk.dmpk-10-sc-068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
Romanies constitute the largest minority group belonging to different subgroups in Hungary. Vlax Romanies are one of these Romani subgroups. The Gypsies came to Hungary from the Balkans in two large migrations. The Carpathian Romanies arrived in the 15th century and the Vlax Romanies came in the 19th century. The Carpathian Gypsies speak Hungarian and the Vlax Romanies speak Hungarian and Romani languages. Only a limited number of genetic studies of Y-chromosomal haplotypes/haplogroups have been done before, moreover most studies did not contain information regarding the investigated Roma populations which subgroups belong to. In the present study, we analyzed a wide set of Y-chromosomal markers to do comparable studies of the Vlax Roma in eastern Hungarian regions. The results can be compared in the context of previously published data on other Romani groups, Indian and Hungarian reference populations. Haplogroups H1a-M82 and J2a2-M67 were most common in the investigated population groups. A median-joining network of haplogroup H1a-M82 has demonstrated the sharing of identical Indian specific Y-chromosomal lineages between all Romani populations including Malaysian Indians as well as the Vlax Romanies. This common lineage of haplogroup H1a-M82 represents a common descent from a single ancestor provides a strong genetic link to the ancestral geographical origin of the proto-Gypsies. The detected haplogroups in the Vlax Romani population groups can be classified into two different Y-chromosomal lineages based on their putative origin. These lineages include ancestral Indian (H1a-M82), present-day Eurasian (J2a2-M67, J2*-M172, E1b1b1a-M78, I1-M253, R1a1-M198 and R1b1-P25) Y-chromosome lineages. Presence of these lineages in the paternal gene pool of the Roma people is illustrative of the Gypsy migration route from India through the Balkan to the Carpathian Basin.
Collapse
Affiliation(s)
- Andrea Zalán
- Institute of Forensic Medicine, Network of Forensic Science Institutes, Ministry of Public Administration and Justice, Budapest, Hungary
| | | | | |
Collapse
|
26
|
Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, Falus A, Melegh B. Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: Relationship to worldwide allelic frequencies. Blood Cells Mol Dis 2009; 43:239-42. [DOI: 10.1016/j.bcmd.2009.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|
27
|
Saunier JL, Irwin JA, Strouss KM, Ragab H, Sturk KA, Parsons TJ. Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 2009; 3:e97-103. [DOI: 10.1016/j.fsigen.2008.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
28
|
Lee HY, Song I, Ha E, Cho SB, Yang WI, Shin KJ. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics 2008; 9:483. [PMID: 19014619 PMCID: PMC2621369 DOI: 10.1186/1471-2105-9-483] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/17/2008] [Indexed: 12/05/2022] Open
Abstract
Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at .
Collapse
Affiliation(s)
- Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
29
|
Saunier JL, Irwin JA, Just RS, O'Callaghan J, Parsons TJ. Mitochondrial control region sequences from a U.S. "Hispanic" population sample. Forensic Sci Int Genet 2008; 2:e19-23. [PMID: 19083798 DOI: 10.1016/j.fsigen.2007.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/17/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022]
Abstract
Entire mitochondrial control region data was generated for 128 "Hispanics" from the United States. These samples have been previously typed for 15 autosomal STRs [J.M. Butler, R. Schoske, P.M. Vallone, J.W. Redman, M.C. Kline, Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations, J. Forensic Sci. 48 (2003) 908-911]. High-throughput robotics, a redundant sequencing approach, and several quality control checks were implemented to generate a high-quality database. The data presented here will augment Hispanic reference data available for forensic mtDNA comparisons.
Collapse
Affiliation(s)
- Jessica L Saunier
- Armed Forces DNA Identification Laboratory, Rockville, MD 20850, United States
| | | | | | | | | |
Collapse
|
30
|
Irwin J, Saunier J, Strouss K, Paintner C, Diegoli T, Sturk K, Kovatsi L, Brandstätter A, Cariolou MA, Parson W, Parsons TJ. Mitochondrial control region sequences from northern Greece and Greek Cypriots. Int J Legal Med 2007; 122:87-9. [PMID: 17492459 DOI: 10.1007/s00414-007-0173-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Entire mitochondrial control region data were generated for population samples of 319 unrelated individuals from northern Greece and 91 unrelated individuals from Cyprus. The samples from northern Greece have been previously typed for 15 nuclear short tandem repeat (STR; Kovatsi et al., Forensic Sci. Int. 159:61-63, 2006).
Collapse
Affiliation(s)
- Jodi Irwin
- Armed Forces Institute of Pathology, 20850, Rockville, MD, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|