1
|
Pennisi G, Torrisi M, Cocimano G, Esposito M, Salerno M, Sessa F. Vitality markers in forensic investigations: a literature review. Forensic Sci Med Pathol 2023; 19:103-116. [PMID: 36331706 DOI: 10.1007/s12024-022-00551-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Determining whether an injury was sustained in life or not is one of the most important topics in forensic medicine. Morphological, cytological, and biological techniques are used to assess wound vitality. Several markers involved in vital and supravital reactions increase the accuracy of wound age estimation. This systematic review aimed to investigate the main vitality markers used in forensic medicine to date. This review was conducted by performing a systematic literature search on online resources (PubMed Central database and Google Scholar) until May 2022. We identified 46 articles published between 1987 and May 2022, analyzing a total of 53 markers. Based on the data of this review, the most studied vitality markers were adhesion molecules (fibronectin, p-selectin, CD 15), pro-inflammatory cytokines (IL-6, IL-1β, TNF-α), cathepsin D, tryptase, and microRNAs (miRNAs). The most interesting studies were based on animal models: the different markers were investigated through immunohistochemical and qRT-PCR methods. The experimental methods were usually based on skin incisions, ligature marks, and burned skin areas. To date, it has not been possible to identify any gold standard markers based on the criteria of efficacy, specificity, and reliability; however, studies are still in progress. In the future, the use of miRNAs is promising as well as the combination of multiple markers. In this way, it will be possible to increase the sensitivity and specificity to validate systems or models for determining wound vitality in forensic practice.
Collapse
Affiliation(s)
- Giuliana Pennisi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy
| | - Marco Torrisi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy
| | - Giuseppe Cocimano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy
| | - Francesco Sessa
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. Policlinico "G. Rodolico - San Marco" via S. Sofia, 87 - Sector 10, Building B, 95123, Catania, Italy.
| |
Collapse
|
2
|
Du Q, Dong T, Liu Y, Zhu X, Li N, Dang L, Cao J, Jin Q, Sun J. Screening criteria of mRNA indicators for wound age estimation. Forensic Sci Res 2023; 7:714-725. [PMID: 36817234 PMCID: PMC9930757 DOI: 10.1080/20961790.2021.1986770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Wound age estimation is a crucial and challenging problem in forensic pathology. Although mRNA is the most commonly used indicator for wound age estimation, screening criteria are lacking. In the present study, the feasibility of screening criteria using mRNA to determine injury time based on the adenylate-uridylate-rich element (ARE) structure and gene ontology (GO) categories were evaluated. A total of 78 Sprague-Dawley male rats were contused and sampled at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h after inflicting injury. The candidate mRNAs were classified based on with or without ARE structure and GO category function. The mRNA expression levels were detected using qRT-PCR. In addition, the standard deviation (STD), mean deviation (MD), relative average deviation (d%), and coefficient of variation (CV) were calculated based on mRNA expression levels. The CV score (CVs) and the CV of CV (CV'CV) were calculated to measure heterogeneity. Finally, based on classic principles, the accuracy of combination of candidate mRNAs was assessed using discriminant analysis to construct a multivariate model for inferring wound age. The results of homogeneity evaluation of each group based on CVs were consistent with the MD, STD, d%, and CV results, indicating the credibility of the evaluation results based on CVs. The candidate mRNAs without ARE structure and classified as cellular component (CC) GO category (ARE-CC) had the highest CVs, showing the mRNAs with these characteristics are the most homogenous mRNAs and best suited for wound age estimation. The highest accuracy was 91.0% when the mRNAs without ARE structure were used to infer the wound age based on the discrimination model. The accuracy of mRNAs classified into CC or multiple function (MF) GO category was higher than mRNAs in the biological process (BP) category. In all subgroups, the accuracy of the composite identification model of mRNA composition without ARE structure and classified as CC was higher than other subgroups. The mRNAs without ARE structure and belonging to the CC GO category were more homogenous, showed higher accuracy for estimating wound age, and were appropriate for rat skeletal muscle wound age estimation. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1986770 .
