1
|
Bassi M, Roda E, Tirri M, Corli G, Bilel S, Bernardi T, Boccuto F, Borsari M, Buscaglia E, De Luca F, Di Rosa F, Gregori A, Buccilli V, Maida P, Ambrogi D, Strano-Rossi S, Locatelli CA, Marti M. α-PHP: Acute effects and pharmacokinetic in male and female mice, and clinical data on related intoxications. Drug Alcohol Depend 2025; 269:112596. [PMID: 39987764 DOI: 10.1016/j.drugalcdep.2025.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Alpha-Pyrrolidinohexanophenone (α-PHP) is a synthetic pyrovalerone derivative with structural characteristics and stimulant effects on humans comparable to α-PVP and MDPV. Since its pharmaco-toxicological effects have been poorly investigated, the aim of this study was to evaluate the acute effects of α-PHP (0.1-30mg/kg; i.p.) on behavioral responses in CD-1 male and female mice. Sex-related differences in pharmacokinetic profile of α-PHP (30mg/kg; i.p.) in mice were evaluated by analyzing i) the urine concentration of α-PHP and its metabolites at different time points, and ii) α-PHP levels in plasma, brain, and kidneys at 35min after the injection. Clinical data related to α-PHP intoxications, recorded by the Pavia Poison Control Centre (PCC) are also described. The present study shows that female mice were more sensitive to the effects of α-PHP on visual object, tactile, mobility time, and hypothermia, but males showed a deeper effect on visual placing. Both sexes developed analgesia to the mechanical stimulation, but only males showed a slight increase in enduring the thermal stimulation. Male mice showed higher plasma levels of α-PHP and a different elimination of α-PHP and metabolites than females. Case reports highlighted severe toxidromes characterized by Central Nervous System alterations (psychomotor agitation, tremors/fasciculations, hallucinations), cardiovascular toxicity signs (tachycardia, tachypnoea, thoracic pain) and other peripheral symptoms (hyperthermia, rhabdomyolysis). Our findings highlight the importance of the in vivo investigation of the effects and pharmacokinetic differences in male and female mice, to make contribution to the translational toxicological and forensic sex-related value.
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara 44121, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Valeria Buccilli
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | - Pietro Maida
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | | | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome 00168, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System (NEWS-D), Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
2
|
Bunaim MK, Damanhuri HA, Yow HY, Yaakob NS, Makmor-Bakry M, Azmi N. Understanding methiopropamine, a new psychoactive substance: an in-depth review on its chemistry, pharmacology and implications to human health. Int J Legal Med 2024; 138:1295-1306. [PMID: 38424369 DOI: 10.1007/s00414-024-03201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methiopropamine or 1-(thiophen-2-yl)-2-methylaminopropane (MPA) is a thiophene ring-based structural analogue of methamphetamine, first synthesized in 1942 but become popular when it started to be available for purchase on websites selling 'legal highs' since 2010. While it is legally controlled in many countries, it remains readily accessible and frequently encountered in recreational settings. The growing prevalence of MPA use results in new therapeutic challenges. Relatively few studies have focused on its pharmacodynamics and pharmacokinetics, making it important to better understand its potential risks and harmful effects in humans in terms of its toxicity. This review provides a comprehensive profiling of MPA toxicological properties, including its chemical properties, analytical methods, prevalence, patterns of use, and legal status. Additionally, it discusses the drug's effects on the central nervous system, its potential for addiction, and its adverse physical and mental health effects. Improving the understanding of safety aspects of MPA and how it imposes health threats for public health will guide the development of therapeutic approach of its intoxication and guide the authorities in deciding its legal status.
