1
|
Cogan G, Brice A. [Parkinson's disease: from genetics to targeted therapies]. C R Biol 2025; 348:21-33. [PMID: 39945455 DOI: 10.5802/crbiol.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 03/26/2025]
Abstract
Parkinson’s disease (PD) is a multifactorial disorder involving various biological pathways. However, it is more accurate not to define PD as a unique entity, but rather as a mixture of several diseases with similar phenotypes. Attempts to classify subtypes of PD based on the clinical phenotype or biomarkers were tried. Nonetheless, for a subset of individuals, the classification based on the implied gene appears to be the most practical. Although the SNCA gene was the first identified in rare patients, pathogenic variants in GBA1 and LRRK2 are the most common genetic causes or risk factors of PD, and PRKN is the most frequent gene of autosomal recessive PD. Patients with pathogenic variants in SNCA, GBA1, LRRK2 or PRKN show various clinical, anatomopathological and biochemical aspects. Therefore, these four genes associated to PD are of particular interest for the development of targeted therapies. This fact is reinforced by the reality that current approaches are only symptomatic, and no curative treatment is available today. A number of clinical trials aiming to slow or stop disease progression are running, based on the gene involved. In this review, we will discuss the therapeutic approaches targeting SNCA, GBA1, LRRK2 and PRKN.
Collapse
|
2
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
3
|
El Otmani H, Daghi M, Tahiri Jouti N, Lesage S. An overview of the worldwide distribution of LRRK2 mutations in Parkinson's disease. Neurodegener Dis Manag 2023; 13:335-350. [PMID: 38305913 DOI: 10.2217/nmt-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with significant genetic influence. The LRRK2 gene is a major genetic contributor, particularly the Gly2019Ser mutation. This focused review investigates the global distribution of LRRK2 mutations, with emphasis on Gly2019Ser and other pathogenic variants. Prevalence rates of Gly2019Ser are highest in North Africa and the Ashkenazi-Jewish population, indicating a potential common ancestor and founder effect. Other LRRK2 mutations, including Asn1437His, Arg1441Gly/Cys/His, Tyr1699Cys and Ile2020Thr, exhibit varying global prevalences. Understanding these distributions enhances our knowledge of PD genetics and aids personalized medicine. Further research is crucial to unravel clinical implications and develop targeted therapies for LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Hicham El Otmani
- Laboratory of Medical Genetics & Molecular Pathology. Faculty of Medicine and Pharmacy, Hassan II University, 20250, Casablanca, Morocco
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
- Department of Neurology. Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| | - Mohamed Daghi
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability. Faculty of Medicine & Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Nadia Tahiri Jouti
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Suzanne Lesage
- Sorbonne University, Institut du Cerveau-Paris Brain Institute, ICM, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| |
Collapse
|
4
|
Koros C, Simitsi AM, Bougea A, Papagiannakis N, Antonelou R, Pachi I, Angelopoulou E, Prentakis A, Zachou A, Chrysovitsanou C, Beratis I, Fragkiadaki S, Kontaxopoulou D, Eftymiopoulou E, Stanitsa E, Potagas C, Papageorgiou SG, Karavasilis E, Velonakis G, Prassopoulos V, Geronicola-Trapali X, Stefanis L. Double Trouble: Association of Malignant Melanoma with Sporadic and Genetic Forms of Parkinson's Disease and Asymptomatic Carriers of Related Genes: A Brief Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1360. [PMID: 37629650 PMCID: PMC10456316 DOI: 10.3390/medicina59081360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Introduction: Previous epidemiological evidence has established the co-occurrence of malignant melanoma (MM) and Parkinson's disease (PD). Shared molecular mechanisms have been proposed to be implicated in this relationship. The aim of the present study was to assess the prevalence of MM in patients with sporadic and genetic types of PD, as well as in asymptomatic carriers of PD-related genes. Methods: Data regarding past medical history and concomitant disease of 1416 patients with PD (including 20 participants with prodromal disease who phenoconverted to PD), 275 healthy controls (HCs) and 670 asymptomatic carriers of PD-related genes were obtained from the database of the Parkinson's Progression Markers Initiative (PPMI). Focus was placed on information about a medical record of MM. We also retrieved data regarding the genetic status of selected PPMI participants with a positive MM history. Results: In total, 46 patients with PD reported a positive MM history. Concerning the genetic forms of PD, nine of these PD patients (2.47%) carried a Leucine Rich Repeat Kinase 2 (LRRK2) gene mutation (mainly the G2019S), while eight (4.49%) harbored a Glucocerebrosidase (GBA) gene mutation (mainly the N370S). No alpha-synuclein (SNCA) gene mutation was identified in patients with an MM history. The remaining 29 PD patients (3.5%) were genetically undetermined. In total, 18 asymptomatic carriers of PD-related genes had a positive medical history for MM: among them, 10 carried an LRRK2 gene mutation (2.69%) and 10 a GBA gene mutation (3.51%) (2 were dual carriers). MM history was identified for seven HCs (2.5%). Conclusions: We replicated the previously reported association between genetically undetermined PD (GU-PD) and MM. A correlation of LRRK2 mutations with the development of MM could not be verified in either symptomatic PD patients or asymptomatic carriers, implicating distinct pathogenetic mechanisms as compared to GU-PD. Importantly, despite the limited literature evidence on Gaucher disease, this study highlights for the first time the relatively high prevalence of MM among asymptomatic and symptomatic PD GBA mutation carriers, with potential clinical implications.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Andreas Prentakis
- Nuclear Medicine Unit, Attikon Hospital, 12462 Athens, Greece; (A.P.); (X.G.-T.)
