1
|
Soontrapa P, Liewluck T. Anoctamin 5 (ANO5) Muscle Disorders: A Narrative Review. Genes (Basel) 2022; 13:genes13101736. [PMID: 36292621 PMCID: PMC9602132 DOI: 10.3390/genes13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Anoctaminopathy-5 refers to a group of hereditary skeletal muscle or bone disorders due to mutations in the anoctamin 5 (ANO5)-encoding gene, ANO5. ANO5 is a 913-amino acid protein of the anoctamin family that functions predominantly in phospholipid scrambling and plays a key role in the sarcolemmal repairing process. Monoallelic mutations in ANO5 give rise to an autosomal dominant skeletal dysplastic syndrome (gnathodiaphyseal dysplasia or GDD), while its biallelic mutations underlie a continuum of four autosomal recessive muscle phenotypes: (1). limb–girdle muscular dystrophy type R12 (LGMDR12); (2). Miyoshi distal myopathy type 3 (MMD3); (3). metabolic myopathy-like (pseudometabolic) phenotype; (4). asymptomatic hyperCKemia. ANO5 muscle disorders are rare, but their prevalence is relatively high in northern European populations because of the founder mutation c.191dupA. Weakness is generally asymmetric and begins in proximal muscles in LGMDR12 and in distal muscles in MMD3. Patients with the pseudometabolic or asymptomatic hyperCKemia phenotype have no weakness, but conversion to the LGMDR12 or MMD3 phenotype may occur as the disease progresses. There is no clear genotype–phenotype correlation. Muscle biopsy displays a broad spectrum of pathology, ranging from normal to severe dystrophic changes. Intramuscular interstitial amyloid deposits are observed in approximately half of the patients. Symptomatic and supportive strategies remain the mainstay of treatment. The recent development of animal models of ANO5 muscle diseases could help achieve a better understanding of their underlying pathomechanisms and provide an invaluable resource for therapeutic discovery.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
2
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Seguí F, Gonzalez-Quereda L, Sanchez A, Matas-García A, Garrabou G, Rodriguez MJ, Gallano P, Grau JM, Milisenda JC. Anoctamin 5 (ANO5) muscular dystrophy-three different phenotypes and a new histological pattern. Neurol Sci 2020; 41:2967-2971. [PMID: 32399949 DOI: 10.1007/s10072-020-04453-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/07/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Anoctamin 5 (ANO5) is a putative intracellular calcium-activated chloride channel. Recessive mutations in ANO5 may present from asymptomatic hyperCKemia and exercise-induced myalgia to proximal and/or distal muscle weakness. Here we describe the clinical, pathological, and molecular findings of three unrelated patients with ANO5-related muscular dystrophy. METHODS In this retrospective study, we analyzed our database which includes 1700 muscle biopsies performed for diagnostic purposes from October 2004 to February 2019. Patients were attended by two myology experts, who performed and analyzed the muscle biopsies. Muscle biopsies were frozen in cooled isopenthane, cryostat sectioned, and routinely stained and reacted (minimum 16 stainings). A custom panel, including 115 genes (Nextera Rapid Capture, Illumina) and whole-exome sequencing analysis, was used for next-generation sequencing in cases without a definite pathological diagnosis. RESULTS Three patients were diagnosed with ANO5-related muscular dystrophy, with all presenting the common exon 5 mutation c.191dup plus a compound heterozygous missense mutation. They showed three different phenotypes (distal myopathy, LGMD2L, and asymptomatic hyperCKemia). Curiously, all three muscle biopsies showed different patterns, but numerous ragged-red fibers with little endomysial inflammation and partial invasion cell by T lymphocytes were observed in one. CONCLUSION ANO5-related muscular dystrophy is a heterogeneous disease with different clinical phenotypes as well as different histological patterns, which may even mimic a mitochondrial myopathy. The results of this study provide further knowledge of the clinical, histological, and pathological features related to ANO5 mutations.