Collapse
Affiliation(s)
- Mohd Khairulanwar Bunaim
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), 88400, Kota Kinabalu, Sabah, Malaysia
| | - Hanafi Ahmad Damanhuri
- Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Syafinaz Yaakob
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Mohd Makmor-Bakry
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
4
|
Corli G, Roda E, Tirri M, Bilel S, De Luca F, Strano-Rossi S, Gaudio RM, De-Giorgio F, Fattore L, Locatelli CA, Marti M. Sex-specific behavioural, metabolic, and immunohistochemical changes after repeated administration of the synthetic cannabinoid AKB48 in mice. Br J Pharmacol 2024; 181:1361-1382. [PMID: 38148741 DOI: 10.1111/bph.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE AKB48 is a synthetic cannabinoid illegally sold for its psychoactive cannabis-like effects that have been associated with acute intoxication and whose effects are poorly known. EXPERIMENTAL APPROACH Using a behavioural, neurochemical, and immunohistochemical approach, we investigated the pharmaco-toxicological effects, pharmacokinetics, and neuroplasticity at cannabinoid CB1 receptors in the cerebellum and cortex induced by repeated AKB48 administration in male and female mice. KEY RESULTS The effects of AKB48 varied significantly depending on sex and treatment duration. The first injection impaired sensorimotor responses and reduced body temperature, analgesia, and breath rate to a greater extent in females than in males; the second injection induced stronger effects in males while the third injection of AKB48 induced weaker responses in both sexes, suggesting emergence of tolerance. The CB1 receptor antagonist NESS-0327 prevented the effects induced by repeated AKB48, confirming a CB1 receptor-mediated action. Blood AKB48 levels were higher in females than in males and repeated administration caused a progressive rise of AKB48 levels in both sexes, suggesting an inhibitory effect on cytochrome activity. Finally, immunohistochemical analysis revealed higher expression of CB1 receptors in the cerebellum and cortex of females, and a rapid CB1 receptor down-regulation in cerebellar and cortical areas following repeated AKB48 injections, with neuroadaptation occurring generally more rapidly in females than in males. CONCLUSION AND IMPLICATIONS We have shown for the first time that AKB48 effects significantly vary with prolonged use and that sex affects the pharmacodynamic/pharmacokinetic responses to repeated administration, suggesting a sex-tailored approach in managing AKB48-induced intoxication.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabrizio De Luca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- National Research Council, CNR Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Rome, Italy
| |
Collapse
|
5
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, Zauli G, Locatelli CA, Marti M. Pharmaco-toxicological effects of the novel tryptamine hallucinogen 5-MeO-MiPT on motor, sensorimotor, physiological, and cardiorespiratory parameters in mice-from a human poisoning case to the preclinical evidence. Psychopharmacology (Berl) 2024; 241:489-511. [PMID: 38214743 PMCID: PMC10884077 DOI: 10.1007/s00213-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
RATIONALE The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.
Collapse
Grants
- Effects of NPS: development of a multicentre research for the information enhancement of the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- Implementation of the identification Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- study of the effects of NPS: Development of a multicentric research to strengthen the database of the National Monitoring Centre for Drug Addiction Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- FAR 2021 Università degli Studi di Ferrara
- FAR 2022 Università degli Studi di Ferrara
- Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
6
|
Sayson LV, Lee HJ, Ortiz DM, Kim M, Custodio RJP, Lee CH, Lee YS, Cheong JH, Kim HJ. The differential vulnerabilities of Per2 knockout mice to the addictive properties of methamphetamine and cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110782. [PMID: 37141987 DOI: 10.1016/j.pnpbp.2023.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