Collapse
Affiliation(s)
- Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Tana Dong
- Shandong Public Security Department, The Institute of Criminal Science and Technology, Jinan, China
| | - Yuanxin Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Xiyan Zhu
- Department of Military Traffic Medicine, Army Characteristic Medical Center, Chongqing, China
| | - Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lihong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qianqian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China,CONTACT Junhong Sun
| |
Collapse
|
3
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
4
|
Ren K, Wang L, Wang Y, An G, Du Q, Cao J, Jin Q, Yun K, Guo Z, Wang Y, Liang Q, Sun J. Wound age estimation based on next-generation sequencing: Fitting the optimal index system using machine learning. Forensic Sci Int Genet 2022; 59:102722. [DOI: 10.1016/j.fsigen.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
5
|
Emam M, Caballero-Solares A, Xue X, Umasuthan N, Milligan B, Taylor RG, Balder R, Rise ML. Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ( Salmo salar). Front Immunol 2022; 13:806484. [PMID: 35418993 PMCID: PMC8996064 DOI: 10.3389/fimmu.2022.806484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
6
|
Barington K, Skovgaard K, Henriksen NL, Jensen HE. Optimising the sampling procedure for forensic investigation of bruises on pigs. Vet Rec 2020; 187:153. [PMID: 32220978 DOI: 10.1136/vr.105625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/22/2019] [Accepted: 02/10/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Human-inflicted bruises on pigs are a violation of the law and affected tissue is regularly sent for forensic investigation. The authors aimed to evaluate the variation in inflammation within and between human-inflicted porcine bruises in order to determine the optimal sampling procedure. METHODS Skin and muscle tissues from the centre and ends of 21 bruises were evaluated histologically. Moreover, RNA was extracted from the subcutaneous fat tissue. The bruises were detected during meat inspection at the slaughter line, and all carcases were kept at 5°C for 12-24 hours before sampling. RESULTS The sampling site with the most infiltration of neutrophils and macrophages differed between bruises inflicted on the same pig and between bruises inflicted on more pigs within the same delivery. The extracted RNA had RIN (RNA integrity number) values from 3 to 6.5. CONCLUSIONS Tissue samples should always be taken from both skin and underlying muscle tissue. Samples should be collected from several sites along each bruise, and all bruises should be sampled in order to include the site of maximum tissue damage and inflammation. Moreover, RNA of sufficient quality for quantitative PCR and subsequent age estimation cannot be obtained from carcases kept for 12-24 hours at 5°C.
Collapse
Affiliation(s)
- Kristiane Barington
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Lind Henriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020; 731:144349. [PMID: 31935499 DOI: 10.1016/j.gene.2020.144349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The "transcriptome after death" involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.
Collapse
|
8
|
Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet 2019; 42:e21-e24. [PMID: 31270013 DOI: 10.1016/j.fsigen.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Cornelius Courts
- University Hospital of Schleswig-Holstein, Institute of Forensic Medicine, Kiel, Germany.
| | - Michael W Pfaffl
- Technical University of Munich, Animal Physiology and Immunology, Freising, Germany
| | - Eva Sauer
- State Office of Criminal Investigation of Rhineland-Palatinate, Mainz, Germany
| | - Walther Parson
- Innsbruck Medical University, Institute of Legal Medicine, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Temporal expression of wound healing-related genes inform wound age estimation in rats after a skeletal muscle contusion: a multivariate statistical model analysis. Int J Legal Med 2019; 134:273-282. [PMID: 30631906 DOI: 10.1007/s00414-018-01990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Although many time-dependent parameters involved in wound healing have been exhaustively investigated, establishing an objective and reliable means for estimating wound age remains a challenge. In this study, 78 Sprague-Dawley rats were divided randomly into a control group and contusion groups at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h post-injury (n = 6 per group). The expression of 35 wound healing-related genes was explored in contused skeletal muscle by real-time polymerase chain reaction. Differences between the groups were assessed by partial least squares discriminant analysis (PLS-DA). The results show that the samples were classified into three groups by wound age (4-12, 16-24, and 28-48 h). A Fisher discriminant analysis model of 14 selected genes was constructed, and 94.9% cross-validated grouped cases were correctly classified. A PLS regression analysis using 14 genes showed reasonable internal predictive validity, with a root mean squared error of cross-validation of approximately 8 h. To examine whether the prediction models were capable of analyzing new (ungrouped) cases, an external validation was carried out using the expression data from an additional 30 rats. Approximately 76.7% of ungrouped cases were correctly classified, which was a lower proportion than that for cross-validation. Similarly, the prediction results of the PLS model showed lower relatively external predictive validity (root mean squared error of prediction = 11 h) than internal predictive validity. Although the prediction results were less accurate than expected, the gene expression modeling and multivariate analyses showed great potential for estimating injury time. These multivariate methods may be valuable when devising future wound time estimation strategies.
