1
|
Arslan Z. Microchimerism: The mystery of multiple DNA and its implications in forensic sciences. Forensic Sci Int 2025; 367:112345. [PMID: 39675234 DOI: 10.1016/j.forsciint.2024.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Microchimerism (MC) refers to the presence of small amounts of foreign cells or DNA in the tissues or circulation of an individual. It generally occurs through mother-fetus interaction, twin pregnancies, and intergenerational transmission. MC is influenced by genetic and environmental factors such as toxic conditions, immunological suppression, and various diseases (influenza, COVID-19, etc.). Progenitor cells transferred from the fetus to the mother through fetal MC are known to differentiate into neurons in the maternal brain. Although the relationship between these cells and the brain is not fully understood, it is thought that they may play a role in the emergence of some mental illnesses. The long-term presence of microchimeric cells in the body by differentiating into various cell types such as the brain, heart, bone, liver, and lung can lead to the presence of two or more DNA sets in an individual. This can lead to confusion in forensic identification and sex determination processes. This review aims to provide a comprehensive review of the definition, transmission pathways, detection duration in the human body, associated diseases, analytical detection techniques, and the importance of MC in forensic sciences. In this context, it is aimed to draw attention to the potential dangers of MC and contribute to the justice system. Furthermore, this study emphasizes the need for scientific research on this topic by creating a starting point for future research in the field of MC.
Collapse
Affiliation(s)
- Zeynep Arslan
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
2
|
Wang J, Fu G, Wang Q, Ma G, Wang Z, Lu C, Fu L, Zhang X, Cong B, Li S. Differences of circular RNA expression profiles between monozygotic twins' blood, with the forensic application in bloodstain and saliva. Forensic Sci Int Genet 2024; 69:103001. [PMID: 38150775 DOI: 10.1016/j.fsigen.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Monozygotic twins (MZTs) possess identical genomic DNA sequences and are usually indistinguishable through routine forensic DNA typing methods, which can be relevant in criminal and paternity cases. Recently, novel epigenetic methods involving DNA methylation and microRNA analysis have been introduced to differentiate MZTs. In this study, we explore the potential of using epigenetic markers, specifically circular RNAs (circRNAs), a type of non-coding RNA (ncRNA), to identify MZTs, and investigate the unique expression patterns of circRNAs within pairs of MZTs, enabling effective differentiation. Epigenetics regulates gene expression at the post-transcriptional level and plays a crucial role in cell growth and aging. CircRNAs, a recently characterized subclass of ncRNA, have a distinct covalent loop structure without the typical 5' cap or 3' tail. They have been reported to modulate various cellular processes and play roles in embryogenesis and eukaryotic development. To achieve this, we conducted a comprehensive circRNA sequencing analysis (circRNA-seq) using total RNA extracted from the blood samples of five pairs of MZTs. We identified a total of 15,257 circRNAs in all MZTs using circRNA-seq. Among them, 3, 21, 338, and 2967 differentially expressed circRNAs (DEcircRNAs) were shared among five, four, three, and two pairs of MZTs, respectively. Subsequently, we validated twelve selected DEcircRNAs using real-time quantitative polymerase chain reaction (RT-qPCR) assays, which included hsa_circ_0004724, hsa_circ_0054196, hsa_circ_004964, hsa_circ_0000591, hsa_circ_0005077, hsa_circ_0054853, hsa_circ_0054716, hsa_circ_0002302, hsa_circ_0004482, hsa_circ_0001103, novel_circ_0030288 and novel_circ_0056831. Among them, hsa_circ_0005077 and hsa_circ_0004482 exhibited the best performance, showing differences in 7 out of 10 pairs of MZTs. These twelve differentially expressed circRNAs also demonstrated strong discriminative power when tested on saliva samples from 10 pairs of MZTs. Notably, hsa_circ_0004724 displayed differential expression in 8 out of 10 pairs of MZTs in their saliva. Additionally, we evaluated the detection sensitivity, longitudinal temporal stability, and suitability for aged bloodstains of these twelve DEcircRNAs in forensic scenarios. Our findings highlight the potential of circRNAs as molecular markers for distinguishing MZTs, emphasizing their suitability for forensic application.
