1
|
Wang J, Li M, Zhu J, Cheng L, Kong P. Mycobacterium tuberculosis combine with EBV infection in severe adult meningoencephalitis: a rare case reports and literature review. Front Cell Infect Microbiol 2024; 14:1361119. [PMID: 39469454 PMCID: PMC11513340 DOI: 10.3389/fcimb.2024.1361119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Tuberculous meningitis (TBM) with adults Epstein-Barr (EB) virus encephalitis is a very rare infectious disease, with a high mortality and disability. Metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) is highly diagnostic. We report on a case of severe meningoencephalitis caused by co-infection with mycobacterium tuberculosis and EB virus. Brain MRI indicated a parenchyma lesion in the brain. mNGS of CSF indicated Mycobacterium tuberculosis and EB virus amplification, positive serum EB virus IgG antibodies, and improved symptoms after anti-tuberculosis and antiviral treatment. A re-examination of the brain MRI revealed that the significantly absorption of the lesions. Case report A 49-year-old male patient presented with a chief complaint of headache and fever with consciousness disturbance. The brain magnetic resonance imaging showed a lesions in the right parenchymal brain with uneven enhancement, accompanied by significantly increased intracranial pressure, elevated CSF cell count and protein levels, as well as notably decreased glucose and chloride levels. mNGS of CSF showed the coexistence of Mycobacterium tuberculosis and EBV. The patient was diagnosed as TBM with EBV encephalitis. The patient's symptoms gradually improved with the active administration of anti-tuberculosis combined with antiviral agents, the use of hormones to reduce inflammatory reaction, dehydration to lower intracranial pressure, and intrathecal injection. Subsequent follow-up brain magnetic resonance imaging indicated significant absorption of the lesions, along with a marked decrease in CSF count and protein levels, as well as obvious increase in glucose and chloride levels. Conclusion TBM associated with adult EBV encephalitis is extremely rare. The disease's early stages are severe and have a high fatality rate. A prompt and accurate diagnosis is particularly important. NGS of CSF is of great value for early diagnosis.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | | | | | | | | |
Collapse
|
2
|
Suqin D, Yongjie L, Wei Z, Ming Z, Yanyan L, Yuan Z, Weihua J, Quan L, Mingxue L, Wenting S, Lixiong C, Hongjie X, Jie T, Jingshan H, Zijun D, Fengmei Y, Shaohui M, Zhanlong H. A 3-month-old neonatal rhesus macaque HFMD model caused by coxsackievirus B1 infection and viral tissue tropism. J Med Virol 2024; 96:e29707. [PMID: 38932451 DOI: 10.1002/jmv.29707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 06/28/2024]
Abstract
Coxsackievirus B1 (CVB1), an enterovirus with multiple clinical presentations, has been associated with potential long-term consequences, including hand, foot, and mouth disease (HFMD), in some patients. However, the related animal models, transmission dynamics, and long-term tissue tropism of CVB1 have not been systematically characterized. In this study, we established a model of CVB1 respiratory infection in rhesus macaques and evaluated the clinical symptoms, viral load, and immune levels during the acute phase (0-14 days) and long-term recovery phase (15-30 days). We also investigated the distribution, viral clearance, and pathology during the long-term recovery period using 35 postmortem rhesus macaque tissue samples collected at 30 days postinfection (d.p.i.). The results showed that the infected rhesus macaques were susceptible to CVB1 and exhibited HFMD symptoms, viral clearance, altered cytokine levels, and the presence of neutralizing antibodies. Autopsy revealed positive viral loads in the heart, spleen, pancreas, soft palate, and olfactory bulb tissues. HE staining demonstrated pathological damage to the liver, spleen, lung, soft palate, and tracheal epithelium. At 30 d.p.i., viral antigens were detected in visceral, immune, respiratory, and muscle tissues but not in intestinal or neural tissues. Brain tissue examination revealed viral meningitis-like changes, and CVB1 antigen expression was detected in occipital, pontine, cerebellar, and spinal cord tissues at 30 d.p.i. This study provides the first insights into CVB1 pathogenesis in a nonhuman primate model of HFMD and confirms that CVB1 exhibits tissue tropism following long-term infection.