Collapse
|
10
|
Forensic age determination of human inflicted porcine bruises inflicted within 10 h prior to slaughter by application of gene expression signatures. Res Vet Sci 2018; 120:47-53. [DOI: 10.1016/j.rvsc.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
|
11
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Sun JH, Zhu XY, Li SQ, Dong TN, Du QX. Measuring temporal expression, systematic response, and post-mortem stability to assess potential markers for estimating wound age: an example of Fosl1 in contused skeletal muscle. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2017.1334824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun-hong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xi-yan Zhu
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - San-qiang Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ta-na Dong
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
13
|
Barington K, Jensen HE, Skovgaard K. Forensic aspects of gene expression signatures for age determination in bruises as evaluated in an experimental porcine model. Forensic Sci Med Pathol 2017; 13:151-160. [PMID: 28466139 DOI: 10.1007/s12024-017-9869-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 01/27/2023]
Abstract
Determining the age of bruises and the force used to inflict the trauma is of crucial importance in both human and veterinary forensic pathology. In the present study, the expression of more than 50 different genes in subcutaneous fat and muscle tissue from experimental bruises in pigs was investigated. The aim was to evaluate if expression signatures of selected genes were capable of determining bruises according to age and the force of impact. Eighteen experimental pigs were anesthetized, and on each animal four blunt traumas were inflicted on the back with a low, moderate or high force. The pigs were euthanized from 1 to 10 h after infliction of the trauma and subcutaneous fat and muscle tissues were sampled. As control, subcutaneous fat and muscle tissues were sampled from two un-injured pigs. Quantitative real-time polymerase chain reaction was performed to evaluate mRNA expression of genes involved in inflammation, tissue damage and repair. Expression signatures of thirteen selected genes in subcutaneous fat but not in muscle tissue reflected the age of bruises with a precision of approximately ±2 h. Moreover, the gene expression signature in the subcutaneous fat was to some extend able to separate bruises inflicted with different forces. Expression signatures of selected genes in the subcutaneous fat will increase the precision of the age determination of bruises in pigs. Further, due to the similarity of porcine and human skin physiology and immunity, these results might also provide valuable information in human forensic science.
Collapse
Affiliation(s)
- Kristiane Barington
- Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark.
| | - Henrik Elvang Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kemitorvet Kgs, DK-2800, Lyngby, Denmark
| |
Collapse
|
14
|
Sun JH, Zhu XY, Dong TN, Zhang XH, Liu QQ, Li SQ, Du QX. An “up, no change, or down” system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int 2017; 272:104-110. [DOI: 10.1016/j.forsciint.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
|
15
|
Cao ZP, Zhang Y, Mi L, Luo XY, Tian MH, Zhu BL. The Expression of B-Type Natriuretic Peptide After CaCl2-Induced Arrhythmias in Rats. Am J Forensic Med Pathol 2017; 37:133-40. [PMID: 27258852 DOI: 10.1097/paf.0000000000000193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the patterns of B-type natriuretic peptide (BNP) expression after arrhythmia, BNP was assessed at different time points (0 minute, 10 minutes, 30 minutes, 1 hour, 3 hours, and 6 hours) in CaCl2-induced arrhythmia in rats through various methods such as immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Immunohistochemistry results showed that the expression of BNP in the endocardium was higher than that in the epicardium in rats undergoing sustained arrhythmias. The BNP-to-GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratios determined by Western blotting analysis revealed no change at 0 minute but increased at 10 minutes and reached the first peak (0.48 [0.03]) at 30 minutes. After a brief decline, the second peak was observed at 6 hours (0.54 [0.03]). Similar patterns of BNP messenger RNA expression were also observed by quantitative real-time polymerase chain reaction. The plasma BNP concentrations did not change after initial bouts of cardiac arrhythmias but significantly increased 30 minutes after CaCl2 injections. The results demonstrate that arrhythmia causes an elevation of BNP in the myocardium and blood, and BNP messenger RNA increases in initial arrhythmia while its protein in myocardium and plasma does not; however, both of them were elevated after sustained arrhythmia. Such an elevated BNP expression, which is directly related to the severity and duration of the arrhythmias, may suggest the existence of fatal arrhythmia in sudden cardiac death.