| | - Athena Zachou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Chrysa Chrysovitsanou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthymia Eftymiopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efstratios Karavasilis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | | | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| |
Collapse
|
5
|
Simpson C, Vinikoor-Imler L, Nassan FL, Shirvan J, Lally C, Dam T, Maserejian N. Prevalence of ten LRRK2 variants in Parkinson's disease: A comprehensive review. Parkinsonism Relat Disord 2022; 98:103-113. [PMID: 35654702 DOI: 10.1016/j.parkreldis.2022.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Variants in the leucine-rich repeat kinase 2 gene (LRRK2) are risk factors for Parkinson's disease (PD), but their prevalence varies geographically, reflecting the locations of founder events and dispersion of founders' descendants. METHODS A comprehensive literature review was conducted to identify studies providing prevalence estimates for any of ten variants in LRRK2 (G2019S, R1441C, R1441G, R1441H, I2020T, N1437H, Y1699C, S1761R, G2385R, R1628P) among individuals with PD globally. We calculated crude country-specific variant prevalence estimates and, when possible, adjusted estimates for ethno-racial composition. For clinic-based studies, probands were used over other familial cases, whereas for population-based studies, all PD cases were used. RESULTS The analysis included 161 articles from 52 countries yielding 581 prevalence estimates across the ten variants. G2019S was the most common variant, exceeding 1.0% in 26 of 51 countries with estimates. The other variants were far less common. G2385R and R1628P were observed almost exclusively in East Asian countries, where they were found in ∼5-10% of cases. All prevalence estimates adjusted for ethno-racial composition were lower than their unadjusted counterparts, although data permitting this adjustment was only available for six countries. CONCLUSIONS Except for G2019S, the LRRK2 variants covered in this review were uncommon in most countries studied. However, there were countries with higher prevalence for some variants, reflecting the uneven geographic distribution of LRRK2 variants. The fact that ethno-racial group‒adjusted estimates were lower than crude estimates suggests that estimates derived largely from clinic-based studies may overstate the true prevalence of some LRRK2 variants in PD.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Lally
- Epidemiology Research and Methods LLC, Atlanta, GA, USA.
| | | | | |
Collapse
|
6
|
Lee SJ, Shaw PM, Thornton B, Kumar A, Eizik M, Goldstaub D, Braun T, Teper G, Pai JK, Chodick G, Bienfait K, Levitan D, Beller D, Chris Min K, Jonathan D, Voss T, Fox CS, Aubrey Stoch S, Struyk AF, Vainstein G. An Exploratory Study Using Electronic Medical Records to Assess the Feasibility of Establishing Cohorts of Patients with Genetic Causes of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1645-1653. [PMID: 35466950 DOI: 10.3233/jpd-212703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND More efficient screening methods are needed to improve the ability to identify and follow genetic cohorts in Parkinson's disease (PD). OBJECTIVE To explore the use of the electronic medical records (EMRs) to identify participants with PD. METHODS Using an algorithm previously developed in collaboration with Maccabi Healthcare Services (MHS), approximately 5,200 participants with PD were identified, more than 3,200 were screened, and 837 participants were enrolled and genotyped for leucine-rich repeat kinase 2 (LRRK2) and beta-glucocerebrosidase (GBA) variants. Questionnaires were completed to ascertain Ashkenazi Jewish (AJ) ancestry and family history of PD. RESULTS Among 837 participants with PD, 82% were 65 years and older and 72% had a family history of AJ ancestry. Among those with AJ ancestry, 15.6% reported having relatives with PD. The frequency of observed mutations for LRRK2 and GBA genes combined was approximately 15.4%. The frequency of observed LRRK2 mutation was 6.1% overall and 7.2% from those with AJ ancestry; and for GBA mutation was 9.3% overall and 11.2% from those with AJ ancestry. CONCLUSION Although the frequency of observed mutations in this study was lower than anticipated, mutation carriers were enriched among those with a family history of AJ ancestry increasing nearly 2-3-fold, from 3% -7% (LRRK2) and 4% -11% (GBA). The identification (and selection) of PD patients through EMRs prior to genotyping is a viable approach, to establish a genetically defined cohort of patients with PD for clinical research.
Collapse
|
7
|
Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2021; 202:108822. [PMID: 34626666 DOI: 10.1016/j.neuropharm.2021.108822] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is defined as a complex disorder with multifactorial pathogenesis, yet a more accurate definition could be that PD is not a single entity, but rather a mixture of different diseases with similar phenotypes. Attempts to classify subtypes of PD have been made based on clinical phenotypes or biomarkers. However, the most practical approach, at least for a portion of the patients, could be to classify patients based on genes involved in PD. GBA and LRRK2 mutations are the most common genetic causes or risk factors of PD, and PRKN is the most common cause of autosomal recessive form of PD. Patients carrying variants in GBA, LRRK2 or PRKN differ in some of their clinical characteristics, pathology and biochemical parameters. Thus, these three PD-associated genes are of special interest for drug development. Existing therapeutic approaches in PD are strictly symptomatic, as numerous clinical trials aimed at modifying PD progression or providing neuroprotection have failed over the last few decades. The lack of precision medicine approach in most of these trials could be one of the reasons why they were not successful. In the current review we discuss novel therapeutic approaches targeting GBA, LRRK2 and PRKN and discuss different aspects related to these genes and clinical trials.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Centrosomal cohesion deficits as cellular biomarker in lymphoblastoid cell lines from LRRK2 Parkinson's disease patients. Biochem J 2020; 476:2797-2813. [PMID: 31527116 PMCID: PMC6792036 DOI: 10.1042/bcj20190315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD), and orally bioavailable, brain penetrant and highly potent LRRK2 kinase inhibitors are in early stages of clinical testing. Detection of LRRK2 phosphorylation, as well as phosphorylation of Rab10, a LRRK2 kinase substrate, have been proposed as target engagement biomarkers for LRRK2 inhibitor clinical trials. However, these readouts do not seem able to stratify patients based on enhanced LRRK2 kinase activity. Here, we describe a robust cell biological assay based on centrosomal cohesion alterations which were observed in peripheral blood mononuclear cell-derived lymphoblastoid cell lines (LCLs) from patients with G2019S LRRK2 mutations as compared with healthy controls, and could also be detected in a subset of sporadic PD patient samples. We suggest that LCLs may be a valuable resource for LRRK2 research, and that determination of centrosomal cohesion deficits may assist in the stratification of a subset of sporadic PD patients.