Collapse
Affiliation(s)
- Junyan Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Guangping Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Zhonghua Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
3
|
Huang Y, Xiao Y, Qu S, Xue J, Zhang L, Wang L, Liang W. Development of a coding SNP panel for tracking the origin of whole-exome sequencing samples. BMC Genomics 2024; 25:142. [PMID: 38317084 PMCID: PMC10840194 DOI: 10.1186/s12864-024-10052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Whole-exome sequencing (WES) is widely used to diagnose complex genetic diseases and rare conditions. The implementation of a robust and effective quality control system for sample identification and tracking throughout the WES process is essential. We established a multiplex panel that included 22 coding single-nucleotide polymorphism (cSNP) loci. The personal identification and paternity identification abilities of the panel were evaluated, and a preliminary validation of the practical feasibility of the panel was conducted in a clinical WES case. These results indicate that the cSNP panel could be a useful tool for sample tracking in WES.
Collapse
Affiliation(s)
- Yong Huang
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, P.R. China
| | - Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiaming Xue
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Lin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, P.R. China
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Li Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, P.R. China.
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
4
|
Development of 79 SNP markers to individually genotype and sex-type endangered mountain gorillas (Gorilla beringei beringei). CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01217-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe mountain gorilla (Gorilla beringei beringei) is one of two endangered subspecies of eastern gorilla. The principle approach to monitoring the two extant mountain gorilla populations has been to use fecal surveys to obtain DNA profiles for individuals that are then used for capture-recapture-based estimates of abundance. To date, 11 to 14 microsatellites have been used for this purpose. To adapt to ongoing changes in genotyping technologies and to facilitate the analysis of fecal DNA samples by multiple laboratories, we developed a panel of single nucleotide polymorphism (SNP) markers that can be used for future gorilla monitoring. We used published short read data sets for 3 individuals to develop a suite of 79 SNPs, including two sex markers, for a Fluidigm platform. This marker set provided high resolution to differentiate individuals and will facilitate future monitoring, leaving room for additional SNPs to be included in a 96-assay format.
Collapse
|
5
|
Bae S, Won S, Kim H. Selection and evaluation of bi-allelic autosomal SNP markers for paternity testing in Koreans. Int J Legal Med 2021; 135:1369-1374. [PMID: 33907870 PMCID: PMC8205914 DOI: 10.1007/s00414-020-02495-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Due to the advantages of single-nucleotide polymorphisms (SNPs) in forensic science, many forensic SNP panels have been developed. However, the existing SNP panels have a problem that they do not reflect allele frequencies in Koreans or the number of markers is not sufficient to perform paternity testing. Here, we filtered candidate SNPs from the Ansan-Ansung cohort data and selected 200 SNPs with high allele frequencies. To reduce the risk of false inclusion and false exclusion, we calculated likelihood ratios of alleged father-child pairs from simulated families when the alleged father is the true father, the close relative of the true father, and the random man. As a result, we estimated that 160 SNPs were needed to perform paternity testing. Furthermore, we performed validation using Twin-Family cohort data. When 160 selected SNPs were used to calculate the likelihood ratio, paternity and non-paternity were accurately distinguished. Our set of 160 SNPs could be useful for paternity testing in Koreans.
Collapse
Affiliation(s)
- Soyeon Bae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc., Seoul, Republic of Korea.
| |
Collapse
|
6
|
Dash HR, Rawat N, Das S. Alternatives to amelogenin markers for sex determination in humans and their forensic relevance. Mol Biol Rep 2020; 47:2347-2360. [DOI: 10.1007/s11033-020-05268-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
|
7
|
Habibi S, Ahmadi A, Behmanesh M, Miri A, Tavallaie M. Evaluation of ten SNP Markers for Human Identification and Paternity Analysis in Persian Population. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2148. [PMID: 32195283 PMCID: PMC7080969 DOI: 10.29252/ijb.2148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: DNA markers are inevitable tools of human identification in forensic science. Single Nucleotide Polymorphisms (SNPs) are one category of these markers
which is concerned to use especially in the case of degraded DNA because of their short amplicons. Objectives: Detection of highly informative SNPs by the criteria is the essential step to develop a useful panel of SNP markers. The purpose of this work is to get high
informative SNPs for human identification in Persian ethnic of the Iranian population. Material and Methods: Genotype and allele frequencies of 10 SNPs from the SNPforID browser were determined by a PCR-RFLP method on 100 samples that was taken from 100 unrelated Persian people. Results: These ten SNPs were in Hardy-Weinberg equilibrium (P value > 0.1) except rs1355366 (P value = 0.02) and Heterozygosity of seven SNPs is greater
than 0.45 but minor allele frequency of only four SNPs is more than 0.45. According to criteria only three SNPs rs1454361, rs2111980 and rs2107612 can pass
all standards and are highly informative in population for forensic uses. Conclusions: Our data showed that the CPI (Combined probability of Identity) and CPE (Combined Power of Exclusion) for ten SNPs are 1.13 E-04 and 0.809 respectively.