Collapse
Affiliation(s)
- Duan Suqin
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Li Yongjie
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhang Wei
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhang Ming
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Li Yanyan
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhao Yuan
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Jin Weihua
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Liu Quan
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Li Mingxue
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Sun Wenting
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Chen Lixiong
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Xu Hongjie
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Tang Jie
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Hou Jingshan
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Deng Zijun
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Yang Fengmei
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Ma Shaohui
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - He Zhanlong
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Medical Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
3
|
Meylor J, Artunduaga DC, Mendoza M, Hooshmand SI, Obeidat AZ. Progressive multifocal leukoencephalopathy in patients with chronic kidney disease. Neurol Sci 2024; 45:1619-1624. [PMID: 37950135 DOI: 10.1007/s10072-023-07182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system infection caused by the human polyomavirus 2, leading to demyelination from oligodendrocyte death and rapid neurologic decline. Most commonly, PML affects patients in immunocompromised states. However, rare reports of PML in an immunocompetent host exist. Here, we report two cases of PML in older individuals with chronic kidney disease (CKD). CKD can ultimately lead to immune system dysfunction and place patients in a relatively immunosuppressed state. Testing for JC virus should remain a consideration for rapid, unexplained neurologic decline even without known immunocompromised status in the appropriate clinical setting.
Collapse
Affiliation(s)
- Jennifer Meylor
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael Mendoza
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sam I Hooshmand
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Neurology, Division of Neuroimmunology and Multiple Sclerosis, The Medical College of Wisconsin, Hub of Collaborative Research, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Lupia T, Corcione S, Staffilano E, Bosio R, Curtoni A, Busca A, De Rosa FG. Disseminated Enterovirus Infection in a Patient Affected by Follicular Lymphoma Treated with Obinutuzumab: A Case Report and a Narrative Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:495. [PMID: 38541221 PMCID: PMC10972032 DOI: 10.3390/medicina60030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives: the principal purpose of this literature review is to cluster adults with hematological malignancies after treatment or on maintenance with obinutuzumab who experienced disseminated EV infection to understand clinical characteristics and outcome of this rare condition in these patients. We report the first clinical case of a male affected by follicular lymphoma treated with immune-chemotherapy including obinutuzumab who was affected by disseminated EV infection with cardiovascular involvement. Materials and Methods: this narrative review summarizes all the research about disseminated EV infection in immunosuppressed adult patients treated with obinutuzumab from January 2000 to January 2024 using the Scale for the Assessment of Narrative Review Articles (SANRA) flow-chart. We performed a descriptive statistic using the standard statistical measures for quantitative data. Results: we included six studies, five case reports, and one case report with literature analysis. We collected a total of seven patients, all female, with disseminated EV infection. The most common signs and clinical presentations of EV infection were fever and encephalitis symptoms (N = 6, 85.7%), followed by hepatitis/acute liver failure (N = 5, 71.4%). Conclusions: onco-hematological patients who receive immune-chemotherapy with a combination of treatments which depress adaptative immunity, which includes the antiCD20 obinutuzumab, could be at higher risk of disseminated EV infection, including CNS and cardiac involvement.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, AOU City of Health and Sciences, 10100 Turin, Italy; (S.C.); (F.G.D.R.)
| | - Silvia Corcione
- Unit of Infectious Diseases, AOU City of Health and Sciences, 10100 Turin, Italy; (S.C.); (F.G.D.R.)
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (E.S.); (R.B.)
| | - Elena Staffilano
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (E.S.); (R.B.)
| | - Roberta Bosio
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (E.S.); (R.B.)
| | - Antonio Curtoni
- Microbiology and Virology Unit, AOU City of Health and Sciences, 10100 Turin, Italy;
| | - Alessandro Busca
- Department of Oncology, Stem Cell Transplant Center, Città Della Salute e Della Scienza Hospital, 10100 Turin, Italy;
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, AOU City of Health and Sciences, 10100 Turin, Italy; (S.C.); (F.G.D.R.)
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (E.S.); (R.B.)
| |
Collapse
|
5
|
Balaji S, Chakraborty R, Aggarwal S. Neurological Complications Caused by Human Immunodeficiency Virus (HIV) and Associated Opportunistic Co-infections: A Review on their Diagnosis and Therapeutic Insights. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:284-305. [PMID: 37005520 DOI: 10.2174/1871527322666230330083708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 04/04/2023]
Abstract
Neurocognitive disorders associated with human immunodeficiency virus (HIV) infected individuals increase the risk of mortality and morbidity that remain a prevalent clinical complication even in the antiretroviral therapy era. It is estimated that a considerable number of people in the HIV community are developing neurological complications at their early stages of infection. The daily lives of people with chronic HIV infections are greatly affected by cognitive declines such as loss of attention, learning, and executive functions, and other adverse conditions like neuronal injury and dementia. It has been found that the entry of HIV into the brain and subsequently crossing the blood-brain barrier (BBB) causes brain cell damage, which is the prerequisite for the development of neurocognitive disorders. Besides the HIV replication in the central nervous system and the adverse effects of antiretroviral therapy on the BBB, a range of opportunistic infections, including viral, bacterial, and parasitic agents, augment the neurological complications in people living with HIV (PLHIV). Given the immuno-compromised state of PLHIV, these co-infections can present a wide range of clinical syndromes with atypical manifestations that pose challenges in diagnosis and clinical management, representing a substantial burden for the public health system. Therefore, the present review narrates the neurological complications triggered by HIV and their diagnosis and treatment options. Moreover, coinfections that are known to cause neurological disorders in HIV infected individuals are highlighted.