Collapse
|
9
|
Lewis PA. Leucine rich repeat kinase 2: a paradigm for pleiotropy. J Physiol 2019; 597:3511-3521. [PMID: 31124140 DOI: 10.1113/jp276163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The LRRK2 gene, coding for leucine rich repeat kinase 2 (LRRK2), is a key player in the genetics of Parkinson's disease. Despite extensive efforts, LRRK2 has proved remarkably evasive with regard to attempts to understand both the role it plays in disease and its normal physiological function. At least part of why LRRK2 has been so difficult to define is that it appears to be many things to many cellular functions and diseases - a pleiotropic actor at both the genetic and the molecular level. Gaining greater insight into the mechanisms and pathways allowing LRRK2 to act in this manner will have implications for our understanding of the role of genes in the aetiology of complex disease, the molecular underpinnings of signal transduction pathways in the cell, and drug discovery in the genome era.
Collapse
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
10
|
Shu L, Zhang Y, Sun Q, Pan H, Tang B. A Comprehensive Analysis of Population Differences in LRRK2 Variant Distribution in Parkinson's Disease. Front Aging Neurosci 2019; 11:13. [PMID: 30760999 PMCID: PMC6363667 DOI: 10.3389/fnagi.2019.00013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background:LRRK2 variants have been demonstrated to have distinct distributions in different populations. However, researchers have thus far chosen to focus on relatively few variants, such as R1628P, G2019S, and G2385R. We therefore investigated the relationship between common LRRK2 variants and PD risk in various populations. Methods: Using a set of strict inclusion criteria, six databases were searched, resulting in the selection of 94 articles covering 49,299 cases and 47,319 controls for final pooled analysis and frequency analysis. Subgroup analysis were done for Africans, European/West Asians, Hispanics, East Asians, and mixed populations. Statistical analysis was carried out using the Mantel-Haenszel approach to determine the relationship between common LRRK2 variants and PD risk, with the significance level set at p < 0.05. Results: In the absence of obvious heterogeneities and publication biases among the included studies, we concluded that A419V, R1441C/G/H, R1628P, G2019S, and G2385R were associated with increased PD risk (p: 0.001, 0.0004, < 0.00001, < 0.00001, and < 0.00001, respectively), while R1398H was associated with decreased risk (p: < 0.00001). In East Asian populations, A419V, R1628P, and G2385R increased risk (p: 0.001, < 0.00001, < 0.00001), while R1398H had the opposite effect (p: 0.0005). G2019S increased PD risk in both European/West Asian and mixed populations (p: < 0.00001, < 0.00001), while R1441C/G/H increased risk in European/West Asian populations only (p: 0.0004). Conclusions: We demonstrated that LRRK2 variant distribution is different among various populations, which should inform decisions regarding the development of future genetic screening strategies.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
11
|
Yahalom G, Greenbaum L, Israeli-Korn S, Fay-Karmon T, Livneh V, Ruskey JA, Roncière L, Alam A, Gan-Or Z, Hassin-Baer S. Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson's disease: Risk estimates and genotype-phenotype correlations. Parkinsonism Relat Disord 2018; 62:179-184. [PMID: 30573413 DOI: 10.1016/j.parkreldis.2018.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The clinical characteristics of Parkinson's disease (PD) associated with both the LRRK2 p.G2019S mutation and a GBA variant (LRRK2-GBA-PD) have not yet been determined. METHODS In this retrospective observational study of Ashkenazi-Jewish (AJ) PD patients, we describe the clinical course and characteristics of LRRK2-GBA-PD and estimate the risk to develop PD for the double mutation carriers. Odds ratios (OR) were estimated using published data on frequencies of GBA and LRRK2 mutations. Demographic and clinical data was retrieved from medical records and from rating at last visit. RESULTS Our analysis included 236 PD patients, divided into four groups: LRRK2-PD (n = 66), GBA-PD (n = 78), GBA-LRRK2-PD (n = 12) and mutation-negative PD (MNPD, n = 80 randomly selected). The estimated ORs in different models for GBA-LRRK2 PD were 15-28 (95% CI 6.7-72.0, p < 0.0001), compared to AJ controls. Using logistic regression (while controlling for sex, age at onset and PD duration), we found that probable REM-sleep behavior disorder (RBD) was significantly more common for GBA-PD than for LRRK2-PD, while none of the GBA-LRRK2-PD patients reported RBD. Dementia was significantly more common for GBA-PD than for the LRRK2-PD and MNPD. Psychosis was the most common for GBA-PD and least common for LRRK2-GBA-PD. CONCLUSIONS While GBA-PD is characterized by higher rates of dementia, probable RBD and psychosis, it seems that compared to the other groups, these features are less common for LRRK2-GBA-PD. This may imply to a possible protective effect of LRRK2 p.G2019S mutation among GBA variant carriers.