Collapse
Affiliation(s)
- Ferran Seguí
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de Barcelona, Universidad de Barcelona and CIBERER, C/Villarroel, 170 08036, Barcelona, Spain
| | | | - Aurora Sanchez
- Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Matas-García
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de Barcelona, Universidad de Barcelona and CIBERER, C/Villarroel, 170 08036, Barcelona, Spain
| | - Gloria Garrabou
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de Barcelona, Universidad de Barcelona and CIBERER, C/Villarroel, 170 08036, Barcelona, Spain
| | - Maria José Rodriguez
- Genetics Department, Hospital de la Santa Creu i Sant Pau and CIBERER, Barcelona, Spain
| | - Pia Gallano
- Genetics Department, Hospital de la Santa Creu i Sant Pau and CIBERER, Barcelona, Spain
| | - Josep Maria Grau
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de Barcelona, Universidad de Barcelona and CIBERER, C/Villarroel, 170 08036, Barcelona, Spain
| | - José César Milisenda
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de Barcelona, Universidad de Barcelona and CIBERER, C/Villarroel, 170 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Wang X, Liu X, Dong R, Liang C, Reichenberger EJ, Hu Y. Genetic Disruption of Anoctamin 5 in Mice Replicates Human Gnathodiaphyseal Dysplasia (GDD). Calcif Tissue Int 2019; 104:679-689. [PMID: 30712070 DOI: 10.1007/s00223-019-00528-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal disorder which is mainly characterized by cemento-osseous lesions in mandibles, bone fragility, bowing and diaphyseal sclerosis of tubular bones. GDD is caused by point mutations in Anoctamin-5 (ANO5); however, the disease mechanisms remain unclear. Here we generated Ano5-knockout (KO) mice using a CRISPR/Cas 9 approach to study loss of function aspects of GDD mutations. Homozygous Ano5 knockout mice (Ano5-/-) replicate some typical traits of human GDD including massive jawbones, bowing tibia, sclerosis and cortical thickening of femoral and tibial diaphyses. Serum alkaline phosphatase (ALP) levels were elevated in Ano5-/- mice as in GDD patients. Calvaria-derived Ano5-/- osteoblast cultures show increased osteoblastogenesis, which is consistent with our previous in vitro observations. Bone matrix is hypermineralized, and the expression of bone formation-related factors is enhanced in Ano5-/- mice, suggesting that the osteogenic anomaly arises from a genetic disruption of Ano5. We believe this new mouse model will shed more light on the development of skeletal abnormalities in GDD on a cellular and molecular level.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiu Liu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rui Dong
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chao Liang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, USA
| | - Ying Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China.
- Beijing Stomatological Hospital, Beijing Institute of Dental Research, Capital Medical University, No 4 Tiantanxili, Dongcheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
5
|
Anandan C, Milone M, Liewluck T. Intramuscular interstitial amyloid deposition does not impact anoctaminopathy-5 phenotype. Muscle Nerve 2018; 59:133-137. [DOI: 10.1002/mus.26349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Charenya Anandan
- Department of Neurology; Mayo Clinic; 200 First Street SW, Rochester Minnesota 55905 USA
| | - Margherita Milone
- Department of Neurology; Mayo Clinic; 200 First Street SW, Rochester Minnesota 55905 USA
| | - Teerin Liewluck
- Department of Neurology; Mayo Clinic; 200 First Street SW, Rochester Minnesota 55905 USA
| |
Collapse
|
6
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
7
|
