1
|
Terrado-Ortuño N, May P. Forensic DNA phenotyping: a review on SNP panels, genotyping techniques, and prediction models. Forensic Sci Res 2025; 10:owae013. [PMID: 39990695 PMCID: PMC11843099 DOI: 10.1093/fsr/owae013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2025] Open
Abstract
In the past few years, forensic DNA phenotyping has attracted a strong interest in the forensic research. Among the increasing publications, many have focused on testing the available panels to infer biogeographical ancestry on less represented populations and understanding the genetic mechanisms underlying externally visible characteristics. However, there are currently no publications that gather all the existing panels limited to forensic DNA phenotyping and discuss the main technical limitations of the technique. In this review, we performed a bibliographic search in Scopus database of phenotyping-related literature, which resulted in a total of 48, 43, and 15 panels for biogeographical ancestry, externally visible characteristics, and both traits inference, respectively. Here we provide a list of commercial and non-commercial panels and the limitations regarding the lack of harmonization in terms of terminology (i.e., categorization and measurement of traits) and reporting, the lack of genetic knowledge and environment influence to select markers and develop panels, and the debate surrounding the selection of genotyping technologies and prediction models and algorithms. In conclusion, this review aims to be an updated guide and to present an overview of the current related literature.
Collapse
Affiliation(s)
- Nuria Terrado-Ortuño
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Becher D, Jmel H, Kheriji N, Sarno S, Kefi R. Genetic landscape of forensic DNA phenotyping markers among Mediterranean populations. Forensic Sci Int 2024; 354:111906. [PMID: 38128201 DOI: 10.1016/j.forsciint.2023.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Forensic DNA Phenotyping can reveal the appearance of an unknown individual by predicting the External Visible Characteristics (EVC) from DNA obtained at the crime scene. Our aim is to characterize the genetic landscape of Human identification markers responsible for EVC among Mediterranean populations compared to other worldwide groups. We conducted an exhaustive search for genes involved in EVC variation. Then, variants located on these genes were extracted from public genotypic data of Mediterranean, American, African and East Asiatic populations. The genetic landscape of these Human identification markers, their allelic distribution and admixture analyses, were determined using plink, R and ADMIXTURE softwares. Our results showed that the Mediterranean populations appear close to the Mexican populations and distinguished from sub Saharan African populations living in the USA and from East Asiatic populations. We highlighted a total of 103454 common variants shared between the studied populations and among them, 25 common variants associated with EVC. Interestingly, genotype frequencies results showed that the rs17646946, rs13016869, rs977588, rs1805008 and rs2240751 variants located respectively in the TCHH, PRKCE, OCA2, MC1R and MFSD12 genes are significantly different between the Mediterranean and Asiatic populations. The genotype frequencies of the variants rs977589 and rs7179994 located in the OCA2 gene, and of rs12913832 and rs2240751 located respectively in HERC2 and MFSD12 genes are significantly different between the Mediterranean and American populations. Our work generates a large number of EVC variants that could be a valuable resource for future studies in the forensic field.
Collapse
Affiliation(s)
- Dorra Becher
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Directorate of Technical and Scientific Police, Sub-Directorate of Forensic and Scientific Laboratories, Tunis,Tunisia; University of Carthage, National Institute of Applied Science and Technology, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia.
| |
Collapse
|
3
|
Jawad M, Adnan A, Rehman RA, Nazir S, Adeyemo OA, Amer SAM, Hadi S, Liu F, Wang CC, Rakha A. Evaluation of facial hair-associated SNPs: a pilot study on male Pakistani Punjabi population. Forensic Sci Med Pathol 2023; 19:293-302. [PMID: 35994154 DOI: 10.1007/s12024-022-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Variation in facial hair is one of the most conspicuous features of facial appearance, particularly in South Asia and Middle East countries. A genome-wide association study in Latin Americans has identified multiple genetic variants at distinct loci being associated with facial hair traits including eyebrow thickness, beard thickness, and monobrow. In this pilot study, we have evaluated 16 SNPs associated with facial hair traits in 58 male individuals from the Punjabi population of Pakistan. In our sample, rs365060 in EDAR and rs12597422 in FTO showed significant association with monobrow, rs6684877 in MACF1 showed significant association with eyebrow thickness, and two SNPs in LOC105379031 (rs9654415 and rs7702331) showed significant association with beard thickness. Our results also suggest that genetic association may vary between ethnic groups and geographic regions. Although more data are needed to validate our results, our findings are of value in forensic molecular photofitting research in Pakistan.