Collapse
Affiliation(s)
- Gilad Yahalom
- The Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel-Aviv University, Israel; The Danek Gertner Institute of Human Genetics and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Simon Israeli-Korn
- The Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Tsvia Fay-Karmon
- The Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Vered Livneh
- The Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Léanne Roncière
- Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Armaghan Alam
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sharon Hassin-Baer
- The Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
12
|
Ca 2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation. J Mol Med (Berl) 2017; 96:135-146. [PMID: 29124284 DOI: 10.1007/s00109-017-1607-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Our previous extensive analysis revealed a significant proportion of early-onset colorectal tumors from India to be localized to the rectum in younger individuals and devoid of deregulated Wnt/β-catenin signaling. In the current study, we performed a comprehensive genome-wide analysis of clinically well-annotated microsatellite stable early-onset sporadic rectal cancer (EOSRC) samples. Results revealed extensive DNA copy number alterations in rectal tumors in the absence of deregulated Wnt/β-catenin signaling. More importantly, transcriptome profiling revealed a (non-Wnt/β-catenin, non-MSI) genetic signature that could efficiently and specifically identify Wnt- rectal cancer. The genetic signature included a significant representation of genes belonging to Ca2+/NFAT signaling pathways that were validated in additional samples. The validated NFAT target genes exhibited significantly higher expression levels than canonical Wnt/β-catenin targets in Wnt- samples, an observation confirmed in other CRC expression data sets as well. We confirmed the validated genes to be transcriptionally regulated by NFATc1 by (a) evaluating their respective transcript levels and (b) performing promoter-luciferase and chromatin immunoprecipitation assays following ectopic expression as well as knockdown of NFATc1 in CRC cells. NFATc1 and its targets RUNX2 and GSN could drive increased migration in CRC cells. Finally, the validated genes were associated with poor survival in the cancer genome atlas CRC expression data set. This study is the first comprehensive molecular characterization of EOSRC that appears to be driven by noncanonical tumorigenesis pathways. KEY MESSAGES Early-onset sporadic rectal cancer exhibits DNA gain and loss without Wnt activation. Ca2+/NFAT signaling appears to be activated in the absence of Wnt activation. An eight-gene genetic signature distinguishes Wnt+ and Wnt- rectal tumors. NFAT and its target genes regulate tumorigenic properties in CRC cells.
Collapse
|
13
|
Genetic variation associated with the occurrence and progression of neurological disorders. Neurotoxicology 2017; 61:243-264. [DOI: 10.1016/j.neuro.2016.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
14
|
Cogo S, Greggio E, Lewis PA. Leucine Rich Repeat Kinase 2: beyond Parkinson's and beyond kinase inhibitors. Expert Opin Ther Targets 2017; 21:751-753. [PMID: 28609155 DOI: 10.1080/14728222.2017.1342968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Susanna Cogo
- a Department of Biology , University of Padova , Padua , Italy.,b School of Pharmacy , University of Reading , Reading , United Kingdom
| | - Elisa Greggio
- a Department of Biology , University of Padova , Padua , Italy
| | - Patrick A Lewis
- b School of Pharmacy , University of Reading , Reading , United Kingdom.,c Department of Molecular Neuroscience , UCL Institute of Neurology , London , United Kingdom
| |
Collapse
|
15
|
Hosseinzadeh Z, Singh Y, Shimshek DR, van der Putten H, Wagner CA, Lang F. Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na +/K + ATPase Activity in Dendritic Cells. Sci Rep 2017; 7:41117. [PMID: 28120865 PMCID: PMC5264149 DOI: 10.1038/srep41117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich repeat kinase 2 (Lrrk2) has been implicated in the pathophysiology of Parkinson's disease. Lrrk2 is expressed in diverse cells including neurons and dendritic cells (DCs). In DCs Lrrk2 was shown to up-regulate Na+/Ca2+-exchanger activity. The elimination of Ca2+ by Na+/Ca2+ -exchangers requires maintenance of the Na+ gradient by the Na+/K+ -ATPase. The present study thus explored whether Lrrk2 impacts on Na+/K+ -ATPase expression and function. To this end DCs were isolated from gene-targeted mice lacking Lrrk2 (Lrrk2-/-) and their wild-type littermates (Lrrk2+/+). Na+/K+ -ATPase activity was estimated from K+ induced, ouabain sensitive, current determined by whole cell patch clamp. Na+/K+ -ATPase α1 subunit transcript and protein levels were determined by RT-qPCR and flow cytometry. As a result, the K+ induced current was significantly smaller in Lrrk2-/- than in Lrrk2+/+ DCs and was completely abolished by ouabain (100 μM) in both genotypes. The K+ induced, ouabain sensitive, current in Lrrk2+/+ DCs was significantly blunted by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). The Na+/K+ -ATPase α1 subunit transcript and protein levels were significantly lower in Lrrk2-/- than in Lrrk2+/+ DCs and significantly decreased by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). In conclusion, Lrrk2 is a powerful regulator of Na+/K+ -ATPase expression and activity in dendritic cells.
Collapse
Affiliation(s)
- Zohreh Hosseinzadeh
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
- Experimental Retinal Prosthetics Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | - Derya R. Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Herman van der Putten
- Department of Neuroscience, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
- National Contest for Life (NCL) Foundation, 203555 Hamburg, Germany
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Florian Lang
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| |
Collapse
|
16
|
Abstract
LRRK2 mutations are present in 1% of all sporadic Parkinson's disease (PD) cases and 5% of all familial PD cases. Several mutations in the LRRK2 gene are associated with PD, the most common of which is the Gly2019Ser mutation. In the following review, we summarize the demographics and motor and non-motor symptoms of LRRK2 carriers with PD, as well as symptoms in non-manifesting carriers. The clinical features of LRRK2-associated PD are often indistinguishable from those of idiopathic PD on an individual basis. However, LRRK2 PD patients are likely to have less non-motor symptoms compared to idiopathic PD patients, including less olfactory and cognitive impairment. LRRK2-associated PD patients are less likely to report REM sleep behavior disorder (RBD) than noncarriers. In addition, it is possible that carriers are more prone to cancer than noncarriers with PD, but larger studies are required to confirm this observation. Development of more sensitive biomarkers to identify mutation carriers at risk of developing PD, as well as biomarkers of disease progression among LRRK2 carriers with PD, is required. Such biomarkers would help evaluate interventions, which may prevent PD among non-manifesting carriers, or slow down disease progression among carriers with PD.
