1
|
McLeod KJ. Reversal of Soleus Muscle Atrophy in Older Adults: A Non-Volitional Exercise Intervention for a Changing Climate. Clin Interv Aging 2024; 19:795-806. [PMID: 38745745 PMCID: PMC11093118 DOI: 10.2147/cia.s447665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The World Health Organization recommends that older adults undertake at least 150 minutes of moderate intensity physical activity over the course of each week in order to maintain physical, mental, and social health. This goal turns out to be very difficult for most community dwelling older adults to achieve, due to both actual and perceived barriers. These barriers include personal health limitations, confinement issues, and self-imposed restrictions such as fear of injury. Climate change exacerbates the confinement issues and injury fears among the elderly. To assist older adults in obtaining the benefits of increased physical activity under increasingly challenging climate conditions, we propose a targeted non-volitional intervention which could serve as a complement to volitional physical activity. Exogenous neuro-muscular stimulation of the soleus muscles is a non-invasive intervention capable of significantly increasing cardiac output in sedentary individuals. Long-term daily use has been shown to improve sleep, reduce bone loss, and reverse age-related cognitive decline, all of which are significant health concerns for older adults. These outcomes support the potential benefit of exogenous neuro-muscular stimulation as a complementary form of physical activity which older adults may find convenient to incorporate into their daily life when traditional forms of exercise are difficult to achieve due to barriers to completing traditional physical activities as a result of in-home or in-bed confinement, perceptual risks, or real environmental risks such as those arising from climate change.
Collapse
|
2
|
Nakata T, Shimada K, Iba A, Oda H, Terashima A, Koide Y, Kawasaki R, Yamada T, Ishii K. Differential diagnosis of MCI with Lewy bodies and MCI due to Alzheimer's disease by visual assessment of occipital hypoperfusion on SPECT images. Jpn J Radiol 2024; 42:308-318. [PMID: 37861956 DOI: 10.1007/s11604-023-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Predicting progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD) or dementia with Lewy bodies (DLB) is important. We evaluated morphological and functional differences between MCI with Lewy bodies (MCI-LB) and MCI due to AD (MCI-AD), and a method for differentiating between these conditions using brain MRI and brain perfusion SPECT. METHODS A continuous series of 101 subjects, who had visited our memory clinic and met the definition of MCI, were enrolled retrospectively. They were consisted of 60 MCI-LB and 41 MCI-AD subjects. Relative cerebral blood flow (rCBF) on SPECT images and relative brain atrophy on MRI images were evaluated. We performed voxel-based analysis and visually inspected brain perfusion SPECT images for regional brain atrophy, occipital hypoperfusion and the cingulate island sign (CIS), for differential diagnosis of MCI-LB and MCI-AD. RESULTS MRI showed no significant differences in regional atrophy between the MCI-LB and MCI-AD groups. In MCI-LB subjects, occipital rCBF was significantly decreased compared with MCI-AD subjects (p < 0.01, family wise error [FWE]-corrected). Visual inspection of occipital hypoperfusion had sensitivity, specificity, and accuracy values of 100%, 73.2% and 89.1%, respectively, for differentiating MCI-LB and MCI-AD. Occipital hypoperfusion was offered higher diagnostic utility than the CIS. CONCLUSIONS The occipital lobe was the region with significantly decreased rCBF in MCI-LB compared with MCI-AD subjects. Occipital hypoperfusion on brain perfusion SPECT may be a more useful imaging biomarker than the CIS for visually differentiating MCI-LB and MCI-AD.
Collapse
Affiliation(s)
- Takashi Nakata
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan.
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan.
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan.
| | - Kenichi Shimada
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
| | - Akiko Iba
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
- Department of Psychiatry, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Hyogo Mental Health Center, 3 Noborio, Kamitanigami, Yamadacho, Kita-Ku, Kobe, Hyogo, Japan
| | - Haruhiko Oda
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
- Hyogo Mental Health Center, 3 Noborio, Kamitanigami, Yamadacho, Kita-Ku, Kobe, Hyogo, Japan
| | - Akira Terashima
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
| | - Yutaka Koide
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| | - Ryota Kawasaki
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| | - Takahiro Yamada
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan
| | - Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| |
Collapse
|
3
|
Firbank MJ, Collerton D, Morgan KD, Schumacher J, Donaghy PC, O'Brien JT, Thomas A, Taylor J. Functional connectivity in Lewy body disease with visual hallucinations. Eur J Neurol 2024; 31:e16115. [PMID: 37909801 PMCID: PMC11235993 DOI: 10.1111/ene.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE Visual hallucinations are a common, potentially distressing experience of people with Lewy body disease (LBD). The underlying brain changes giving rise to visual hallucinations are not fully understood, although previous models have posited that alterations in the connectivity between brain regions involved in attention and visual processing are critical. METHODS Data from 41 people with LBD and visual hallucinations, 48 with LBD without visual hallucinations and 60 similarly aged healthy comparator participants were used. Connections were investigated between regions in the visual cortex and ventral attention, dorsal attention and default mode networks. RESULTS Participants with visual hallucinations had worse cognition and motor function than those without visual hallucinations. In those with visual hallucinations, reduced functional connectivity within the ventral attention network and from the visual to default mode network was found. Connectivity strength between the visual and default mode network correlated with the number of correct responses on a pareidolia task, and connectivity within the ventral attention network with visuospatial performance. CONCLUSIONS Our results add to evidence of dysfunctional connectivity in the visual and attentional networks in those with LBD and visual hallucinations.