Collapse
Affiliation(s)
- Muhammad Jawad
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Atif Adnan
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia.
| | - Rahat Abdul Rehman
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Shahid Nazir
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Oyenike A Adeyemo
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, AkokaLagos, Yaba, Nigeria
| | - S A M Amer
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Fan Liu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Brancato D, Coniglio E, Bruno F, Agostini V, Saccone S, Federico C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes (Basel) 2023; 14:1604. [PMID: 37628655 PMCID: PMC10454093 DOI: 10.3390/genes14081604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction.
Collapse
Affiliation(s)
- Desiree Brancato
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Elvira Coniglio
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Francesca Bruno
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Vincenzo Agostini
- Department Science and Technical Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Salvatore Saccone
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| |
Collapse
|
5
|
Watherston J, McNevin D. Skull and long bones – Forensic DNA techniques for historic shipwreck human remains. AUST J FORENSIC SCI 2023. [DOI: 10.1080/00450618.2023.2181395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- J. Watherston
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Biology Unit, Forensic Science Branch, Nt Police, Fire and Emergency Services, Berrimah, NT, Australia
- College of Health & Human Sciences, Faculty of Science, Charles Darwin University, Casuarina, NT, Australia
| | - D. McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
6
|
Fesenko DO, Ivanovsky ID, Ivanov PL, Zemskova EY, Agapitova AS, Polyakov SA, Fesenko OE, Filippova MA, Zasedatelev AS. A Biochip for Genotyping Polymorphisms Associated with Eye, Hair, Skin Color, AB0 Blood Group, Sex, Y Chromosome Core Haplogroup, and Its Application to Study the Slavic Population. Mol Biol 2022. [DOI: 10.1134/s0026893322050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Urtiaga GO, Domingues WB, Komninou ER, Martins AWS, Blödorn EB, Dellagostin EN, Woloski RDS, Pinto LS, Brum CB, Tovo-Rodrigues L, Campos VF. DNA microarray for forensic intelligence purposes: High-density SNP profiles obtained directly from casework-like samples with and without a DNA purification step. Forensic Sci Int 2022; 332:111181. [PMID: 35042181 DOI: 10.1016/j.forsciint.2022.111181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
SNP analyses from a forensic intelligence perspective have proven to be an important tool to restrict the number of suspected offenders and find missing persons. DNA microarray assays have been demonstrated as a potential feature in forensic analysis, like such as forensic genetic genealogy. The objective of this study was to describe the results from DNA microarray assay from saliva samples deposited on a glass surface collected from by a double swab technique, commonly applied in crime scenes. Eighteen samples from the same person were subjected to Infinium® Global Screening Array-24 v1.0 (~642.824 SNP markers) in two different protocols - with or without the DNA purification procedure. The measured genotype was compared with a Consensus Genotype, obtained from standard control samples, and the parameters such as Call Rate and GenCall Scores were evaluated. Results showed that the Call Rate parameter is enough to estimate the probability of obtaining a correct genotype in the SNP assay. Reliable genotypes with a confidence level of more than 90% (at least 90.15%) were observed in Call Rates above 69.41%, regardless of the experimental condition. Our data demonstrate that DNA Microarray from samples collected under conditions such as those found at crime scenes can generate high-density SNP genetic profiles with a confidence level greater than 90%. Enzymatic adjustments and protocol changes may enable DNA microarray assays for crime analysis and investigation purposes eliminating the purification step in the future. Our data suggest that DNA microarray can support criminal investigation teams from a forensic intelligence perspective.