Collapse
Affiliation(s)
- Zhi-Peng Cao
- From the Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Barington K, Jensen HE. The impact of force on the timing of bruises evaluated in a porcine model. J Forensic Leg Med 2016; 40:61-6. [PMID: 27085141 DOI: 10.1016/j.jflm.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
Abstract
In animal models developed in order to estimate the age of bruises, focus has been on the changes over time and not considering the force used to inflict the trauma. In the present study, gross and histological changes in 2, 4, 6 and 8 h old bruises which were inflicted with a low, moderate and high force were compared. Twelve experimental pigs were randomly assigned to three groups of force (low, moderate and high force). All pigs were anesthetized, and on each animal four blunt traumas were inflicted on the back with the low, moderate or high force according to the groups. The pigs were kept in anesthesia for 2, 4, 6 or 8 h, after which they were euthanized, and skin and muscle tissues were sampled for histology. As control, two pigs were included. The gross appearance of bruises developed similarly until 0.5 h after infliction at which time the visibility of the bruises depended on the force. The infiltration of subcutaneous neutrophils depended on the time and force used which was confirmed by both manual evaluation and image analysis of immunostained skin sections. In the muscle tissue, the number of macrophages was found useful for age determination in bruises inflicted with the highest force. Therefore, when evaluating forensic cases of bruises in both human and veterinary pathology the impact of force and not only the timing should be taken into consideration.
Collapse
Affiliation(s)
- Kristiane Barington
- Department of Veterinary Disease Biology, University of Copenhagen, Ridebanevej 3, DK-1870 Frederiksberg, Denmark.
| | - Henrik Elvang Jensen
- Department of Veterinary Disease Biology, University of Copenhagen, Ridebanevej 3, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
17
|
Ibrahim SF, Issak M, Bayoumy AA, Abd El-Fatah DS. Cutaneous (tPA) and Skeletal (TnI) mRNA as Markers of Aging in Contused Wound. J Forensic Sci 2016; 61:1007-10. [PMID: 27364281 DOI: 10.1111/1556-4029.13072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 08/05/2015] [Accepted: 08/23/2015] [Indexed: 11/26/2022]
Abstract
Wound age estimation is one of the most important forensic aspects. Troponin I (TnI) and many cytokines, for example, tissue plasminogen activator (tPA), are involved in wound inflammation and healing. Skeletal (TnI) and cutaneous (tPA) mRNA was detected using real-time PCR in 25 female albino rats. They were divided into 5 groups: control and 4 injured groups. Injured groups were sacrificed 1, 6, 24, and 30 h after inflicting contused wound. The expression levels of cutaneous (tPA) were decreased significantly at 1, 6, and 30 h after contusion (71.7%, 30.7 and 16.9%), while the expression levels of skeletal (TnI) were increased significantly at 1 and 6 h post-traumatic, then they gradually decreased until reaching normal levels at 24 h and assumed significantly lower levels at 30 h postcontusion. These results suggested that the determination of cutaneous (tPA) and skeletal (TnI) mRNA levels was useful for wound age estimation.