It was also showed based on the criteria only three SNPs (rs2107612, rs1454361 and rs2111980) are highly informative in Persian population.
If we can find 39 SNPs with PE and PI close to PE and PI of these three SNPs (rs2107612, rs1454361 and rs2111980), we will be able to use of these 39 SNPs
in human identification with sufficient power of discrimination.
Collapse
Affiliation(s)
- Sajad Habibi
- Human Genetic Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Genetics, Faculty of Sciences, Persian Gulf University, Bushehr, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Miri
- Human Genetic Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chu F, Mason KE, Anex DS, Jones AD, Hart BR. Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification. Sci Rep 2019; 9:7641. [PMID: 31113963 PMCID: PMC6529471 DOI: 10.1038/s41598-019-44007-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
Human hair contains minimal intact nuclear DNA for human identification in forensic and archaeological applications. In contrast, proteins offer a pathway to exploit hair evidence for human identification owing to their persistence, abundance, and derivation from DNA. Individualizing single nucleotide polymorphisms (SNPs) are often conserved as single amino acid polymorphisms in genetically variant peptides (GVPs). Detection of GVP markers in the hair proteome via high-resolution tandem mass spectrometry permits inference of SNPs with known statistical probabilities. To adopt this approach for forensic investigations, hair proteomic variation and its effects on GVP identification must first be characterized. This research aimed to assess variation in single-inch head, arm, and pubic hair, and discover body location-invariant GVP markers to distinguish individuals. Comparison of protein profiles revealed greater body location-specific variation in keratin-associated proteins and intracellular proteins, allowing body location differentiation. However, robust GVP markers derive primarily from keratins that do not exhibit body location-specific differential expression, supporting GVP identification independence from hair proteomic variation at the various body locations. Further, pairwise comparisons of GVP profiles with 8 SNPs demonstrated greatest interindividual variation and high intraindividual consistency, enabling similar differentiative potential of individuals using single hairs irrespective of body location origin.
Collapse
Affiliation(s)
- Fanny Chu
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.,Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Katelyn E Mason
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Deon S Anex
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Bradley R Hart
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| |
Collapse
|
9
|
Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F. Trends in plant research using molecular markers. PLANTA 2018; 247:543-557. [PMID: 29243155 DOI: 10.1007/s00425-017-2829-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 05/21/2023]
Abstract
A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.
Collapse
|
10
|
Yousefi S, Abbassi-Daloii T, Kraaijenbrink T, Vermaat M, Mei H, van 't Hof P, van Iterson M, Zhernakova DV, Claringbould A, Franke L, 't Hart LM, Slieker RC, van der Heijden A, de Knijff P, 't Hoen PAC. A SNP panel for identification of DNA and RNA specimens. BMC Genomics 2018; 19:90. [PMID: 29370748 PMCID: PMC5785835 DOI: 10.1186/s12864-018-4482-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SNP panels that uniquely identify an individual are useful for genetic and forensic research. Previously recommended SNP panels are based on DNA profiles and mostly contain intragenic SNPs. With the increasing interest in RNA expression profiles, we aimed for establishing a SNP panel for both DNA and RNA-based genotyping. RESULTS To determine a small set of SNPs with maximally discriminative power, genotype calls were obtained from DNA and blood-derived RNA sequencing data belonging to healthy, geographically dispersed, Dutch individuals. SNPs were selected based on different criteria like genotype call rate, minor allele frequency, Hardy-Weinberg equilibrium and linkage disequilibrium. A panel of 50 SNPs was sufficient to identify an individual uniquely: the probability of identity was 6.9 × 10- 20 when assuming no family relations and 1.2 × 10- 10 when accounting for the presence of full sibs. The ability of the SNP panel to uniquely identify individuals on DNA and RNA level was validated in an independent population dataset. The panel is applicable to individuals from European descent, with slightly lower power in non-Europeans. Whereas most of the genes containing the 50 SNPs are expressed in various tissues, our SNP panel needs optimization for other tissues than blood. CONCLUSIONS This first DNA/RNA SNP panel will be useful to identify sample mix-ups in biomedical research and for assigning DNA and RNA stains in crime scenes to unique individuals.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Tooba Abbassi-Daloii
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Thirsa Kraaijenbrink
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter van 't Hof
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten van Iterson
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Annique Claringbould
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen M 't Hart
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands.,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Amber van der Heijden
- Department of Epidemiology and Biostatistics, VU Medical Center, Amsterdam, The Netherlands.,Department of General Practice and Elderly Care Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Du Y, Martin JS, McGee J, Yang Y, Liu EY, Sun Y, Geihs M, Kong X, Zhou EL, Li Y, Huang J. A SNP panel and online tool for checking genotype concordance through comparing QR codes. PLoS One 2017; 12:e0182438. [PMID: 28926565 PMCID: PMC5604942 DOI: 10.1371/journal.pone.0182438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (forQR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.