Collapse
Affiliation(s)
- Sivaraman Balaji
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| | - Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Aggarwal
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
6
|
Marinho EPM, Ferreira EDS, Barrionuevo CCLB, Melo SA, Cordeiro JSM, Pinto SD, Monte RL, da Silva VA, Martins YF, Reis MF, Tufic-Garutti SDS, Sampaio VDS, de Castro DB, Feitoza PVS, da Rocha LA, de Lima Ferreira LC, Bastos MDS. Pediatric central nervous system infections in the Amazon: clinical and laboratory profiles. Front Public Health 2023; 11:1329091. [PMID: 38186717 PMCID: PMC10768178 DOI: 10.3389/fpubh.2023.1329091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Background Central nervous system (CNS) infections are important causes of mortality and morbidity in children, and they are related to severe problems such as hearing loss, neurological sequelae, and death. The objective was to describe clinical and laboratory exam profiles of children who were diagnosed with CNS infections. Methods We conducted a cross-sectional study based on medical records, which included pediatric patients aged from 3 months to 15 years, with a clinical suspicion of CNS infection between January 2014 to December 2019. The pathogens were confirmed in cerebrospinal fluid (CSF) samples using Gram staining, cell culture, molecular diagnostics (PCR and qPCR), and serology. Results Out of the 689 enrolled patients, 108 (15.6%) had laboratory-confirmed infections in CSF. The most common bacterial pathogens isolated from the culture were Neisseria meningitidis serogroup C in 19, Streptococcus pneumoniae in 11, and Haemophilus influenzae in seven samples. The viruses identified were Enterovirus, Cytomegalovirus, Varicella-zoster virus, Epstein-Barr virus, and arbovirus. No patient was found to be positive for Herpes simplex virus 1 and 2. Patients with viral infections showed altered levels of consciousness (p = 0.001) when compared to bacterial infections. Conclusion This study shows the presence of important vaccine-preventable pathogens, and different families of viruses causing CNS infections in the pediatric patients of Manaus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Monique Freire Reis
- Departamento de Patologia e Medicina Legal, Universidade Federal do Amazonas, Manaus, Brazil
- Departamento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Amazonas, Manaus, Brazil
| | | | | | - Daniel Barros de Castro
- Universidade Federal do Amazonas, Manaus, Brazil
- Fundação de Vigilância em Saúde Dra. Rosemary Casta Pinto, Manaus, Brazil
| | | | - Lucia Alves da Rocha
- Universidade Federal do Amazonas, Manaus, Brazil
- Hospital e Pronto Socorro da Criança Zona Oeste, Manaus, Brazil
| | | | - Michele de Souza Bastos
- Universidade Federal do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| |
Collapse
|
7
|
Tu R, Zhou C, Huang W, Feng Z, Zhao Q, Shi X, Cui L, Chen K. Fuzi polysaccharides improve immunity in immunosuppressed mouse models by regulating gut microbiota composition. Heliyon 2023; 9:e18244. [PMID: 37519691 PMCID: PMC10372400 DOI: 10.1016/j.heliyon.2023.e18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Rationale and objectives Fuzi, the dried root of Aconitum carmichaelii Debx, is one of the widely used traditional Chinese medicines. Fuzi polysaccharides are considered the most bioactive compounds with immunomodulatory functions, however, the mechanisms have not been evaluated. This study aims to systematically investigate the effects of Fuzi polysaccharides on the gut microbiota and immune function using a mouse model immunosuppressed with cyclophosphamide. Methods The short-chain fatty acid levels in cecal contents were measured by gas chromatography-mass spectrometry. The gut microbiota 16S rRNA gene were sequenced by next generation sequencing. The mRNA expression levels of NF-κB, IL-6, TNF-α, iNOS and COX-2 were measured using quantitative real-time polymerase chain reaction. The protein expression of occludin and zonula occludens-1 were analyzed by Western blot. The white blood cells were counted using automated hematology analyzer, and CD4+FOXP3+/CD4+ ratio was measured by flow cytometry. Results and Conclusions Fuzi polysaccharides had the function of elevating the concentration of acetic acid, propionic acid, isobutyric acid, and n-butyric acid in the cecum. Meanwhile, Fuzi polysaccharides could decrease the relative abundance of Helicobacter, Anaerotruncus, Faecalibacterium, Lachnospira, Erysipelotrichaceae_UCG-003, Mucispirillum, and Mycoplasma, and increase the relative abundance of Rhodospirillales, Ruminococcaceae_UCG-013, Mollicutes_RF39, Ruminococcus_1, Christensenellaceae_R-7_group, and Muribaculaceae in the gut. Furthermore, Fuzi polysaccharides exhibited the function of increasing spleen and thymus indices and number of white blood cells and lymphocytes. Fuzi polysaccharides could reverse the decreased mRNA expression of NF-кB, IL-6, and iNOS, differentiation of CD4+FOXP3+ regulatory T cells as well as protein expression of occludin and zonula occludens-1 induced by cyclophosphamide. In addition, the mRNA and protein expression of cytokines were significantly correlated with the abundance of gut microbiota under Fuzi polysaccharides treatment. Collectively, the above results demonstrated that Fuzi polysaccharides could regulate inflammatory cytokines and gut microbiota composition of immunosuppressive mice to improve immunity, thereby shedding light on revealing the molecular mechanism of polysaccharides of traditional Chinese medicines in the future.