With the pervasive occurrence of substance abuse worldwide, unraveling the neuropharmacology of drugs of abuse, such as psychostimulants, is undeniably essential. Mice lacking Period 2 (Per2), a gene associated with the biological time-regulating system or circadian rhythm, have been proposed as a potential animal model for drug abuse vulnerability, demonstrating a greater preference for methamphetamine (METH) reward than wild-type (WT) mice. However, the responses of Per2 knockout (KO) mice to the reinforcing effects of METH or other psychostimulants are yet to be established. In this study, the responses of WT and Per2 KO mice to various psychostimulants via intravenous self-administration were determined, along with their behaviors in METH- or cocaine (COC)-induced conditioned place preference and spontaneous locomotion in the open-field test. Per2 KO mice exhibited greater addiction-like responses to METH and 5-EAPB (1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine), but their responses to COC and dimethocaine were comparable to WT mice, indicating a divergent influence of Per2 deficiency on abuse susceptibility to specific psychostimulants. To potentially define the underlying mechanism for this phenotype, 19 differentially expressed genes were identified, through RNA sequencing, which might respond specifically to repeated METH, but not COC, administration in the mouse striatum and were narrowed down to those previously associated with immediate early genes or synaptic plasticity. The correlation between locomotor activity and mRNA expression levels revealed a moderate correlation between METH-induced behavior and Arc or Junb expression in Per2 KO mice only, suggesting their essential role that may lead to the higher vulnerability of Per2 KO mice to METH, but not COC. These findings indicate a potentially unique effect of Per2 expression level on the involvement of Arc and Junb in determining specific vulnerabilities to drugs, and possibly including abuse potential.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystr. 67, 44139 Dortmund, Germany
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.
| |
Collapse
|
7
|
Corli G, Tirri M, Arfè R, Marchetti B, Bernardi T, Borsari M, Odoardi S, Mestria S, Strano-Rossi S, Neri M, Gaudio RM, Bilel S, Marti M. Pharmaco-Toxicological Effects of Atypical Synthetic Cathinone Mephtetramine (MTTA) in Mice: Possible Reasons for Its Brief Appearance over NPSs Scene. Brain Sci 2023; 13:brainsci13020161. [PMID: 36831704 PMCID: PMC9954072 DOI: 10.3390/brainsci13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Over the last year, NPSs have been steadily on the rise in the illicit drug market. Among these, synthetic cathinones seem to become increasingly popular among young adults, mainly because of their ability to replicate the effects of traditional psychostimulant drugs, such as cocaine, MDMA and amphetamines. However, scarce data are available about the in vivo pharmaco-toxicology of these new substances. To this end, this study focused on evaluation of effects induced by repeated administration of mephtetramine (MTTA 0.1-30 mg/kg i.p.) in mice. This atypical cathinone highlighted a sensorial (inhibition of visual and acoustic reflexes) and transient physiological parameter (decrease in breath rate and temperature) change in mice. Regarding motor activity, both a dose-dependent increase (accelerod test) and biphasic effect (drag and mobility time test) have been shown. In addition, blood and urine samples have been analysed to enrich the experimental featuring of the present study with reference to evaluation of potential toxicity related to consumption of MTTA. The latter analysis has particularly revealed important changes in blood cells count and blood and urine physicochemical profile after repeated treatment with this atypical cathinone. Moreover, MTTA induced histological changes in heart, kidney and liver samples, emphasizing its potential toxicity.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Odoardi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Serena Mestria
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Sabina Strano-Rossi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
9
|
Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Bernardi T, Boccuto F, Serpelloni G, Botrè F, De-Giorgio F, Golembiowska K, Marti M. Effect of -NBOMe Compounds on Sensorimotor, Motor, and Prepulse Inhibition Responses in Mice in Comparison With the 2C Analogs and Lysergic Acid Diethylamide: From Preclinical Evidence to Forensic Implication in Driving Under the Influence of Drugs. Front Psychiatry 2022; 13:875722. [PMID: 35530025 PMCID: PMC9069068 DOI: 10.3389/fpsyt.2022.875722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
In the last decade, the market for new psychoactive substances has been enriched by numerous psychedelic phenethylamines, which mimic the psychoactive effect of lysergic acid diethylamide (LSD). In particular, the -NBOMe series, which are more potent than their 2C compounds analogs, are considered worthy substitutes for LSD by users. The purpose of this study was to assess the effects of 25H-NBOMe and its halogenated derivatives (25I-NBOMe and 25B-NBOMe) in comparison to their 2C compounds analogs and LSD on the sensorimotor (visual, acoustic, and overall tactile), reaction time, spontaneous (total distance traveled) and stimulated (drag, accelerod test) motor activity, grip strength test, and prepulse inhibition (PPI) responses