Liewluck T, Milone M. Characterization of isolated amyloid myopathy. Eur J Neurol 2017; 24:1437-1445. [PMID: 28888072 DOI: 10.1111/ene.13448] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Amyloid myopathy frequently occurs in the setting of systemic amyloidosis and less commonly in isolation (isolated amyloid myopathy). Anoctaminopathy-5 and dysferlinopathy were recently recognized as causes of isolated amyloid myopathy. The present study aimed to characterize the isolated amyloid myopathy and to compare it with amyloid myopathy associated with systemic amyloidosis. METHODS We searched the Muscle Laboratory database to identify patients with pathologically confirmed amyloid myopathy seen in neurology clinics between January 1998 and September 2016. Patients with monoclonal gammopathy, peripheral neuropathy, organomegaly or symptoms or pathologic evidence of amyloid deposition outside skeletal muscle were classified as having systemic amyloidosis-associated myopathy. RESULTS Fifty-two patients were identified, including 14 with isolated amyloid myopathy (eight anoctaminopathy-5, two dysferlinopathy and four genetically unknown) and 38 with systemic amyloidosis (32 immunoglobulin light-chain amyloidosis, four familial amyloid polyneuropathy and two senile systemic amyloidosis). Compared with patients with systemic amyloidosis, patients with isolated amyloid myopathy had a younger age of onset (median, 41.5 vs. 65 years), no dysphagia (0% vs. 26%) or weight loss (0% vs. 26%), but more frequent calf atrophy (57% vs. 0%), small collections of inflammatory cells on muscle biopsy (43% vs. 0%) and asymptomatic hyperCKemia at onset (21% vs. 0%). All patients with isolated amyloid myopathy had creatine kinase (CK) values >2.5 times the upper limit of normal. CONCLUSIONS Isolated amyloid myopathy accounts for 27% of patients with amyloid myopathy, mostly due to anoctaminopathy-5. There are various clinical and laboratory parameters that can help to differentiate isolated amyloid myopathy from systemic amyloidosis.
Collapse
Affiliation(s)
- T Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M Milone
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Xu J, El Refaey M, Xu L, Zhao L, Gao Y, Floyd K, Karaze T, Janssen PML, Han R. Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy. Skelet Muscle 2015; 5:43. [PMID: 26693275 PMCID: PMC4685631 DOI: 10.1186/s13395-015-0069-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Anoctamin 5 (ANO5) is a member of a conserved gene family (TMEM16), which codes for proteins predicted to have eight transmembrane domains and putative Ca(2+)-activated chloride channel (CaCC) activity. It was recently reported that mutations in this gene result in the development of limb girdle muscular dystrophy type 2L (LGMD2L), Miyoshi myopathy type 3 (MMD3), or gnathodiaphyseal dysplasia 1 (GDD1). Currently, there is a lack of animal models for the study of the physiological function of Ano5 and the disease pathology in its absence. RESULTS Here, we report the generation and characterization of the first Ano5-knockout (KO) mice. Our data demonstrate that the KO mice did not present overt skeletal or cardiac muscle pathology at rest conditions from birth up to 18 months of age. There were no significant differences in force production or force deficit following repeated eccentric contractions between wild type (WT) and KO mice. Although cardiac hypertrophy developed similarly in both KO and WT mice after daily isoproterenol (ISO, 100 mg/kg) treatment via intraperitoneal injection for 2 weeks, they were functionally indiscernible. However, microarray analysis identified the genes involved in lipid metabolism, and complement pathways were altered in the KO skeletal muscle. CONCLUSIONS Taken together, these data provide the evidence to show that genetic ablation of Ano5 in C57BL/6J mice does not cause overt pathology in skeletal and cardiac muscles, but Ano5 deficiency may lead to altered lipid metabolism and inflammation signaling.