Collapse
|
17
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Inzelberg R, Flash S, Friedman E, Azizi E. Cutaneous malignant melanoma and Parkinson disease: Common pathways? Ann Neurol 2016; 80:811-820. [PMID: 27761938 DOI: 10.1002/ana.24802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/03/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying the high prevalence of cutaneous malignant melanoma (CMM) in Parkinson disease (PD) are unclear, but plausibly involve common pathways. 129Ser-phosphorylated α-synuclein, a pathological PD hallmark, is abundantly expressed in CMM, but not in normal skin. In inherited PD, PARK genes harbor germline mutations; the same genes are somatically mutated in CMM, or their encoded proteins are involved in melanomagenesis. Conversely, genes associated with CMM affect PD risk. PD/CMM-targeted cells share neural crest origin and melanogenesis capability. Pigmentation gene variants may underlie their susceptibility. We review putative genetic intersections that may be suggestive of shared pathways in neurodegeneration/melanomagenesis. Ann Neurol 2016;80:811-820.
Collapse
Affiliation(s)
- Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer
| | - Shira Flash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Eitan Friedman
- Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer
- Departments of Internal Medicine and Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Esther Azizi
- Department of Dermatology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Kuwahara T, Inoue K, D’Agati VD, Fujimoto T, Eguchi T, Saha S, Wolozin B, Iwatsubo T, Abeliovich A. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci Rep 2016; 6:29945. [PMID: 27424887 PMCID: PMC4947924 DOI: 10.1038/srep29945] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson's disease (PD), Crohn's disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Departments of Pathology, Cell Biology and Neurology, and Taub Institute, Columbia University, New York, NY, 10032, USA
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keiichi Inoue
- Departments of Pathology, Cell Biology and Neurology, and Taub Institute, Columbia University, New York, NY, 10032, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Tetta Fujimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shamol Saha
- Department of Pharmacology and Experimental Therapeutics and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Asa Abeliovich
- Departments of Pathology, Cell Biology and Neurology, and Taub Institute, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
20
|
Abstract
Pathogenic mutations and risk variants in LRRK2 (leucine-rich repeat kinase 2) represent the most common genetic cause of familial and sporadic PD (Parkinson's disease). LRRK2 protein is widely expressed throughout the brain and the periphery. Structurally, LRRK2 contains several functional domains, including a dual enzymatic core consisting of a kinase and GTPase domain. Disease-linked variants are found in both these enzymatic domains as well as in the COR [C-terminal of ROC (Ras of complex proteins)] and WD40 protein–protein binding domain. The kinase domain is widely believed to be linked to toxicity, and thus the thrust of pharmaceutical effort has focused on developing LRRK2 kinase inhibitors. However, recent data have suggested that inhibition of LRRK2 activity results in reduced LRRK2 levels and peripheral side effects, which are similar to those observed in homozygous LRRK2-knockout and LRRK2 kinase-dead rodent models. In a recent issue of the Biochemical Journal, a study led by Nichols reveals that dephosphorylation of LRRK2 cellular phosphorylation sites (Ser910/Ser935/Ser955/Ser973) triggers its ubiquitination and subsequent degradation and thus may account for the loss of function phenotypes observed in peripheral tissues in LRRK2-knockout/kinase-dead or inhibitor-treated rodents and primates. Albeit negative from a kinase inhibitor standpoint, the data open new avenues for LRRK2 biology and therapeutic approaches to counteract LRRK2 toxicity.
Collapse
|
21
|
Yan J, Almilaji A, Schmid E, Elvira B, Shimshek DR, van der Putten H, Wagner CA, Shumilina E, Lang F. Leucine-rich repeat kinase 2-sensitive Na+/Ca2+ exchanger activity in dendritic cells. FASEB J 2015; 29:1701-10. [PMID: 25609428 DOI: 10.1096/fj.14-264028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 11/11/2022]
Abstract
Gene variants of the leucine-rich repeat kinase 2 (LRRK2) are associated with susceptibility to Parkinson's disease (PD). Besides brain and periphery, LRRK2 is expressed in various immune cells including dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. However, the function of LRRK2 in the immune system is still incompletely understood. Here, Ca(2+)-signaling was analyzed in DCs isolated from gene-targeted mice lacking lrrk2 (Lrrk2(-/-)) and their wild-type littermates (Lrrk2(+/+)). According to Western blotting, Lrrk2 was expressed in Lrrk2(+/+) DCs but not in Lrrk2(-/-)DCs. Cytosolic Ca(2+) levels ([Ca(2+)]i) were determined utilizing Fura-2 fluorescence and whole cell currents to decipher electrogenic transport. The increase of [Ca(2+)]i following inhibition of sarcoendoplasmatic Ca(2+)-ATPase with thapsigargin (1 µM) in the absence of extracellular Ca(2+) (Ca(2+)-release) and the increase of [Ca(2+)]i following subsequent readdition of extracellular Ca(2+) (SOCE) were both significantly larger in Lrrk2(-/-) than in Lrrk2(+/+) DCs. The augmented increase of [Ca(2+)]i could have been due to impaired Ca(2+) extrusion by K(+)-independent (NCX) and/or K(+)-dependent (NCKX) Na(+)/Ca(2+)-exchanger activity, which was thus determined from the increase of [Ca(2+)]i, (Δ[Ca(2+)]i), and current following abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular perfusate by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular perfusate. As a result, both slope and peak of Δ[Ca(2+)]i as well as Na(+)/Ca(2+) exchanger-induced current were significantly lower in Lrrk2(-/-) than in Lrrk2(+/+) DCs. A 6 or 24 hour treatment with the LRRK2 inhibitor GSK2578215A (1 µM) significantly decreased NCX1 and NCKX1 transcript levels, significantly blunted Na(+)/Ca(2+)-exchanger activity, and significantly augmented the increase of [Ca(2+)]i following Ca(2+)-release and SOCE. In conclusion, the present observations disclose a completely novel functional significance of LRRK2, i.e., the up-regulation of Na(+)/Ca(2+) exchanger transcription and activity leading to attenuation of Ca(2+)-signals in DCs.