in mice. Systemic administration of -NBOMe, 2C compounds analogs, and LSD (0.001-10 mg/kg) differently impaired the sensorimotor, reaction time, motor, and PPI responses in mice. In particular, halogenated (25I and 25B)-NBOMe derivatives appear to be more effective than the entire class of 2C compounds analogs in altering visual and acoustic responses, affecting reaction time, and motor and sensory gating in PPI test. In fact, the specific rank order of compounds potency for nearly all of the experiments showed that (25I and 25B)-NBOMe were more potent than 2C compounds analogs and LSD. -NBOMe and 2C compounds analogs impaired not only the reception of incoming sensory stimuli (visual and acoustic), but their correct brain processing (PPI) in an equal and sometimes stronger way than LSD. This sensory impairment directly affected the spontaneous motor response and reaction time of mice, with no change in performance in stimulated motor activity tests. These aspects should be carefully considered to better understand the potential danger that psychedelic phenethylamines, in particular -NBOMe, may pose to public health, with particular reference to decreased performance in driving and hazardous works that require special sensorimotor skills.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Francesco Botrè
- Institute of Sport Science University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Krystyna Golembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakòw, Poland
| | - Matteo Marti
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
10
|
Jin H, Yang D, Wu P, Zhao M. Environmental occurrence and ecological risks of psychoactive substances. ENVIRONMENT INTERNATIONAL 2022; 158:106970. [PMID: 34753034 DOI: 10.1016/j.envint.2021.106970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Psychoactive substances are ubiquitous in the environment at low concentrations, and tobacco, cannabis, etc. are all widely-existing examples. Given their potent biological activity, psychoactive substances are suspected to be harmful to the environment, and reports of their ecological risks are gradually increasing. Since the 1990s, the investigations into psychoactive substances have made remarkable progress, yet some research fields still need to be modernised. For example, the unification of standardised analytical methods as well as the supplementation of occurrence literature. In addition, a relatively lagging risk evaluation system caused by a lack of toxicity data is particularly in need of improvement. The purpose of this article is to develop a review of current research on psychoactive substances, including analytical methods, distribution in environmental compartments, and ecological risk assessment, as well as to point out deficiencies and development prospects and to offer motivation for enhancing the research level in this field.
Collapse
Affiliation(s)
- Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Dan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
11
|
Ethanol enhanced MDPV- and cocaine-induced aggressive behavior in mice: Forensic implications. Drug Alcohol Depend 2021; 229:109125. [PMID: 34763230 DOI: 10.1016/j.drugalcdep.2021.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reports concerning the causal link between aggressive behavior and use and abuse of different substances (i.e., alcohol, MDPV) can be found in the literature. Nonetheless, the topic concerning the effects of acute ethanol administration on MDPV and cocaine induced aggressive behavior has yet to be thoroughly investigated. The aim of this study was to investigate such synergistic effects. MATERIALS AND METHODS A total of 360 male mice were employed in the study. Ethanol was diluted with saline solution and administered 10 min before MDPV or cocaine injection via oral gavage needles. Similarly, MDPV and cocaine were dissolved in saline solution and administered by intraperitoneal injection. Different associations of specific drug doses were then tested. To investigate the acute effects of MDPV and cocaine and their interaction with ethanol on aggression in mice, a resident-intruder test was used. RESULTS Ethanol alone was ineffective at dosages of 0.05 g/kg and 0.25 g/kg but increased the aggressiveness of the mice at 0.125 g/kg. Similarly, the injection of both cocaine alone and MDPV alone did not significantly increase the aggressiveness of the mice; conversely, the combination of ethanol and cocaine and ethanol and MDPV enhanced aggression at specific ethanol dosages (0.05 g/kg and 0.125 g/kg). CONCLUSION This study demonstrated that acute ethanol administration enhances MDPV- and cocaine-induced aggressive behavior in mice. This aggressive response is particularly enhanced when MDVP and cocaine are coupled with specific ethanol dosages, proving that psychostimulant drugs may act synergistically under certain conditions.