Collapse
Affiliation(s)
- Samah F Ibrahim
- Lecturer of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Issak
- Lecturer of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany A Bayoumy
- Lecturer of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
18
|
Yu TS, Li Z, Zhao R, Zhang Y, Zhang ZH, Guan DW. Time-dependent Expression of MMP-2 and TIMP-2 after Rats Skeletal Muscle Contusion and Their Application to Determine Wound Age. J Forensic Sci 2016; 61:527-533. [PMID: 27404628 DOI: 10.1111/1556-4029.13001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/02/2015] [Accepted: 05/24/2015] [Indexed: 12/01/2022]
Abstract
The ability to determine vitality and estimate the survival period after a wound is critical in routine forensic practice. The mRNA levels of MMP-2 and TIMP-2 were examined using quantitative real-time RT-PCR to determine the age of a wound. Furthermore, the colocalization of them with Macrophage Marker, respectively, was detected by double immunofluorescence, and a standardized rat model of skeletal muscle contusion was established. In the antemortem contused groups, a large number of macrophages showed positive staining for MMP-2 and TIMP-2, and the expression of MMP-2 and TIMP-2 mRNA increased sharply at 3 days postinjury, with relative quantities of 5.75 and 2.98. No samples in the other groups showed relative quantities of >5.75 and 2.98; therefore, relative quantities exceeding 5.75 and 2.98 were strongly indicated 3 days after contusion. In addition, there was a significant decrease in the relative quantity in the postmortem contused groups, indicating that they were useful for diagnosing vitality.
Collapse
Affiliation(s)
- Tian-Shui Yu
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Zhuang Li
- Department of Regional Anatomy, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110001, China
| | - Yan Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Zhen-Hua Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, 110001, China
| |
Collapse
|
19
|
A novel, comprehensive, and reproducible porcine model for determining the timing of bruises in forensic pathology. Forensic Sci Med Pathol 2016; 12:58-67. [PMID: 26820283 DOI: 10.1007/s12024-016-9744-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Calculating the timing of bruises is crucial in forensic pathology but is a challenging discipline in both human and veterinary medicine. A mechanical device for inflicting bruises in pigs was developed and validated, and the pathological reactions in the bruises were studied over time in order to identify gross and histological parameters that may be useful in determining the age of a bruise. METHODS The mechanical device was able to apply a single reproducible stroke with a plastic tube that was equivalent to being struck by a man. In each of 10 anesthetized pigs, four strokes that resulted in bruises were inflicted on the back. In addition, 2 control pigs were included in the study. The pigs were euthanized consecutively from 1 to 10 h after the infliction of bruises. Following gross evaluation, skin, and muscle tissues were sampled for histology. RESULTS Grossly, the bruises appeared uniform and identical to the tramline bruises seen in humans and pigs subjected to blunt trauma. Histologically, the number of neutrophils in the subcutis, the number of macrophages in the muscle tissue, and the localization of neutrophils and macrophages in muscle tissue showed a time-dependent response. Combining these parameters, bruises could be grouped as being either less than 4 h old or between 4 and 10 h of age. Gross lesions and changes in the epidermis and dermis were inconclusive with respect to time determination. CONCLUSIONS The model was reproducible and resembled forensic cases of bruises in pigs and humans. Therefore, the histological parameters are suitable for age determination of bruises in pigs and likely also in humans.
Collapse
|
20
|
Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med 2016; 130:163-172. [PMID: 26311174 DOI: 10.1007/s00414-015-1251-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
The study was focused on time-dependent expressions of paired-box transcription factor 7 (Pax7) and myoblast determination protein (MyoD) during skeletal muscle wound healing. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17, and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. By morphometric analysis, the data based on the number of Pax7(+)/MyoD(-), Pax7(+)/MyoD(+), and Pax7(-)/MyoD(+) cells were highly correlated with the wound age. Pax7 and MyoD expressions were upregulated after injury by Western blot and quantitative real-time PCR assays. The relative quantity of Pax7 protein peaked at 5 days after injury, which was >1.13, and decreased thereafter. Similarly, the relative quantity of MyoD mRNA expression peaked at 3 days after injury, which was >2.59. The relative quantity of Pax7 protein >0.73 or mRNA expression >2.38 or the relative quantity of MyoD protein >1.33 suggested a wound age of 3 to 7 days. The relative quantity of MyoD mRNA expression >2.02 suggested a wound age of 1 to 7 days post-injury. In conclusion, the expressions of Pax7 and MyoD are upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting that Pax7 and MyoD may be potential markers for wound age estimation in skeletal muscle.