Collapse
Affiliation(s)
- Yonghong Du
- School of Statistics, Beijing Normal University, Beijing, China
| | - Joshua S. Martin
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John McGee
- NC Translational and Clinical Sciences Institute, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yuchen Yang
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric Yi Liu
- Department of Computer Science, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yingrui Sun
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Matthias Geihs
- Department of Computer Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - Xuejun Kong
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Eric Lingfeng Zhou
- Department of Biostatistics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yun Li
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (YL); (JH)
| | - Jie Huang
- Boston VA Research Institute, Boston, Massachusetts, United States of America
- Brigham Women’s Hospital Division of Aging, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (YL); (JH)
| |
Collapse
|
12
|
Lee JE, Kwon D, Lee M, Kim YY. Sample Identification Capacity of 20 Single Nucleotide Polymorphisms in Blood-Derived Genomic DNA Samples of Korean Individuals. Biopreserv Biobank 2017; 15:548-550. [PMID: 28915363 DOI: 10.1089/bio.2017.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jae-Eun Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| | - Donghyok Kwon
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| | - Meehee Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| | - Young-Youl Kim
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| |
Collapse
|
13
|
Lim S, Youn JP, Hong S, Choi D, Moon S, Kim W, Han M, Hwang SY. Customized multiplexing SNP panel for Korean-specific DNA phenotyping in forensic applications. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lee H, Park YM, We YM, Han DJ, Seo JW, Moon H, Lee YH, Kim YG, Moon JY, Lee SH, Lee JK. Evaluation of Digital PCR as a Technique for Monitoring Acute Rejection in Kidney Transplantation. Genomics Inform 2017; 15:2-10. [PMID: 28416944 PMCID: PMC5389945 DOI: 10.5808/gi.2017.15.1.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
Early detection and proper management of kidney rejection are crucial for the long-term health of a transplant recipient. Recipients are normally monitored by serum creatinine measurement and sometimes with graft biopsies. Donor-derived cell-free deoxyribonucleic acid (cfDNA) in the recipient's plasma and/or urine may be a better indicator of acute rejection. We evaluated digital PCR (dPCR) as a system for monitoring graft status using single nucleotide polymorphism (SNP)-based detection of donor DNA in plasma or urine. We compared the detection abilities of the QX200, RainDrop, and QuantStudio 3D dPCR systems. The QX200 was the most accurate and sensitive. Plasma and/or urine samples were isolated from 34 kidney recipients at multiple time points after transplantation, and analyzed by dPCR using the QX200. We found that donor DNA was almost undetectable in plasma DNA samples, whereas a high percentage of donor DNA was measured in urine DNA samples, indicating that urine is a good source of cfDNA for patient monitoring. We found that at least 24% of the highly polymorphic SNPs used to identify individuals could also identify donor cfDNA in transplant patient samples. Our results further showed that autosomal, sex-specific, and mitochondrial SNPs were suitable markers for identifying donor cfDNA. Finally, we found that donor-derived cfDNA measurement by dPCR was not sufficient to predict a patient's clinical condition. Our results indicate that donor-derived cfDNA is not an accurate predictor of kidney status in kidney transplant patients.