Collapse
Affiliation(s)
- Gabriel O Urtiaga
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Núcleo de Identificação, Superintendência da Polícia Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo B Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rafael Dos S Woloski
- Laboratório de Bioinformática e Proteômica, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano S Pinto
- Laboratório de Bioinformática e Proteômica, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Clarice B Brum
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciana Tovo-Rodrigues
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
8
|
Cooley AM, Meiklejohn KA, Damaso N, Robertson JM, Dawson Cruz T. Performance Comparison of Massively Parallel Sequencing (MPS) Instruments Using Single-Nucleotide Polymorphism (SNP) Panels for Ancestry. SLAS Technol 2020; 26:103-112. [PMID: 32914686 DOI: 10.1177/2472630320954180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermo Fisher Scientific released the Precision ID Ancestry Panel, a 165-single-nucleotide polymorphism (SNP) panel for ancestry prediction that was initially compatible with the manufacturer's massively parallel sequencer, the Ion Torrent Personal Genome Machine (PGM). The semiautomated workflow using the panel with the PGM involved several time-consuming manual steps across three instruments, including making templating solutions and loading sequencing chips. In 2014, the manufacturer released the Ion Chef robot, followed by the Ion S5 massively parallel sequencer in late 2015. The robot performs the templating with reagent cartridges and loads the chips, thus creating a fully automated workflow across two instruments. The objective of the work reported here is to compare the performance of two massively parallel sequencing systems and ascertain if the change in the workflow produces different ancestry predictions. For performance comparison of the two systems, forensic-type samples (n = 16) were used to make libraries. Libraries were templated either with the Ion OneTouch 2 system (for the PGM) or on the Ion Chef robot (for the S5). Sequencing results indicated that the ion sphere particle performance metrics were similar for the two systems. The total coverages per SNP and SNP quality were both higher for the S5 system. Ancestry predictions were concordant for the mock forensic-type samples sequenced on both massively parallel sequencing systems. The results indicated that automating the workflow with the Ion Chef system reduced the labor involved and increased the sequencing quality.
Collapse
Affiliation(s)
- Ashley M Cooley
- Research Support Unit, Visiting Scientist Program, Federal Bureau of Investigation Laboratory Division, Quantico, VA, USA.,Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kelly A Meiklejohn
- Research Support Unit, Visiting Scientist Program, Federal Bureau of Investigation Laboratory Division, Quantico, VA, USA.,Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Natalie Damaso
- Research Support Unit, Visiting Scientist Program, Federal Bureau of Investigation Laboratory Division, Quantico, VA, USA
| | - James M Robertson
- Research Support Unit, Federal Bureau of Investigation Laboratory Division, Quantico, VA, USA
| | - Tracey Dawson Cruz
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Analysis of 124 SNP loci included in HID Ampliseq identity panel in a small population of Rio de Janeiro, Brazil. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Genetic genealogy for cold case and active investigations. Forensic Sci Int 2019; 299:103-113. [DOI: 10.1016/j.forsciint.2019.03.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
|
11
|
Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Sci Int Genet 2018; 37:270-282. [DOI: 10.1016/j.fsigen.2018.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/14/2023]
|
12
|
Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial Genetics: A Brief Overview. Front Genet 2018; 9:462. [PMID: 30386375 PMCID: PMC6198798 DOI: 10.3389/fgene.2018.00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Historically, craniofacial genetic research has understandably focused on identifying the causes of craniofacial anomalies and it has only been within the last 10 years, that there has been a drive to detail the biological basis of normal-range facial variation. This initiative has been facilitated by the availability of low-cost hi-resolution three-dimensional systems which have the ability to capture the facial details of thousands of individuals quickly and accurately. Simultaneous advances in genotyping technology have enabled the exploration of genetic influences on facial phenotypes, both in the present day and across human history. There are several important reasons for exploring the genetics of normal-range variation in facial morphology. - Disentangling the environmental factors and relative parental biological contributions to heritable traits can help to answer the age-old question "why we look the way that we do?" - Understanding the etiology of craniofacial anomalies; e.g., unaffected family members of individuals with non-syndromic cleft lip/palate (nsCL/P) have been shown to differ in terms of normal-range facial variation to the general population suggesting an etiological link between facial morphology and nsCL/P. - Many factors such as ancestry, sex, eye/hair color as well as distinctive facial features (such as, shape of the chin, cheeks, eyes, forehead, lips, and nose) can be identified or estimated using an individual's genetic data, with potential applications in healthcare and forensics. - Improved understanding of historical selection and adaptation relating to facial phenotypes, for example, skin pigmentation and geographical latitude. - Highlighting what is known about shared facial traits, medical conditions and genes.