Collapse
Affiliation(s)
- Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenbei New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
21
|
Grabmüller M, Madea B, Courts C. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Forensic Sci Int Genet 2015; 16:195-202. [DOI: 10.1016/j.fsigen.2015.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
|
22
|
Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. The time-dependent expression of α7nAChR during skeletal muscle wound healing in rats. Int J Legal Med 2014; 128:779-86. [PMID: 24781786 DOI: 10.1007/s00414-014-1001-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
Abstract
The study on time-dependent expression of α7 nicotine acetylcholine receptor (α7nAChR) was performed by immunohistochemistry, Western blotting, and real-time PCR during skeletal muscle wound healing in rats. Furthermore, co-localization of α7nAChR with macrophage or myofibroblast marker was detected by double immunofluorescence. A total of 50 Sprague-Dawley male rats were divided into control and contusion groups (3 h, 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, and 14 days post-injury). In the uninjured controls, α7nAChR positive staining was observed in the sarcolemma and sarcoplasm of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells, a number of macrophages and myofibroblasts showed positive reaction for α7nAChR in contused zones. Morphometrically, the average ratios of α7nAChR-positive cells were over 50 % from 3 to 10 days after contusion, and exceeded 60 % at 5 and 7 days post-injury. Besides, the positive ratios of α7nAChR were <50 % at the other posttraumatic intervals. By Western blotting analysis, the average ratio of α7nAChR protein expression maximized at 7 days after injury, which was >2.13. Similarly, the relative quantity of α7nAChR mRNA expression peaked at 7 days post-wounding as compared with control by real-time PCR detection, showing a relative quantity of >2.65. In conclusion, the expression of α7nAChR is upregulated and temporally distributed in macrophages and myofibroblasts during skeletal muscle wound healing, which might be closely involved in inflammatory response and fibrotic repair after injury. Moreover, α7nAChR is promising as a useful marker for wound age determination of skeletal muscle.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY. Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 2013; 9:528-33. [PMID: 24045877 DOI: 10.1007/s12024-013-9482-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
To estimate the age of skeletal muscle contusion, the expression of SNAT2 mRNA in contused skeletal muscle of rats was detected by real-time polymerase chain reaction (PCR). In total, 78 Sprague-Dawley male rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h (n = 6) after contusion, the rats were sacrificed with a lethal dose of pentobarbital. Another 24 rats received contusion injuries at 6, 12, 18, and 24 h (n = 6) after death. Total RNA was isolated from muscle specimens using the TRIzol reagent and reverse-transcribed into first-strand cDNA. Sequence-specific primers and TaqMan fluorogenic probes for SNAT2 mRNA and RPL13 mRNA were designed using the AlleleID 6 software, and the expression levels of SNAT2 mRNA were determined by real-time PCR. At 4, 16, 20, and 24 h after contusion, expression levels of SNAT2 mRNA normalized to RPL13 mRNA increased by 2.07 (P < 0.05), 2.53 (P < 0.05), 2.68 (P < 0.05), and 2.06 fold (P < 0.05) respectively, versus that in the control group. However, there was no significant change in the expression level of SNAT2 mRNA from 24 to 48 h (P > 0.05) after contusion, when normalized to RPL13 mRNA. There was no change in the expression level of SNAT2 mRNA between the normal skeletal muscle from the left limb of the same injured rat and the control. Also, no degradation of SNAT2 mRNA was detected in the postmortem samples (P > 0.05). This result suggests that the determination of SNAT2 mRNA levels by real-time PCR may be useful for estimating wound age.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. Int J Legal Med 2011; 126:113-20. [DOI: 10.1007/s00414-011-0604-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
|
26
|
Ma WX, Yu TS, Fan YY, Zhang ST, Ren P, Wang SB, Zhao R, Pi JB, Guan DW. Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 2011; 125:549-558. [PMID: 21475958 DOI: 10.1007/s00414-011-0567-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