Collapse
|
12
|
Tuv SS, Bergh MSS, Andersen JM, Steinsland S, Vindenes V, Baumann MH, Huestis MA, Bogen IL. Comparative Neuropharmacology and Pharmacokinetics of Methamphetamine and Its Thiophene Analog Methiopropamine in Rodents. Int J Mol Sci 2021; 22:ijms222112002. [PMID: 34769427 PMCID: PMC8585037 DOI: 10.3390/ijms222112002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Methiopropamine is a novel psychoactive substance (NPS) that is associated with several cases of clinical toxicity, yet little information is available regarding its neuropharmacological properties. Here, we employed in vitro and in vivo methods to compare the pharmacokinetics and neurobiological effects of methiopropamine and its structural analog methamphetamine. Methiopropamine was rapidly distributed to the blood and brain after injection in C57BL/6 mice, with a pharmacokinetic profile similar to that of methamphetamine. Methiopropamine induced psychomotor activity, but higher doses were needed (Emax 12.5 mg/kg; i.p.) compared to methamphetamine (Emax 3.75 mg/kg; i.p.). A steep increase in locomotor activity was seen after a modest increase in the methiopropamine dose from 10 to 12.5 mg/kg, suggesting that a small increase in dosage may engender unexpectedly strong effects and heighten the risk of unintended overdose in NPS users. In vitro studies revealed that methiopropamine mediates its effects through inhibition of norepinephrine and dopamine uptake into presynaptic nerve terminals (IC50 = 0.47 and 0.74 µM, respectively), while the plasmalemmal serotonin uptake and vesicular uptake are affected only at high concentrations (IC50 > 25 µM). In summary, methiopropamine closely resembles methamphetamine with regard to its pharmacokinetics, pharmacodynamic effects and mechanism of action, with a potency that is approximately five times lower than that of methamphetamine.
Collapse
Affiliation(s)
- Silja Skogstad Tuv
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
- Department of Pharmacology, Oslo University Hospital, 0372 Oslo, Norway
| | - Marianne Skov-Skov Bergh
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
| | - Jannike Mørch Andersen
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
| | - Synne Steinsland
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
| | - Vigdis Vindenes
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA;
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Inger Lise Bogen
- Department of Forensic Sciences, Oslo University Hospital, 0456 Oslo, Norway; (S.S.T.); (M.S.-S.B.); (J.M.A.); (S.S.); (V.V.)
- Correspondence:
| |
Collapse
|
13
|
Tirri M, Frisoni P, Bilel S, Arfè R, Trapella C, Fantinati A, Corli G, Marchetti B, De-Giorgio F, Camuto C, Mazzarino M, Gaudio RM, Serpelloni G, Schifano F, Botrè F, Marti M. Worsening of the Toxic Effects of (±) Cis-4,4'-DMAR Following Its Co-Administration with (±) Trans-4,4'-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice. Int J Mol Sci 2021; 22:ijms22168771. [PMID: 34445476 PMCID: PMC8395767 DOI: 10.3390/ijms22168771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.