Collapse
Affiliation(s)
- Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Laurence J. Howe
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sarah Lewis
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Hysi PG, Valdes AM, Liu F, Furlotte NA, Evans DM, Bataille V, Visconti A, Hemani G, McMahon G, Ring SM, Smith GD, Duffy DL, Zhu G, Gordon SD, Medland SE, Lin BD, Willemsen G, Jan Hottenga J, Vuckovic D, Girotto G, Gandin I, Sala C, Concas MP, Brumat M, Gasparini P, Toniolo D, Cocca M, Robino A, Yazar S, Hewitt AW, Chen Y, Zeng C, Uitterlinden AG, Ikram MA, Hamer MA, van Duijn CM, Nijsten T, Mackey DA, Falchi M, Boomsma DI, Martin NG, Hinds DA, Kayser M, Spector TD. Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability. Nat Genet 2018; 50:652-656. [PMID: 29662168 PMCID: PMC5935237 DOI: 10.1038/s41588-018-0100-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Hair color is one of the most recognizable visual traits in European populations and is under strong genetic control. Here we report the results of a genome-wide association study meta-analysis of almost 300,000 participants of European descent. We identified 123 autosomal and one X-chromosome loci significantly associated with hair color; all but 13 are novel. Collectively, single-nucleotide polymorphisms associated with hair color within these loci explain 34.6% of red hair, 24.8% of blond hair, and 26.1% of black hair heritability in the study populations. These results confirm the polygenic nature of complex phenotypes and improve our understanding of melanin pigment metabolism in humans.
Collapse
Affiliation(s)
- Pirro G Hysi
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK
- Department of Ophthalmology, King's College London, London, UK
| | - Ana M Valdes
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, United Kingdom
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Veronique Bataille
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK
| | - Alessia Visconti
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bochao D Lin
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dragana Vuckovic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ilaria Gandin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Cinzia Sala
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Faffaele Research Institute, Milano, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA, Australia
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Alex W Hewitt
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Yan Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Mario Falchi
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Timothy D Spector
- King's College London Department of Twins Research and Genetic Epidemiology, London, UK.
| |
Collapse
|
14
|
Muro CK, Lednev IK. Race Differentiation Based on Raman Spectroscopy of Semen Traces for Forensic Purposes. Anal Chem 2017; 89:4344-4348. [DOI: 10.1021/acs.analchem.7b00106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Claire K. Muro
- Chemistry Department, University at Albany, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Igor K. Lednev
- Chemistry Department, University at Albany, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
15
|
Muro CK, de Souza Fernandes L, Lednev IK. Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes. Anal Chem 2016; 88:12489-12493. [PMID: 28193029 DOI: 10.1021/acs.analchem.6b03988] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The forensic analysis of body fluids has made great strides in recent years. Body fluids can easily be identified, and DNA analysis can be used to link a stain found at a crime scene to a specific person. When no reference DNA profile is available and the recovered DNA does not yield a match in a database, it would be incredibly useful if the evidence could still provide investigators with useful information. Biocatalytic and immunoassays can be used to determine a donor's sex, race, and other phenotypic characteristics. However, these tests depend on chemical reactions and are destructive to the sample. Here, we used Raman spectroscopy and multivariate data analysis to develop a nondestructive technique that could be used at a crime scene to determine the sex of a saliva donor. Our internally cross-validated classification model correctly identified 44 (92%) of the 48 donors used for model training. Subsequent external validation correctly identified 11 (92%) of the 12 donors saved for testing. This proof-of-concept study demonstrates the value of Raman spectroscopy as a forensic tool, and indicates that it can be used to elucidate phenotypic information about a body fluid donor. Future studies will expand to other body fluids and additional donor characteristics, such as race and age.