Collapse
Affiliation(s)
- Hyeseon Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Mi Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yu-Mee We
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duck Jong Han
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Woo Seo
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Haena Moon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Yu-Ho Lee
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Yang-Gyun Kim
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Ju-Young Moon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Jong-Keuk Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
15
|
Lee HJ, Lee JW, Jeong SJ, Park M. How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications? Int J Legal Med 2017; 131:1203-1210. [DOI: 10.1007/s00414-017-1564-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
|
16
|
Liu Y, Liao H, Liu Y, Guo J, Sun Y, Fu X, Xiao D, Cai J, Lan L, Xie P, Zha L. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China. Electrophoresis 2017; 38:1154-1162. [PMID: 28168762 DOI: 10.1002/elps.201600379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Yanfang Liu
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Huidan Liao
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Ying Liu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital; Central South University; Changsha P.R. China
| | - Juanjuan Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital; Central South University; Changsha P.R. China
| | - Yi Sun
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Xiaoliang Fu
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Ding Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital; Central South University; Changsha P.R. China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Lingmei Lan
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Pingli Xie
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences; Central South University; Changsha P.R. China
| |
Collapse
|
17
|
Parker GJ, Leppert T, Anex DS, Hilmer JK, Matsunami N, Baird L, Stevens J, Parsawar K, Durbin-Johnson BP, Rocke DM, Nelson C, Fairbanks DJ, Wilson AS, Rice RH, Woodward SR, Bothner B, Hart BR, Leppert M. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. PLoS One 2016; 11:e0160653. [PMID: 27603779 PMCID: PMC5014411 DOI: 10.1371/journal.pone.0160653] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/21/2016] [Indexed: 12/28/2022] Open
Abstract
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects' DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European-American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.
Collapse
Affiliation(s)
- Glendon J. Parker
- Department of Biology, Utah Valley University, Orem, Utah, United States of America
- Protein-Based Identification Technologies L.L.C., Orem, Utah, United States of America
- * E-mail: parker64@llnl;
| | - Tami Leppert
- Protein-Based Identification Technologies L.L.C., Orem, Utah, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Deon S. Anex
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Jonathan K. Hilmer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Nori Matsunami
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Jeffery Stevens
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Krishna Parsawar
- Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, Utah, United States of America
| | - Blythe P. Durbin-Johnson
- Department of Public Health Sciences, University of California, Davis, California, United States of America
| | - David M. Rocke
- Department of Public Health Sciences, University of California, Davis, California, United States of America
| | - Chad Nelson
- Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel J. Fairbanks
- Department of Biology, Utah Valley University, Orem, Utah, United States of America
| | - Andrew S. Wilson
- School of Archaeological Sciences, University of Bradford, Bradford, United Kingdom
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Scott R. Woodward
- Sorenson Molecular Genealogical Foundation, Salt Lake City, Utah, United States of America
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Bradley R. Hart
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Mark Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
18
|
Madel MB, Niederstätter H, Parson W. TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts. Forensic Sci Int Genet 2016; 25:166-174. [PMID: 27613970 DOI: 10.1016/j.fsigen.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
Abstract
Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research.
Collapse
Affiliation(s)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
19
|
A Genome-Wide Scan of DNA Methylation Markers for Distinguishing Monozygotic Twins. Twin Res Hum Genet 2015; 18:670-9. [PMID: 26500037 DOI: 10.1017/thg.2015.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identification of individuals within pairs of monozygotic (MZ) twins remains unresolved using common forensic DNA typing technology. For some criminal cases involving MZ twins as suspects, the twins had to be released due to inability to identify which of the pair was the perpetrator. In this study, we performed a genome-wide scan on whole blood-derived DNA from four pairs of healthy phenotypically concordant MZ twins using the methylated DNA immunoprecipitation sequencing technology to identify candidate DNA methylation markers with capacity to distinguish MZ twins within a pair. We identified 38 differential methylation regions showing within-pair methylation differences in all four MZ pairs. These are all located in CpG islands, 17 of which are promoter-associated, 17 are intergenic islands, and four are intragenic islands. Genes associated with these markers are related with cell proliferation, differentiation, and growth and development, including zinc finger proteins, PRRX2, RBBP9, or are involved in G-protein signaling, such as the regulator of G-protein signaling 16. Further validation studies on additional MZ twins are now required to evaluate the broader utility of these 38 markers for forensic use.