Collapse
Affiliation(s)
- Jing Yan
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ahmad Almilaji
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Evi Schmid
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Bernat Elvira
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Derya R Shimshek
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Herman van der Putten
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Carsten A Wagner
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ekaterina Shumilina
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Florian Lang
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Recent advances in Parkinson’s disease genetics. J Neurol 2014; 261:259-66. [PMID: 23798000 DOI: 10.1007/s00415-013-7003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022]
Abstract
The last 5 years have seen rapid progress in Parkinson’s disease (PD) genetics, with the publication of a series of large-scale genome wide association studies for PD, and evaluation of the roles of the LRRK2 and GBA genes in the aetiology of PD. We are beginning to develop a coherent picture of the interplay of Mendelian and non-Mendelian factors in PD. Pathways involved in mitochondrial quality control (mitophagy), lysosomal function and immune function are emerging as important in the pathogenesis of PD. These pathways represent a target for therapeutic intervention and a way in which the heterogeneity of disease cause, as well as disease mechanism, can be established. In the future, there is likely to be an individualised basis for the treatment of PD, linked to the identification of specific genetic factors.
Collapse
|
23
|
Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging. Neurobiol Dis 2014; 71:62-73. [PMID: 25107341 PMCID: PMC4194318 DOI: 10.1016/j.nbd.2014.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 11/22/2022] Open
Abstract
The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19 months). The motor performance of G2019S KI mice remained stable up to the age of 19 months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function. The LRRK2 G2019S mutation confers a hyperkinetic phenotype. The LRRK2 D1994S kinase-dead mutation does not affect motor phenotype. The LRRK2 kinase inhibitors reverse motor phenotype of G2019S mice. The LRRK2 kinase inhibitors inhibit LRRK2 phosphorylation at Ser935 ex-vivo.
Collapse
|
24
|
Jiang E, Li F, Jing C, Li P, Cui H, Wang B, Ding M, Pang H. High-Resolution Melting Analysis as a Developed Method for Genotyping the PD Susceptibility Loci in LRRK2 Gene. J Clin Lab Anal 2014; 29:299-304. [PMID: 24849765 DOI: 10.1002/jcla.21769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 04/02/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) have been reported as a highly relevant point for the mechanisms of Parkinson's disease (PD). The invention of saturating dye makes it possible to identify heteroduplex DNA without redistribution during melting, which allows using high-resolution melting (HRM) to detect SNPs. However, the HRM analysis for detection of those SNPs associated with PD was rarely applied. METHODS Two SNPs, G2385R and R1628P, located in leucine-rich repeat kinase 2 (LRRK2) gene were individually and multiplexedly genotyped using HRM analysis. The sequence variant observed in unexpected HRM curves was confirmed by DNA sequencing. RESULTS HRM analysis identified successfully all genotypes both on R1628P and G2385R loci. The unexpected HRM curves appeared in R1628P amplicon generated from combinations of R1628P and rs11176013 loci. A multiplexed HRM assay that genotyped R1628P, rs11176013, and G2385R loci was efficiently established. CONCLUSIONS The present HRM assay is a reliable and rapid method for genotyping R1628P and G2385R loci in LRRK2 gene, and multiplex HRM analysis results in high throughput and has the potential to facilitate a wide range of genotyping studies on PD susceptibility genes.
Collapse
Affiliation(s)
- Enzhu Jiang
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Fengrui Li
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
- Department of Forensic Medicine, Baotou Medical College, Baotou, P.R. China
| | - Chenchen Jing
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Pei Li
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Honggang Cui
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Baojie Wang
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| |
Collapse
|
25
|
Puig-Butille JA, Escámez MJ, Garcia-Garcia F, Tell-Marti G, Fabra À, Martínez-Santamaría L, Badenas C, Aguilera P, Pevida M, Dopazo J, del Río M, Puig S. Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer. Oncotarget 2014; 5:1439-51. [PMID: 24742402 PMCID: PMC4039222 DOI: 10.18632/oncotarget.1444] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson's, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development.
Collapse
Affiliation(s)
- Joan Anton Puig-Butille
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - María José Escámez
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francisco Garcia-Garcia
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gemma Tell-Marti
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
| | - Àngels Fabra
- Biological Clues of the Invasive and Metastatic Phenotype Group. Molecular Oncology Lab, IDIBELL, Barcelona, Spain
| | - Lucía Martínez-Santamaría
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Celia Badenas
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Paula Aguilera
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Marta Pevida
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Tissue Engineering Unit. Centro Comunitario de Sangre y Tejidos del Principado de Asturias (CCST), Oviedo, Spain
| | - Joaquín Dopazo
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Marcela del Río
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Susana Puig
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
26
|
Abstract
Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Daniel C. Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
27
|
Surfactant secretion in LRRK2 knock-out rats: changes in lamellar body morphology and rate of exocytosis. PLoS One 2014; 9:e84926. [PMID: 24465451 PMCID: PMC3897396 DOI: 10.1371/journal.pone.0084926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.
Collapse
|
28
|
Ruiz-Martínez J, de la Riva P, Rodríguez-Oroz MC, Mondragón Rezola E, Bergareche A, Gorostidi A, Gago B, Estanga A, Larrañaga N, Sarasqueta C, López de Munain A, Martí Massó JF. Prevalence of cancer in Parkinson's disease related to R1441G and G2019S mutations in LRRK2. Mov Disord 2013; 29:750-5. [PMID: 24357540 DOI: 10.1002/mds.25778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022] Open
Abstract
An inverse relationship between Parkinson's disease (PD) and cancer has been described. However, the association between cancers and genetic forms of PD, in particular the R1441G mutation in the LRRK2 gene, is not well known. The objective of this work was to analyze cancer prevalence in PD patients with R1441G or G2019S mutations in LRRK2, and in idiopathic PD (iPD). A total of 732 patients with PD (70 and 25 carriers of R1441G or G2019S mutations, respectively), and 177 controls, were linked using a population-based cancer registry of the Spanish province of Gipuzkoa. Cancer prevalence was not significantly higher in PD-G2019S carriers (20%) than in PD-R1441G carriers (14.3%), iPD (13.8%), or controls (12.5%). With the exception of a high prevalence of hematological cancers (crude odds ratio of 7.1) in the R1441G group, specific cancer types were not increased in PD mutation carriers. In both the carrier and iPD groups, cancers were diagnosed after the onset of PD. PD patients had a similar prevalence of cancer to control subjects. There was no increased association between G2019S or R1441G mutations and any type of cancer. Although there was a higher prevalence of hematological cancers in the R1441G group, the low number of such cancers overall makes this finding of uncertain significance. There was a slightly higher but not statistically significant prevalence of non-skin cancers in the G2019S group, suggesting that further study to evaluate the association should be undertaken prior to ascribing an increased cancer risk to this population.