Collapse
Affiliation(s)
- Claire K Muro
- Chemistry Department, University at Albany , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Luciana de Souza Fernandes
- Chemistry Department, University at Albany , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Igor K Lednev
- Chemistry Department, University at Albany , 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
16
|
Development of a SNP-based panel for human identification for Indian populations. Forensic Sci Int Genet 2016; 27:58-66. [PMID: 27992827 DOI: 10.1016/j.fsigen.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/27/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022]
Abstract
The widely employed short tandem repeat (STR)-based panels for forensic human identification (HID) have limitations while dealing with challenging forensic samples involving DNA degradation, resulting in dropping-out of higher molecular weight alleles/loci. To address this issue, bialleic markers like single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), which can be scored even when the template DNA is heavily degraded (<100bp), have been suggested as alternative markers for HID testing. Recent studies have highlighted their utility in forensic HID and several panels based on biallelic markers have been described for worldwide populations. However, there has been very little information about the behavior of such DNA markers in Indian populations, which is known to possess great genetic diversity. This study describes a two-step approach for designing a SNP-based panel consisting of 70 SNPs for HID testing in Indian populations. In the first step, candidate SNPs were shortlisted from public databases by screening them for several criteria including allelic distribution, genomic location, potential phenotypic expression or functionality and species specificity. The second step involved genotyping the shortlisted SNPs in various Indian populations followed by shortlisting of the best performers for identity-testing. Starting with 592,652 SNPs listed in Human660W-Quad Beadchip (Illumina Inc.), we shortlisted 275 candidate SNPs for identity-testing and genotyped them in 462 unrelated individuals from different population groups in India. Post genotyping and statistical analyses based on biogeographic regions, 206 SNPs demonstrated desired allelic distribution (Heterozygosity≥0.4 and FST≤0.02), from which 2-4 widely separated (>20 Mb apart) SNPs from each chromosome were finally selected to construct a panel of 70 SNPs. This panel on average possessed match probability 10e-29 and probability of paternity of 0.99999997, which was orders of magnitude higher than most of the currently employed STR-based chemistries and SNP-based panels that were proposed previously for HID testing. For comparison purpose, genotyping previously reported SNPs for HID in our samples led us to conclude that the panel developed in this study is much more efficient and robust and better suited for the Indian populations.
Collapse
|
17
|
A panel of 74 AISNPs: Improved ancestry inference within Eastern Asia. Forensic Sci Int Genet 2016; 23:101-110. [DOI: 10.1016/j.fsigen.2016.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/17/2016] [Accepted: 04/01/2016] [Indexed: 02/04/2023]
|
18
|
Jonnalagadda M, Norton H, Ozarkar S, Kulkarni S, Ashma R. Association of genetic variants with skin pigmentation phenotype among populations of west Maharashtra, India. Am J Hum Biol 2016; 28:610-8. [PMID: 26918427 DOI: 10.1002/ajhb.22836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 01/07/2016] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES South Asians exhibit extensive variation in skin melanin index (MI) which is observed across the broader region of South Asia as well as within restricted geographic regions. However, the genetic variants associated with variation in the skin pigmentation phenotype are poorly understood in these populations. The present study examines the association between MI measures and genetic variants from 5 candidate pigmentation genes among 533 individuals representing 6 populations of West Maharashtra. METHODS Associations between five single nucleotide polymorphisms (SNPs) known to play a role in pigmentation (rs1426654-SLC24A5, rs1042602-TYR, rs16891982-SLC45A2, rs6058017-ASIP, and rs642742-KITLG) and MI measures were tested using standard one-way analysis of variance (ANOVA) within each population. Multiple linear regression was used to test the effects of these SNPs in the full West Maharashtra sample using sex, age, and population or social group as covariates. RESULTS rs1426654 showed significant association with MI in all six study populations (P < 0.01). Association tests using sex, age, and population as covariates showed rs1426654 and rs1042602 to be significantly (P < 0.01) associated with lighter skin pigmentation in West Maharashtra as a whole. By contrast, when social group was added as a covariate instead of population, rs1426654, rs1042602, and rs16891982 were significantly (P < 0.01) associated with lighter skin pigmentation. CONCLUSIONS Only rs1426654 is significantly associated with MI in each individual population; however, rs1426654, rs1042602, and rs16891982 are significantly associated with pigmentation in the broader West Maharashtra region after controlling for population and social group, with rs1426654 (SLC24A5) explaining the majority of the observed variation. Am. J. Hum. Biol. 28:610-618, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manjari Jonnalagadda
- Department of Anthropology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Heather Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, Ohio
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Shaunak Kulkarni
- Department of Anthropology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India.