Collapse
|
20
|
Genotyping of 75 SNPs using arrays for individual identification in five population groups. Int J Legal Med 2015; 130:81-9. [DOI: 10.1007/s00414-015-1250-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
21
|
Widdig A, Kessler MJ, Bercovitch FB, Berard JD, Duggleby C, Nürnberg P, Rawlins RG, Sauermann U, Wang Q, Krawczak M, Schmidtke J. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am J Primatol 2015; 78:44-62. [PMID: 26031601 DOI: 10.1002/ajp.22424] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/17/2023]
Abstract
Genetic studies not only contribute substantially to our current understanding of the natural variation in behavior and health in many species, they also provide the basis of numerous in vivo models of human traits. Despite the many challenges posed by the high level of biological and social complexity, a long lifespan and difficult access in the field, genetic studies of primates are particularly rewarding because of the close evolutionary relatedness of these species to humans. The free-ranging rhesus macaque (Macaca mulatta) population on Cayo Santiago (CS), Puerto Rico, provides a unique resource in this respect because several of the abovementioned caveats are of either minor importance there, or lacking altogether, thereby allowing long-term genetic research in a primate population under constant surveillance since 1956. This review summarizes more than 40 years of genetic research carried out on CS, from early blood group typing and the genetic characterization of skeletal material via population-wide paternity testing with DNA fingerprints and short tandem repeats (STRs) to the analysis of the highly polymorphic DQB1 locus within the major histocompatibility complex (MHC). The results of the paternity studies also facilitated subsequent studies of male dominance and other factors influencing male reproductive success, of male reproductive skew, paternal kin bias, and mechanisms of paternal kin recognition. More recently, the CS macaques have been the subjects of functional genetic and gene expression analyses and have played an important role in behavioral and quantitative genetic studies. In addition, the CS colony has been used as a natural model for human adult-onset macular degeneration, glaucoma, and circadian rhythm disorder. Our review finishes off with a discussion of potential future directions of research on CS, including the transition from STRs to single nucleotide polymorphism (SNP) typing and whole genome sequencing.
Collapse
Affiliation(s)
- Anja Widdig
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Leipzig, Germany.,Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Matthew J Kessler
- Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico.,Division of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Fred B Bercovitch
- Primate Research Institute & Wildlife Research Center, Kyoto University, Inuyama, Aichi, Japan
| | - John D Berard
- Department of Veterans Affairs, Greater Los Angeles Health Care System, North Hills, California
| | - Christine Duggleby
- Department of Anthropology, State University of New York at Buffalo, Buffalo, New York
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Köln, Germany
| | - Richard G Rawlins
- Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Texas
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jörg Schmidtke
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Evaluating information content of SNPs for sample-tagging in re-sequencing projects. Sci Rep 2015; 5:10247. [PMID: 25975447 PMCID: PMC4432563 DOI: 10.1038/srep10247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
Sample-tagging is designed for identification of accidental sample mix-up, which is a major issue in re-sequencing studies. In this work, we develop a model to measure the information content of SNPs, so that we can optimize a panel of SNPs that approach the maximal information for discrimination. The analysis shows that as low as 60 optimized SNPs can differentiate the individuals in a population as large as the present world, and only 30 optimized SNPs are in practice sufficient in labeling up to 100 thousand individuals. In the simulated populations of 100 thousand individuals, the average Hamming distances, generated by the optimized set of 30 SNPs are larger than 18, and the duality frequency, is lower than 1 in 10 thousand. This strategy of sample discrimination is proved robust in large sample size and different datasets. The optimized sets of SNPs are designed for Whole Exome Sequencing, and a program is provided for SNP selection, allowing for customized SNP numbers and interested genes. The sample-tagging plan based on this framework will improve re-sequencing projects in terms of reliability and cost-effectiveness.
Collapse
|
23
|
Canturk KM, Emre R, Kınoglu K, Başpınar B, Sahin F, Ozen M. Current status of the use of single-nucleotide polymorphisms in forensic practices. Genet Test Mol Biomarkers 2014; 18:455-60. [PMID: 24754266 DOI: 10.1089/gtmb.2013.0466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Forensic geneticists often use short tandem repeats (STRs) to solve cases. However, STRs can be insufficient when DNA samples are degraded due to environmental exposure and mass disasters, alleged and real relatives are genetically related in paternity or kinship analyses, or a suspect is lacking. In such cases, single-nucleotide polymorphisms (SNPs) can provide valuable information and thus should be seriously considered as a tool to help resolve challenging cases. In this review, the current status of SNP analyses in forensic applications and the comparative advantages and disadvantages of SNPs with other biomarkers are discussed.