Collapse
Affiliation(s)
- Jing Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Mona El Refaey
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Lixia Zhao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Kyle Floyd
- Department of Physiology and Cell Biology, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Tallib Karaze
- Department of Physiology and Cell Biology, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Bohlega S, Monies DM, Abulaban AA, Murad HN, Alhindi HN, Meyer BF. Clinical and genetic features of anoctaminopathy in Saudi Arabia. ACTA ACUST UNITED AC 2015; 20:173-7. [PMID: 25864073 PMCID: PMC4727640 DOI: 10.17712/nsj.2015.2.20140547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives: Characterization of the phenotypic, pathological, radiological, and genetic findings in 2 Saudi Arabian families with anoctaminopathies, and limb girdle muscular dystrophy type 2L (LGMD2L). Methods: Over a 2-year period from December 2010 to January 2013, the clinical presentations were analyzed and all genes responsible for limb girdle muscular dystrophy (LGMD) were screened in families seen at King Faisal Specialist Hospital and Research Centre, a tertiary care hospital in Riyadh, Saudi Arabia. Out of 66 families with LGMD, we identified 2 families (3.1%) with anoctaminopathy, ANO5 muscular dystrophy. Results: In the first case, a man presented with asymmetrical calves’ muscles weakness and atrophy, which was first noted at age 39. The creatinine kinase (CK) level was >20x normal, muscle biopsy showed necrotizing myopathic changes, and an MRI of the legs showed fatty-tissue replacement to muscle tissue with volume loss involving the gastrocnemius and soleus muscles in an asymmetrical fashion. Minimal disease progression was noted over 18 years of follow up. Exercise induced recurrent rhabdomyolysis was noted over the last 2 years. A novel ANO5 gene mutation (Arg58Trp) was found. In the second family, a male presented at the age of 41 with asymptomatic hyperCkemia and intermittent dyspnea. Over 10 years follow up, he became disabled with muscle cramps, rhabdomyolysis, myoglobinurea, and difficulty ambulating. Muscle biopsy showed necrotizing myopathy and perivascular and interstitial amyloid deposit in skeletal muscle. A homozygous deletion of 11.9 Kb encompassing exon 13 to exon 17 was found in the ANO5 gene. Full cardiac investigations were normal in both patients. Conclusion: The prevalence of LGMD2L is approximately 3.1% in a Saudi Arabian native LGMD cohort. Slowly progressive, late onset, and asymmetrical weakness was the salient features in these 2 families. The genetic findings were novel and will add to the spectrum of ANO5 known mutations.
Collapse
Affiliation(s)
- Saeed Bohlega
- Department of Neurosciences, MBC 76, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia. E-mail:
| | | | | | | | | | | |
Collapse
|
10
|
Vissing CR, Preisler N, Husu E, Prahm KP, Vissing J. Aerobic training in patients with anoctamin 5 myopathy and hyperckemia. Muscle Nerve 2014; 50:119-23. [DOI: 10.1002/mus.24112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Christoffer R. Vissing
- Neuromuscular Research Unit, Department of Neurology, Section 3342, Rigshospitalet; University of Copenhagen; Blegdamsvej 9, DK-2100 Copenhagen Denmark
| | - Nicolai Preisler
- Neuromuscular Research Unit, Department of Neurology, Section 3342, Rigshospitalet; University of Copenhagen; Blegdamsvej 9, DK-2100 Copenhagen Denmark
| | - Edith Husu
- Neuromuscular Research Unit, Department of Neurology, Section 3342, Rigshospitalet; University of Copenhagen; Blegdamsvej 9, DK-2100 Copenhagen Denmark
| | - Kira P. Prahm
- Neuromuscular Research Unit, Department of Neurology, Section 3342, Rigshospitalet; University of Copenhagen; Blegdamsvej 9, DK-2100 Copenhagen Denmark
| | - John Vissing
- Neuromuscular Research Unit, Department of Neurology, Section 3342, Rigshospitalet; University of Copenhagen; Blegdamsvej 9, DK-2100 Copenhagen Denmark
| |
Collapse
|
11
|
Abstract
The distal myopathies are a heterogeneous group of genetic disorders defined by a predominant distal weakness at onset or throughout the evolution of the disease and by pathological data supporting a myopathic process. The number of genes associated with distal myopathies continues to increase. Fourteen distinct distal myopathies are currently defined by their gene and causative mutations, compared to just five entities delineated on clinical grounds two decades ago. The known proteins affected in the distal myopathies are of many types and include a significant number of sarcomeric proteins. The useful indicators for clinicians to direct towards a correct molecular diagnosis are the mode of inheritance, the age at onset, the pattern of muscle involvement, the serum creatine kinase level and the muscle pathology findings. This review gives an overview of the clinical and genetic characteristics of the currently identified distal myopathies with emphasis on some recent findings.