| |
Collapse
|
19
|
Fagertun J, Wolffhechel K, Pers TH, Nielsen HB, Gudbjartsson D, Stefansson H, Stefansson K, Paulsen RR, Jarmer H. Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet 2015; 19:263-268. [DOI: 10.1016/j.fsigen.2015.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
|
20
|
Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 2015; 18:33-48. [DOI: 10.1016/j.fsigen.2015.02.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/17/2023]
|
21
|
Dario P, Mouriño H, Oliveira AR, Lucas I, Ribeiro T, Porto MJ, Costa Santos J, Dias D, Corte Real F. Assessment of IrisPlex-based multiplex for eye and skin color prediction with application to a Portuguese population. Int J Legal Med 2015; 129:1191-200. [PMID: 26289415 DOI: 10.1007/s00414-015-1248-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022]
Abstract
DNA phenotyping research is one of the most emergent areas of forensic genetics. Predictions of externally visible characteristics are possible through analysis of single nucleotide polymorphisms. These tools can provide police with "intelligence" in cases where there are no obvious suspects and unknown biological samples found at the crime scene do not result in any criminal DNA database hits. IrisPlex, an eye color prediction assay, revealed high prediction rates for blue and brown eye color in European populations. However, this is less predictive in some non-European populations, probably due to admixing. When compared to other European countries, Portugal has a relatively admixed population, resulting from a genetic influx derived from its proximity to and historical relations with numerous African territories. The aim of this work was to evaluate the utility of IrisPlex in the Portuguese population. Furthermore, the possibility of supplementing this multiplex with additional markers to also achieve skin color prediction within this population was evaluated. For that, IrisPlex was augmented with additional SNP loci. Eye and skin color prediction was estimated using the multinomial logistic regression and binomial logistic regression models, respectively. The results demonstrated eye color prediction accuracies of the IrisPlex system of 90 and 60% for brown and blue eye color, respectively, and 77% for intermediate eye color, after allele frequency adjustment. With regard to skin color, it was possible to achieve a prediction accuracy of 93%. In the future, phenotypic determination multiplexes must include additional loci to permit skin color prediction as presented in this study as this can be an advantageous tool for forensic investigation.
Collapse
Affiliation(s)
- Paulo Dario
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal.
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal.
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal.