Collapse
Affiliation(s)
- Javier Ruiz-Martínez
- Department of Neurology, University Hospital Donostia, San Sebastián, Spain; Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), San Sebastián, Spain; Neurosciences Area, Biodonostia Institute, San Sebastián, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
LRRK2 G2385R variant carriers of female Parkinson’s disease are more susceptible to motor fluctuation. J Neurol 2013; 260:2884-9. [DOI: 10.1007/s00415-013-7086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 11/26/2022]
|
30
|
Berwick DC, Harvey K. LRRK2: an éminence grise of Wnt-mediated neurogenesis? Front Cell Neurosci 2013; 7:82. [PMID: 23754980 PMCID: PMC3668263 DOI: 10.3389/fncel.2013.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023] Open
Abstract
The importance of leucine-rich repeat kinase 2 (LRRK2) to mature neurons is well-established, since mutations in PARK8, the gene encoding LRRK2, are the most common known cause of Parkinson’s disease. Nonetheless, despite the LRRK2 knockout mouse having no overt neurodevelopmental defect, numerous lines of in vitro data point toward a central role for this protein in neurogenesis. Roles for LRRK2 have been described in many key processes, including neurite outgrowth and the regulation of microtubule dynamics. Moreover, LRRK2 has been implicated in cell cycle control, suggesting additional roles in neurogenesis that precede terminal differentiation. However, we contend that the suggested function of LRRK2 as a scaffolding protein at the heart of numerous Wnt signaling cascades provides the most tantalizing link to neurogenesis in the developing brain. Numerous lines of evidence show a critical requirement for multiple Wnt pathways in the development of certain brain regions, not least the dopaminergic neurons of the ventral mid-brain. In conclusion, these observations indicate a function of LRRK2 as a subtle yet critical mediator of the action of Wnt ligands on developing neurons. We suggest that LRRK2 loss- or gain-of-function are likely modifiers of developmental phenotypes seen in animal models of Wnt signaling deregulation, a hypothesis that can be tested by cross-breeding relevant genetically modified experimental strains.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, University College London School of Pharmacy, University College London London, UK
| | | |
Collapse
|
31
|
Lewis PA, Alessi DR. Deciphering the function of leucine-rich repeat kinase 2 and targeting its dysfunction in disease. Biochem Soc Trans 2012; 40:1039-41. [PMID: 22988861 DOI: 10.1042/bst20120178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
LRRK2 (leucine-rich repeat kinase 2) is a gene of unknown function that has been linked to a number a human diseases, including PD (Parkinson's disease), IBD (inflammatory bowel disease), leprosy and cancer. The papers from the LRRK2: Function and Dysfunction meeting in this issue of Biochemical Society Transactions explore our growing knowledge of LRRK2's normal function, the role that it plays in disease and emerging strategies to exploit LRRK2 as a therapeutic target.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, U.K.
| | | |
Collapse
|
32
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is an enzyme implicated in human disease, containing kinase and GTPase functions within the same multidomain open reading frame. Dominant mutations in the LRRK2 gene are the most common cause of familial PD (Parkinson's disease). Additionally, in genome-wide association studies, the LRRK2 locus has been linked to risk of PD, Crohn's disease and leprosy, and LRRK2 has also been linked with cancer. Despite its association with human disease, very little is known about its pathophysiology. Recent reports suggest a functional association between LRRK2 and autophagy. Implications of this set of data for our understanding of LRRK2′s role in physiology and disease are discussed in the present paper.
Collapse
|
33
|
Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 2012; 21:4966-79. [PMID: 22899650 PMCID: PMC3709196 DOI: 10.1093/hmg/dds342] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a frequent cause of Parkinson's disease (PD). Nonetheless, the physiological role of LRRK2 remains unclear. Here, we demonstrate that LRRK2 participates in canonical Wnt signaling as a scaffold. LRRK2 interacts with key Wnt signaling proteins of the β-catenin destruction complex and dishevelled proteins in vivo and is recruited to membranes following Wnt stimulation, where it binds to the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) in cellular models. LRRK2, therefore, bridges membrane and cytosolic components of Wnt signaling. Changes in LRRK2 expression affects pathway activity, while pathogenic LRRK2 mutants reduce both signal strength and the LRRK2–LRP6 interaction. Thus, decreased LRRK2-mediated Wnt signaling caused by reduced binding to LRP6 may underlie the neurodegeneration observed in PD. Finally, a newly developed LRRK2 kinase inhibitor disrupted Wnt signaling to a similar extent as pathogenic LRRK2 mutations. The use of LRRK2 kinase inhibition to treat PD may therefore need reconsideration.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
34
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is linked to various diseases, including Parkinson's disease, cancer, and leprosy. Data from LRRK2 knockout mice has highlighted a possible role for LRRK2 in regulating signaling pathways that are linked to the pathogenesis of Crohn's disease. Here, we examine how LRRK2's role as a signaling hub in the cell could lead to diverse pathologies.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
35
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
36
|
Hashad DI, Abou-Zeid AA, Achmawy GA, Allah HMOS, Saad MA. G2019S mutation of the leucine-rich repeat kinase 2 gene in a cohort of Egyptian patients with Parkinson's disease. Genet Test Mol Biomarkers 2011; 15:861-6. [PMID: 21699405 DOI: 10.1089/gtmb.2011.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM This work investigates the prevalence of G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene in a cohort of Egyptian patients with sporadic Parkinson's disease (PD) and its relation to various features of the disease. MATERIALS AND METHODS The study included 113 patients with sporadic PD and 87 healthy individuals as a control group. Clinical assessment was done using the Unified PD Rating Scale (UPDRS) and staging of PD was done according to Hoehn-Yahr score. The G2019S mutation was detected by polymerase chain reaction (PCR) followed by restriction digestion; results were confirmed using a 5' nuclease allelic discrimination real-time PCR method. RESULTS The G2019S mutation was detected in 11 patients (9.7%) with PD, all of whom were heterozygous, but it was not present in any of the controls. Among PD patients, carriers of the G2019S mutation had significantly higher UPDRS motor score and a higher score for resting tremor than noncarriers (p=0.019 and p=0.004, respectively). CONCLUSIONS The G2019S mutation in the LRRK2 gene is quite common in Egyptian patients with sporadic PD. The mutation is associated with a higher degree of motor effect but does not seem to affect mentation or behavioral aspects of the disease.