The study investigated the expression of monoacylglycerol lipase (MGL) during the skin-incised wound healing in mice and applicability of the time-dependent expression of MGL to wound age determination by immunofluorescent staining, Western blotting, and real-time PCR. Furthermore, cell types were identified by double immunofluorescence. A total of 45 BALB/c male mice were used in this study. After a 1.5-cm-long incision in the central dorsum skin, mice were killed at intervals ranging from 6 h to 14 days, followed by the sampling of wound margin. In the control, there was a low-level expression of MGL in the epidermis, hair follicles, and glandulae sebaceae. In the injured skin, MGL immunoreactivity was mainly detected in the neutrophils, macrophages, and myofibroblasts. Morphometrically, the average ratios of MGL-positive cells were more than 50% at 5 and 7 days post-wounding, whereas it was <50% at the other posttraumatic intervals. By Western blotting analysis, the average ratio of MGL protein expression was highest at 5 days after injury, which had a ratio of >2.30. Similarly, the relative quantity of MGL mRNA expression maximized at posttraumatic 5 days in comparison with control as detected by real-time PCR, with an average ratio of >2.54. In conclusion, MGL expression is detected in neutrophils, macrophages, and myofibroblasts and significantly up-regulated, suggesting that it may play roles in response to inflammation during skin-incised wound healing. From the viewpoint of forensic pathology, MGL detection is applicable to skin wound age determination.
Collapse
Affiliation(s)
- Wen-Xiang Ma
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.92, Beier Road, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maeda H, Zhu BL, Ishikawa T, Michiue T. Forensic molecular pathology of violent deaths. Forensic Sci Int 2010; 203:83-92. [DOI: 10.1016/j.forsciint.2010.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Cecchi R. Estimating wound age: looking into the future. Int J Legal Med 2010; 124:523-36. [DOI: 10.1007/s00414-010-0505-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
|
29
|
Yu TS, Cheng ZH, Li LQ, Zhao R, Fan YY, Du Y, Ma WX, Guan DW. The cannabinoid receptor type 2 is time-dependently expressed during skeletal muscle wound healing in rats. Int J Legal Med 2010; 124:397-404. [PMID: 20535492 DOI: 10.1007/s00414-010-0465-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/29/2010] [Indexed: 01/06/2023]
Abstract
The expression of the cannabinoid receptor type 2 (CB2R) was investigated by immunohistochemistry, Western blotting, and RT-PCR during wound healing of contused skeletal muscle in rats with attempt of its applicability to skeletal muscle wound age estimation. Furthermore, Macrophage Marker (MAC387) was utilized to identify macrophages recruited into injured skeletal muscle tissue. Co-localization of CB2R with Macrophage Marker was detected by confocal laser scanning microscopy. A total of 50 Sprague-Dawley male rats were divided into control and contusion groups (3 h, 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, and 14 days post-injury). In the uninjured controls, immunoreactivity of CB2R was detected in the sarcolemma and sarcoplasm of normal myofibers. In the contusion groups, a few polymorphonulcear cells, a large number of macrophages, and spindle-shaped fibroblastic cells showed a positive staining for CB2R in wounded zones. By Western blotting analysis, the average of CB2R to GAPDH ratios in 5-7 days post-injury groups was highest, and all the samples had ratios of >2.60. In the other groups, no samples showed ratios of >2.60 and the CB2R to GAPDH ratios ranged from 1.19 to 2.59. The expression tendency was also confirmed by RT-PCR. From the viewpoint of forensic pathology, these observations suggested that the ratio markedly exceeding 2.60 strongly indicated a wound age of 5-7 days. In conclusion, dynamic distribution and expression of CB2R suggest that CB2R be involved in modulating macrophages in response to inflammatory event in rat skeletal muscle wound healing and CB2R be available as a marker for wound age determination.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Forensic Pathology
- Macrophages/metabolism
- Male
- Microscopy, Confocal
- Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Smooth, Vascular/metabolism
- Neutrophils/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Staining and Labeling
- Time Factors
- Wound Healing/physiology
Collapse
Affiliation(s)
- Tian-Shui Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.92, Beier Road, Heping District, Shengyang, Liaoning Province, 110001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|