Collapse
Affiliation(s)
- Micaela Tirri
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Paolo Frisoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sabrine Bilel
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Raffaella Arfè
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.T.); (A.F.)
| | - Giorgia Corli
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Beatrice Marchetti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Rosa Maria Gaudio
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, 37138 Verona, Italy;
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL 32611, USA
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, 1015 Lausanne, Switzerland
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (S.B.); (R.A.); (G.C.); (B.M.); (R.M.G.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Arfè R, Bilel S, Tirri M, Frisoni P, Serpelloni G, Neri M, Boccuto F, Bernardi T, Foti F, De-Giorgio F, Marti M. Comparison of N-methyl-2-pyrrolidone (NMP) and the "date rape" drug GHB: behavioral toxicology in the mouse model. Psychopharmacology (Berl) 2021; 238:2275-2295. [PMID: 33881584 DOI: 10.1007/s00213-021-05852-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
N-methyl-2-pyrrolidone (NMP) and γ-hydroxybutyrate acid (GHB) are synthetic solvents detected in the recreational drug market. GHB has sedative/hypnotic properties and is used for criminal purposes to compromise reaction ability and commit drug-facilitated sexual assaults and other crimes. NMP is a strong solubilizing solvent that has been used alone or mixed with GHB in case of abuse and robberies. The aim of this experimental study is to compare the acute pharmaco-toxicological effects of NMP and GHB on neurological signs (myoclonia, convulsions), sensorimotor (visual, acoustic, and overall tactile) responses, righting reflex, thermoregulation, and motor activity (bar, drag, and accelerod test) in CD-1 male mice. Moreover, since cardiorespiratory depression is one of the main adverse effects related to GHB intake, we investigated the effect of NMP and GHB on cardiorespiratory changes (heart rate, breath rate, oxygen saturation, and pulse distension) in mice. The present study demonstrates that NMP inhibited sensorimotor and motor responses and induced cardiorespiratory depression, with a lower potency and efficacy compared to GHB. These results suggest that NMP can hardly be used alone as a substance to perpetrate sexual assault or robberies.
Collapse
Affiliation(s)
- Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paolo Frisoni
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, USA
| | - Margherita Neri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Federica Foti
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Roma, Italia.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italia
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Roma, Italia. .,Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italia.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy. .,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy.
| |
Collapse
|
15
|
In Vitro and In Vivo Pharmaco-Toxicological Characterization of 1-Cyclohexyl-x-methoxybenzene Derivatives in Mice: Comparison with Tramadol and PCP. Int J Mol Sci 2021; 22:ijms22147659. [PMID: 34299276 PMCID: PMC8306156 DOI: 10.3390/ijms22147659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.
Collapse
|
16
|
Foti F, Bilel S, Tirri M, Arfè R, Boccuto F, Bernardi T, Serpelloni G, De-Giorgio F, Marti M. Low-normal doses of methiopropamine induce aggressive behaviour in mice. Psychopharmacology (Berl) 2021; 238:1847-1856. [PMID: 33770233 DOI: 10.1007/s00213-021-05813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Recreational use of illicit methiopropamine (MPA) is a public health concern because it produces neurochemical effects comparable with those induced by methamphetamine (METH). The present study investigated the effects of MPA on the expression of an aggressive behaviour. Eighty CD-1 male mice, after receiving intraperitoneal injection of saline, MPA (0.01-10 mg/kg), METH (0.01-10 mg/kg), or AMPH (0.01-10 mg/kg), once a week over a 5-week period, underwent the resident-intruder test and spontaneous locomotor activity measurement. Results showed that all psychostimulants induce aggressive behaviour even at low doses, with a dose-dependent increase and a time-dependent sensitisation. MPA potency was similar to METH and superior to AMPH. Therefore, MPA-induced aggressive behaviour may appear even at MPA dosages free of cardiovascular or other behavioural adverse effects and could become a non-intentional side effect that users experience after increasing and repeating MPA consumption.