Collapse
|
12
|
Sarkozy A, Hicks D, Hudson J, Laval SH, Barresi R, Hilton-Jones D, Deschauer M, Harris E, Rufibach L, Hwang E, Bashir R, Walter MC, Krause S, van den Bergh P, Illa I, Pénisson-Besnier I, De Waele L, Turnbull D, Guglieri M, Schrank B, Schoser B, Seeger J, Schreiber H, Gläser D, Eagle M, Bailey G, Walters R, Longman C, Norwood F, Winer J, Muntoni F, Hanna M, Roberts M, Bindoff LA, Brierley C, Cooper RG, Cottrell DA, Davies NP, Gibson A, Gorman GS, Hammans S, Jackson AP, Khan A, Lane R, McConville J, McEntagart M, Al-Memar A, Nixon J, Panicker J, Parton M, Petty R, Price CJ, Rakowicz W, Ray P, Schapira AH, Swingler R, Turner C, Wagner KR, Maddison P, Shaw PJ, Straub V, Bushby K, Lochmüller H. ANO5 gene analysis in a large cohort of patients with anoctaminopathy: confirmation of male prevalence and high occurrence of the common exon 5 gene mutation. Hum Mutat 2013; 34:1111-8. [PMID: 23606453 DOI: 10.1002/humu.22342] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 11/11/2022]
Abstract
Limb girdle muscular dystrophy type 2L or anoctaminopathy is a condition mainly characterized by adult onset proximal lower limb muscular weakness and raised CK values, due to recessive ANO5 gene mutations. An exon 5 founder mutation (c.191dupA) has been identified in most of the British and German LGMD2L patients so far reported. We aimed to further investigate the prevalence and spectrum of ANO5 gene mutations and related clinical phenotypes, by screening 205 undiagnosed patients referred to our molecular service with a clinical suspicion of anoctaminopathy. A total of 42 unrelated patients had two ANO5 mutations (21%), whereas 14 carried a single change. We identified 34 pathogenic changes, 15 of which are novel. The c.191dupA mutation represents 61% of mutated alleles and appears to be less prevalent in non-Northern European populations. Retrospective clinical analysis corroborates the prevalently proximal lower limb phenotype, the male predominance and absence of major cardiac or respiratory involvement. Identification of cases with isolated hyperCKaemia and very late symptomatic male and female subjects confirms the extension of the phenotypic spectrum of the disease. Anoctaminopathy appears to be one of the most common adult muscular dystrophies in Northern Europe, with a prevalence of about 20%-25% in unselected undiagnosed cases.
Collapse
Affiliation(s)
- Anna Sarkozy
- Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liewluck T, Winder TL, Dimberg EL, Crum BA, Heppelmann CJ, Wang Y, Bergen HR, Milone M. ANO5-muscular dystrophy: clinical, pathological and molecular findings. Eur J Neurol 2013; 20:1383-9. [DOI: 10.1111/ene.12191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/08/2013] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - E. L. Dimberg
- Department of Neurology; Mayo Clinic; Jacksonville; FL; USA
| | - B. A. Crum
- Department of Neurology; Mayo Clinic; Rochester; MN; USA
| | | | - Y. Wang
- Prevention Genetics; Marshfield; WI; USA
| | - H. R. Bergen
- Proteomics Core; Mayo Clinic; Rochester; MN; USA
| | - M. Milone
- Department of Neurology; Mayo Clinic; Rochester; MN; USA
| |
Collapse
|