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Helena Mouriño
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Rita Oliveira
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Lucas
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Teresa Ribeiro
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Maria João Porto
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Jorge Costa Santos
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Deodália Dias
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Francisco Corte Real
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| |
Collapse
|
22
|
Söchtig J, Phillips C, Maroñas O, Gómez-Tato A, Cruz R, Alvarez-Dios J, de Cal MÁC, Ruiz Y, Reich K, Fondevila M, Carracedo Á, Lareu MV. Exploration of SNP variants affecting hair colour prediction in Europeans. Int J Legal Med 2015; 129:963-75. [PMID: 26162598 DOI: 10.1007/s00414-015-1226-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
DNA profiling is a key tool for forensic analysis; however, current methods identify a suspect either by direct comparison or from DNA database searches. In cases with unidentified suspects, prediction of visible physical traits e.g. pigmentation or hair distribution of the DNA donors can provide important probative information. This study aimed to explore single nucleotide polymorphism (SNP) variants for their effect on hair colour prediction. A discovery panel of 63 SNPs consisting of already established hair colour markers from the HIrisPlex hair colour phenotyping assay as well as additional markers for which associations to human pigmentation traits were previously identified was used to develop multiplex assays based on SNaPshot single-base extension technology. A genotyping study was performed on a range of European populations (n = 605). Hair colour phenotyping was accomplished by matching donor's hair to a graded colour category system of reference shades and photography. Since multiple SNPs in combination contribute in varying degrees to hair colour predictability in Europeans, we aimed to compile a compact marker set that could provide a reliable hair colour inference from the fewest SNPs. The predictive approach developed uses a naïve Bayes classifier to provide hair colour assignment probabilities for the SNP profiles of the key SNPs and was embedded into the Snipper online SNP classifier ( http://mathgene.usc.es/snipper/ ). Results indicate that red, blond, brown and black hair colours are predictable with informative probabilities in a high proportion of cases. Our study resulted in the identification of 12 most strongly associated SNPs to hair pigmentation variation in six genes.
Collapse
Affiliation(s)
- Jens Söchtig
- Forensic Genetics Unit, Institute of Legal Medicine, University of Santiago de Compostela, A Coruña, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Internal validation of the QIAamp DNA Investigator Kit, QIAamp 96 DNA Swab BioRobot Kit and the BioRobot Universal System for DNA extraction from reference and crime scene samples. Forensic Sci Int Genet 2015; 14:e8-10. [DOI: 10.1016/j.fsigen.2014.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 11/23/2022]
|
24
|
Kidd KK, Pakstis AJ, Speed WC, Lagacé R, Chang J, Wootton S, Haigh E, Kidd JR. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 2014; 12:215-24. [PMID: 25038325 DOI: 10.1016/j.fsigen.2014.06.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/01/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
Abstract
SNPs that are molecularly very close (<10kb) will generally have extremely low recombination rates, much less than 10(-4). Multiple haplotypes will often exist because of the history of the origins of the variants at the different sites, rare recombinants, and the vagaries of random genetic drift and/or selection. Such multiallelic haplotype loci are potentially important in forensic work for individual identification, for defining ancestry, and for identifying familial relationships. The new DNA sequencing capabilities currently available make possible continuous runs of a few hundred base pairs so that we can now determine the allelic combination of multiple SNPs on each chromosome of an individual, i.e., the phase, for multiple SNPs within a small segment of DNA. Therefore, we have begun to identify regions, encompassing two to four SNPs with an extent of <200bp that define multiallelic haplotype loci. We have identified candidate regions and have collected pilot data on many candidate microhaplotype loci. Here we present 31 microhaplotype loci that have at least three alleles, have high heterozygosity, are globally informative, and are statistically independent at the population level. This study of microhaplotype loci (microhaps) provides proof of principle that such markers exist and validates their usefulness for ancestry inference, lineage-clan-family inference, and individual identification. The true value of microhaplotypes will come with sequencing methods that can establish alleles unambiguously, including disentangling of mixtures, because a single sequencing run on a single strand of DNA will encompass all of the SNPs.
Collapse
Affiliation(s)
- Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - William C Speed
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Robert Lagacé
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Joseph Chang
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sharon Wootton
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Eva Haigh
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Judith R Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| |
Collapse
|
25
|
van Asten AC. On the added value of forensic science and grand innovation challenges for the forensic community. Sci Justice 2014; 54:170-9. [DOI: 10.1016/j.scijus.2013.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/03/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
26
|
Yun L, Gu Y, Rajeevan H, Kidd KK. Application of six IrisPlex SNPs and comparison of two eye color prediction systems in diverse Eurasia populations. Int J Legal Med 2014; 128:447-53. [DOI: 10.1007/s00414-013-0953-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
|
27
|
Single nucleotide polymorphism typing with massively parallel sequencing for human identification. Int J Legal Med 2013; 127:1079-86. [DOI: 10.1007/s00414-013-0879-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|