Collapse
Affiliation(s)
- Federica Foti
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, USA
| | - Fabio De-Giorgio
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy. .,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy. .,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy. .,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
| |
Collapse
|
17
|
Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int J Mol Sci 2020; 21:ijms21249616. [PMID: 33348640 PMCID: PMC7766159 DOI: 10.3390/ijms21249616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25–35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still “safe” doses could run into genotoxicity and in the well-known long-term effects associated.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
- Correspondence:
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| |
Collapse
|
18
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
19
|
Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sci 2020; 10:brainsci10090586. [PMID: 32847111 PMCID: PMC7563198 DOI: 10.3390/brainsci10090586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
The drastic increase in hallucinogenic compounds in illicit drug markets of new psychoactive substances (NPS) is a worldwide threat. Among these, 2, 5-dimetoxy-4-bromo-amphetamine (DOB) and paramethoxyamphetamine (PMA; marketed as “ecstasy”) are frequently purchased on the dark web and consumed for recreational purposes during rave/dance parties. In fact, these two substances seem to induce the same effects as MDMA, which could be due to their structural similarities. According to users, DOB and PMA share the same euphoric effects: increasing of the mental state, increasing sociability and empathy. Users also experienced loss of memory, temporal distortion, and paranoia following the repetition of the same thought. The aim of this study was to investigate the effect of the acute systemic administration of DOB and PMA (0.01–30 mg/kg; i.p.) on motor, sensorimotor (visual, acoustic, and tactile), and startle/PPI responses in CD-1 male mice. Moreover, the pro-psychedelic effect of DOB (0.075–2 mg/kg) and PMA (0.0005–0.5 mg/kg) was investigated by using zebrafish as a model. DOB and PMA administration affected spontaneous locomotion and impaired behaviors and startle/PPI responses in mice. In addition, the two compounds promoted hallucinatory states in zebrafish by reducing the hallucinatory score and swimming activity in hallucinogen-like states.
Collapse
|
20
|
Camuto C, Pellegrini S, De-Giorgio F, de la Torre X, Marti M, Mazzarino M, Botrè F. Urinary excretion profile of methiopropamine in mice following intraperitoneal administration: A liquid chromatography-tandem mass spectrometry investigation. Drug Test Anal 2020; 13:91-100. [PMID: 32678963 DOI: 10.1002/dta.2900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
We have considered the urinary excretion profile of methiopropamine (MPA), a thiophene ring-based structural analog of methamphetamine with similar stimulant effects, with the aim of selecting the most appropriate marker(s) of intake that may be useful in forensic analysis. For this purpose, in vitro studies were preliminarily performed on human liver microsomes for tracing the phase I metabolic pathways of MPA, preselecting the best candidates as potential target analytes, and designing the optimal experimental strategy. In vivo studies were then conducted on mice, after the intraperitoneal administration of a 10-mg/kg dose. Urine samples were collected every 3 h in the first 9 h and, subsequently, from 24 to 36 h, and stored at -80°C until further analysis. The measurements were performed using a targeted procedure based on liquid/liquid extraction followed by liquid chromatography-tandem mass spectrometry analysis. Our results show that in the time interval 0-9 h after administration, MPA was extensively oxidized mainly to nor-MPA, oxo-MPA, and two hydroxylated metabolites (ie, hydroxy-aryl-methiopropamine and hydroxy-alkyl-methiopropamine). All phase I metabolites underwent phase II metabolism, with the formation of nor-hydroxy-methiopropamine only in phase II, confirmed by the results obtained after enzymatic hydrolysis with β-glucuronidase and arylsulfatase. In the time interval 24-36 h after administration, only unchanged MPA and nor-MPA were detected, suggesting that these two markers are those endowed with the highest diagnostic value. The method was validated for these two principal markers, proving to be fit for anti-doping, toxicological, and forensic analyses.
Collapse
Affiliation(s)
- Cristian Camuto
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,Dipartimento di Chimica, "Sapienza" Università di Roma, Rome, Italy.,Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sheila Pellegrini
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,Dipartimento di Chimica, "Sapienza" Università di Roma, Rome, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioetics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine, University of Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,Dipartimento di Medicina Sperimentale, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|