Collapse
|
24
|
Weissensteiner H, Haun M, Schönherr S, Neuner M, Forer L, Specht G, Kloss-Brandstätter A, Kronenberg F, Coassin S. SNPflow: a lightweight application for the processing, storing and automatic quality checking of genotyping assays. PLoS One 2013; 8:e59508. [PMID: 23527209 PMCID: PMC3602247 DOI: 10.1371/journal.pone.0059508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at.
Collapse
Affiliation(s)
- Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Margot Haun
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Mathias Neuner
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Günther Specht
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Anita Kloss-Brandstätter
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| | - Stefan Coassin
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
25
|
Wei YL, Li CX, Jia J, Hu L, Liu Y. Forensic identification using a multiplex assay of 47 SNPs. J Forensic Sci 2012; 57:1448-56. [PMID: 22537537 DOI: 10.1111/j.1556-4029.2012.02154.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a powerful alternative to short tandem repeat (STR) profiling, we have developed a novel panel of 47 single nucleotide polymorphisms (SNPs) for DNA profiling and ABO genotyping. We selected 42 of the 47 SNPs from a panel of 86 markers that were previously validated as universal individual identification markers and identified five additional SNPs including one gender marker and four ABO loci. Match probability of the 42 validated SNPs was found to be 9.5 × 10(-18) in Han Chinese. SNP analysis correctly assessed a panel of historical cases, including both paternity identifications in trios and individual identifications. In addition, while STR profiling of degraded DNA provided information for 11 loci of 16 potential markers with low peak intensities, SNPstream(®) genotyping was sufficient to identify all 47 SNPs. In summary, SNP analysis is equally effective as STR profiling, but appears more suited for individual identification than STR profiling in cases where DNA may be degraded.
Collapse
Affiliation(s)
- Yi-Liang Wei
- Key Laboratory of Ministry of Public Health for Forensic Science, Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | |
Collapse
|
26
|
Exploring of tri-allelic SNPs using Pyrosequencing and the SNaPshot methods for forensic application. Electrophoresis 2012; 33:841-8. [DOI: 10.1002/elps.201100508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Zha L, Yun L, Chen P, Luo H, Yan J, Hou Y. Exploring of tri-allelic SNPs using Pyrosequencing and the SNaPshot methods for forensic application. Electrophoresis 2012. [DOI: 10.1002/elps.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lagabaiyila Zha
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Libing Yun
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Pengyu Chen
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Haibo Luo
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Jing Yan
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| | - Yiping Hou
- Department of Forensic Genetics, School of Basic Science and Forensic Medicine; Sichuan University; Chengdu; P. R. China
| |
Collapse
|
28
|
DNA Profiling and forensic dentistry – A review of the recent concepts and trends. J Forensic Leg Med 2011; 18:191-7. [DOI: 10.1016/j.jflm.2011.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/20/2011] [Indexed: 01/29/2023]
|
29
|
Affiliation(s)
- T. A. Brettell
- Department of Chemical and Physical Sciences, Cedar Crest College, 100 College Drive, Allentown, Pennsylvania 18104-6196, United States
| | - J. M. Butler
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8312, United States
| | - J. R. Almirall
- Department of Chemistry and Biochemistry and International Forensic Research Institute, Florida International University, University Park, Miami, Florida 33199, United States
| |
Collapse
|
30
|
Giardina E, Spinella A, Novelli G. Past, present and future of forensic DNA typing. Nanomedicine (Lond) 2011; 6:257-70. [DOI: 10.2217/nnm.10.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances in our ability to dissect the human genome and the availability of platforms for genome-wide analysis and whole-genome sequencing are expected to develop new tools for both biomedical and forensic DNA analyses. Nowadays, we can individualize single cells left at the crime scene or analyze ancient human remains. Here, we provide a general view on the past, current and likely future directions of forensic DNA analysis.
Collapse
Affiliation(s)
| | - Aldo Spinella
- Direzione Centrale Anticrimine, Servizio di Polizia Scientifica, Rome, Italy
| | - Giuseppe Novelli
- Centre of Excellence for Genomic Risk Assessment in Multifactorial & Complex Diseases, School of Medicine, University of Rome Tor Vergata, Via Montpellier, 1–00133 Rome, Italy
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
31
|
Superimposition technique for skull identification with Afloat® software. Int J Legal Med 2010; 124:471-5. [DOI: 10.1007/s00414-010-0494-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
|