Collapse
Affiliation(s)
- Ran Tu
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Cheng Zhou
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Wenfeng Huang
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- Yan'an Hospital of Traditional Chinese Medicine, Yan'an, Shaanxi, China
| | - Qiufang Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaofei Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Xiao J, Liu P, Hu Y, Liu T, Guo Y, Sun P, Zheng J, Ren Z, Wang Y. Antiviral activities of Artemisia vulgaris L. extract against herpes simplex virus. Chin Med 2023; 18:21. [PMID: 36855145 PMCID: PMC9972753 DOI: 10.1186/s13020-023-00711-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Artemisia vulgaris L. is often used as a traditional Chinese medicine with the same origin of medicine and food. Its active ingredient in leaves have multiple biological functions such as anti-inflammatory, antibacterial and insecticidal, anti-tumor, antioxidant and immune regulation, etc. It is confirmed that folium Artemisiae argyi has obvious anti-HBV activity, however, its antiviral activity and mechanism against herpesvirus or other viruses are not clear. Hence, we aimed to screen the crude extracts (Fr.8.3) isolated and extracted from folium A. argyi to explore the anti-herpesvirus activity and mechanism. METHODS The antiherpes virus activity of Fr.8.3 was mainly characterized by cytopathic effects, real-time PCR detection of viral gene replication and expression levels, western blotting, viral titer determination and plaque reduction experiments. The main components of Fr.8.3 were identified by using LC-MS, and selected protein targets of these components were investigated through molecular docking. RESULTS We collected and isolated a variety of A. vulgaris L. samples from Tangyin County, Henan Province and then screened the A. vulgaris L. leaf extracts for anti-HSV-1 activity. The results of the plaque reduction test showed that the crude extract of A. vulgaris L.-Fr.8.3 had anti-HSV-1 activity, and we further verified the anti-HSV-1 activity of Fr.8.3 at the DNA, RNA and protein levels. Moreover, we found that Fr.8.3 also had a broad spectrum of antiviral activity. Finally, we explored its anti-HSV-1 mechanism, and the results showed that Fr.8.3 exerted an anti-HSV-1 effect by acting directly on the virus itself. Then, the extracts were screened on HSV-1 surface glycoproteins and host cell surface receptors for potential binding ability by molecular docking, which further verified the phenotypic results. LC-MS analysis showed that 1 and 2 were the two main components of the extracts. Docking analysis suggested that compounds from extract 1 might similarly cover the binding domain between the virus and the host cells, thus interfering with virus adhesion to cell receptors, which provides new ideas and insights for clinical drug development for herpes simplex virus type 1. CONCLUSION We found that Fr.8.3 has anti-herpesvirus and anti-rotavirus effects. The main 12 components in Fr.8.3 were analyzed by LC-MS, and the protein targets were finally predicted through molecular docking, which showed that alkaloids may play a major role in antiviral activity.