Collapse
Affiliation(s)
- Doaa I Hashad
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
37
|
Saunders-Pullman R, Barrett MJ, Stanley KM, Luciano MS, Shanker V, Severt L, Hunt A, Raymond D, Ozelius LJ, Bressman SB. LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease. Mov Disord 2011; 25:2536-41. [PMID: 20818610 DOI: 10.1002/mds.23314] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leucine rich repeat kinase (LRRK2) G2019S mutations are presumed to cause PD through a toxic gain of function of the protein kinase. Small molecule kinase inhibitors have been developed for the treatment of certain cancers, and some antioncogenic agents such as sunitinib, may nonspecifically inhibit LRRK2. Few studies, however, have assessed cancer risk in LRRK2 mutation carriers. To explore this risk, we evaluated records of Ashkenazi Jewish (AJ) PD patients participating in genetic research. Charts were reviewed for 163 unrelated AJ PD patients, 31 of whom harbored the G2019S mutation. History of cancer was queried at baseline intake using a form reviewing medical conditions, and charts were reviewed for all follow-up visits. 9/31 LRRK2 G2019S mutation carriers had nonskin cancers, whereas 15/132 without mutations had nonskin cancers, representing an almost threefold increased risk in this group (HR 2.9, 95% CI 1.3-6.6). Age at first nonskin cancer was younger in the LRRK2 carriers (56.0 years) than the noncarriers (62.0 years), but was not significant. 67% of the LRRK2 carriers had their cancer before the onset of PD, whereas only 40% of noncarriers developed their first nonskin cancer before onset of PD. While further evaluation is warranted, our findings indicate an increased risk of nonskin cancers in LRRK2 G2019S mutation carriers, which may be related to toxic gain of function of mutated LRRK2.
Collapse
|
38
|
Abstract
Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration.
Collapse
|
39
|
Breen DP, Barker RA. Parkinson’s disease and 2009: recent advances. J Neurol 2010; 257:1224-8. [DOI: 10.1007/s00415-010-5555-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
|
40
|
Thaler A, Ash E, Gan-Or Z, Orr-Urtreger A, Giladi N. The LRRK2 G2019S mutation as the cause of Parkinson's disease in Ashkenazi Jews. J Neural Transm (Vienna) 2010; 116:1473-82. [PMID: 19756366 DOI: 10.1007/s00702-009-0303-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/22/2009] [Indexed: 11/25/2022]
Abstract
Mutations in the leucine rich repeat kinase 2 gene (LRRK2) are recognized as the most common cause of genetic Parkinsonism to date. The G2019S mutation has been implicated as an important determinant of Parkinson's disease (PD) in both Ashkenazi Jewish and North African Arab populations with carrier frequency of 29.7% among familial and 6% in sporadic Ashkenazi Jewish PD cases. PD patients with the G2019S mutation display similar clinical characteristics to patients with sporadic PD. While the function of the LRRK2 protein has yet to be fully determined, its distribution coincides with brain areas most affected by PD. The G2019S mutation is believed to be responsible for up-regulation of LRRK2 kinase activity, which may ultimately play a role in neuronal loss. The utility of LRRK2 G2019S screening in family members of Ashkenazi PD patients is discussed. LRRK2 G2019S mutation carriers without PD may be an ideal population for the study of possible neuroprotective strategies as they become available, and for furthering the understanding of the pathogenesis and long-term clinical outcomes of the disease.
Collapse
Affiliation(s)
- Avner Thaler
- Department of Neurology, Sourasky Medical Center, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
41
|
Inzelberg R, Israeli-Korn SD. The particular relationship between Parkinson's disease and malignancy: a focus on skin cancers. J Neural Transm (Vienna) 2010; 116:1503-7. [PMID: 19789839 DOI: 10.1007/s00702-009-0322-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 09/16/2009] [Indexed: 02/01/2023]
Abstract
Although the risk for most cancers appears to be relatively low in patients with Parkinson's disease (PD), skin cancers and melanomas occur more frequently in the PD population as compared to controls. This article summarizes the findings of cohort studies on skin cancer in Parkinson's disease. Given that melanoma may precede use of L-dopa, the increased risk of melanoma for PD patients cannot be attributed to L-dopa. On the basis of these observations it may be reasonable to recommend that all patients with PD, whether treated with L-dopa or not, should undergo regular dermatological screening for neoplastic or pre-neoplastic skin lesions, especially melanoma.
Collapse
Affiliation(s)
- Rivka Inzelberg
- Department of Neurology, The Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.
| | | |
Collapse
|