Collapse
Affiliation(s)
- Ji Xiao
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Ping Liu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yuze Hu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Liu
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yuying Guo
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Pinghua Sun
- grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, Guangzhou, China
| | - Junxia Zheng
- grid.411851.80000 0001 0040 0205School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhe Ren
- grid.258164.c0000 0004 1790 3548Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006 Guangdong People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China ,grid.258164.c0000 0004 1790 3548National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Jinan Biomedicine Research and Development Center, Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China. .,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China. .,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Kalinichenko EN, Babitskaya SV. The Development of the Combination Drug Leukovir ® Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Curr Drug Targets 2023; 24:1271-1281. [PMID: 38037996 DOI: 10.2174/0113894501272301231124074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The review is devoted to the development and study of the drug Leukovir® (cladribine+ ribavirin) and its use in the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis, a chronic neurodegenerative disease aiming the risk reduction of relapse and progression of a disability. In clinical trials Leukovir® has proved to be efficient by up to 56 weeks for the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis. The drug is registered in the Republic of Belarus. The efficacy, safety and tolerability profile of the drug Leukovir® suggests that it is well suited for disease-modifying therapy of multiple sclerosis. Patients require four 35-day courses of treatment, each consisting of seven days of treatment followed by a break of 28 days. The use of Leukovir® has contributed to the suppression of inflammatory process activity according to MRI data and stabilization of the clinical condition. It has reduced the number of relapses in patients with relapsing-remitting and secondary-progressive forms of multiple sclerosis.
Collapse
Affiliation(s)
- Elena N Kalinichenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| | - Svetlana V Babitskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| |
Collapse
|
10
|
HEIDARI FATEMEH, SEYEDEBRAHIMI REIHANEH, YANG PIAO, FARSANI MOHSENESLAMI, ABABZADEH SHIMA, KALHOR NASER, MANOOCHEHRI HAMED, SHEYKHHASAN MOHSEN, AZIMZADEH MARYAM. Exosomes in viral infection: Effects for pathogenesis and treatment strategies. BIOCELL 2023; 47:2597-2608. [DOI: 10.32604/biocell.2023.043351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
11
|
Krett JD, Beckham JD, Tyler KL, Piquet AL, Chauhan L, Wallace CJ, Pastula DM, Kapadia RK. Neurology of Acute Viral Infections. Neurohospitalist 2022; 12:632-646. [PMID: 36147750 PMCID: PMC9485684 DOI: 10.1177/19418744221104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As specialists in acute neurology, neurohospitalists are often called upon to diagnose and manage acute viral infections affecting the nervous system. In this broad review covering the neurology of several acute viral infections, our aim is to provide key diagnostic and therapeutic pearls of practical use to the busy neurohospitalist. We will review acute presentations, diagnosis, and treatment of human herpesviruses, arboviruses, enteroviruses, and some vaccine-preventable viruses. The neurological effects of coronaviruses, including COVID-19, are not covered in this review.
Collapse
Affiliation(s)
- Jonathan D Krett
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - J David Beckham
- Department of Neurology and Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Neurosciences Center, Aurora, CO, USA
- Departments of Immunology & Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Kenneth L Tyler
- Department of Neurology and Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Neurosciences Center, Aurora, CO, USA
- Departments of Immunology & Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Amanda L Piquet
- Department of Neurology and Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Neurosciences Center, Aurora, CO, USA
| | - Lakshmi Chauhan
- Department of Neurology and Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Neurosciences Center, Aurora, CO, USA
| | - Carla J Wallace
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Daniel M Pastula
- Department of Neurology and Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Neurosciences Center, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Ronak K Kapadia
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Panda R, Hirolli D, Baidya DK. Aftermath of COVID-19 and Critical Care in India. Indian J Crit Care Med 2021; 25:1173-1175. [PMID: 34916751 PMCID: PMC8645805 DOI: 10.5005/jp-journals-10071-23987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic had overwhelmed the healthcare system and forced many patients to be treated at home with oxygen, antibiotics, and steroids, particularly during the second wave. There was increased misuse of antimicrobials in hospitals as well as unguarded self-prescription of these medications among the common people. We are likely to see an increase in the incidence of antimicrobial resistance (AMR), change in the susceptibility pattern of the organisms causing community-acquired infections, and an increase in opportunistic bacterial, tubercular, viral, and fungal infections. How to cite this article: Panda R, Hirolli D, Baidya DK. Aftermath of COVID-19 and Critical Care in India. Indian J Crit Care Med 2021; 25(10):1173–1175.
Collapse
Affiliation(s)
- Rajesh Panda
- Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Divya Hirolli
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Dalim K Baidya
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Casillas-Pérez B, Pull CD, Naiser F, Naderlinger E, Matas J, Cremer S. Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies. Ecol Lett 2021; 25:89-100. [PMID: 34725912 PMCID: PMC9298059 DOI: 10.1111/ele.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing 'superorganisms'--incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.
Collapse
Affiliation(s)
| | - Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Filip Naiser
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | | | - Jiri Matas
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|