Collapse
Affiliation(s)
- Michael J. Firbank
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Daniel Collerton
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | - Julia Schumacher
- Deutsches Zentrum für Neurodegenerative Erkrankungen Standort Rostock/GreifswaldRostockMecklenburg‐VorpommernGermany
- Department of NeurologyUniversity Medical Center RostockRostockGermany
| | - Paul C. Donaghy
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - John T. O'Brien
- Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Alan Thomas
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Jellinger KA. Mild cognitive impairment in dementia with Lewy bodies: an update and outlook. J Neural Transm (Vienna) 2023; 130:1491-1508. [PMID: 37418039 DOI: 10.1007/s00702-023-02670-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Dementia with Lewy bodies (DLB), the second most common degenerative neurocognitive disorder after Alzheimer disease (AD), is frequently preceded by a period of mild cognitive impairment (MCI), in which cognitive decline is associated with impairment of executive functions/attention, visuospatial deficits, or other cognitive domains and a variety of noncognitive and neuropsychiatric symptoms, many of which are similar but less severe than in prodromal AD. While 36-38% remain in the MCI state, at least the same will convert to dementia. Biomarkers are slowing of the EEG rhythms, atrophy of hippocampus and nucleus basalis of Meynert, temporoparietal hypoperfusion, signs of degeneration of the nigrostriatal dopaminergic, cholinergic and other neurotransmitter systems, and inflammation. Functional neuroimaging studies revealed disturbed connectivity of frontal and limbic networks associated with attention and cognitive controls, dopaminergic and cholinergic circuits manifested prior to overt brain atrophy. Sparse neuropathological data showed varying Lewy body and AD-related stages associated with atrophy of entorhinal, hippocampal, and mediotemporal cortices. Putative pathomechanisms of MCI are degeneration of limbic, dopaminergic, and cholinergic systems with Lewy pathology affecting specific neuroanatomical pathways associated with progressing AD-related lesions, but many pathobiological mechanisms involved in the development of MCI in LBD remain to be elucidated as a basis for early diagnosis and future adequate treatment modalities to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
5
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
6
|
Donaghy PC, Carrarini C, Ferreira D, Habich A, Aarsland D, Babiloni C, Bayram E, Kane JP, Lewis SJ, Pilotto A, Thomas AJ, Bonanni L. Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimers Dement 2023; 19:3186-3202. [PMID: 37096339 PMCID: PMC10695683 DOI: 10.1002/alz.13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Operationalized research criteria for mild cognitive impairment with Lewy bodies (MCI-LB) were published in 2020. The aim of this systematic review and meta-analysis was to review the evidence for the diagnostic clinical features and biomarkers in MCI-LB set out in the criteria. METHODS MEDLINE, PubMed, and Embase were searched on 9/28/22 for relevant articles. Articles were included if they presented original data reporting the rates of diagnostic features in MCI-LB. RESULTS Fifty-seven articles were included. The meta-analysis supported the inclusion of the current clinical features in the diagnostic criteria. Evidence for striatal dopaminergic imaging and meta-iodobenzylguanidine cardiac scintigraphy, though limited, supports their inclusion. Quantitative electroencephalogram (EEG) and fluorodeoxyglucose positron emission tomography (PET) show promise as diagnostic biomarkers. DISCUSSION The available evidence largely supports the current diagnostic criteria for MCI-LB. Further evidence will help refine the diagnostic criteria and understand how best to apply them in clinical practice and research. HIGHLIGHTS A meta-analysis of the diagnostic features of MCI-LB was carried out. The four core clinical features were more common in MCI-LB than MCI-AD/stable MCI. Neuropsychiatric and autonomic features were also more common in MCI-LB. More evidence is needed for the proposed biomarkers. FDG-PET and quantitative EEG show promise as diagnostic biomarkers in MCI-LB.
Collapse
Affiliation(s)
- Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Carrarini
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, California, USA
| | - Joseph Pm Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Simon Jg Lewis
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Firbank MJ, daSilva Morgan K, Collerton D, Elder GJ, Parikh J, Olsen K, Schumacher J, Ffytche D, Taylor JP. Investigation of structural brain changes in Charles Bonnet Syndrome. Neuroimage Clin 2022; 35:103041. [PMID: 35576854 PMCID: PMC9118504 DOI: 10.1016/j.nicl.2022.103041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022]
Abstract
Reduced grey matter in the occipital cortex in eye disease groups. Widespread altered diffusivity in eye disease groups. No cortical or white matter changes associated with presence of visual hallucinations. Negative association between hippocampal volume and Hallucination severity.
Background and objectives In Charles Bonnet Syndrome (CBS), visual hallucinations (VH) are experienced by people with sight loss due to eye disease or lesional damage to early visual pathways. The aim of this cross-sectional study was to investigate structural brain changes using magnetic resonance imaging (MRI) in CBS. Methods Sixteen CBS patients, 17 with eye disease but no VH, and 19 normally sighted people took part. Participants were imaged on a 3T scanner, with 1 mm resolution T1 weighted structural imaging, and diffusion tensor imaging with 64 diffusion directions. Results The three groups were well matched for age, sex and cognitive scores (MMSE). The two eye disease groups were matched on visual acuity. Compared to the sighted controls, we found reduced grey matter in the occipital cortex in both eye disease groups. We also found reductions of fractional anisotropy and increased diffusivity in widespread areas, including occipital tracts, the corpus callosum, and the anterior thalamic radiation. We did not find any significant differences between the eye disease participants with VH versus without VH, but did observe a negative association between hippocampal volume and VH severity in the CBS group. Discussion Our findings suggest that although there are cortical and subcortical effects associated with sight loss, structural changes do not explain the occurrence of VHs. CBS may relate instead to connectivity or excitability changes in brain networks linked to vision.
Collapse
Affiliation(s)
- Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Katrina daSilva Morgan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Collerton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Greg J Elder
- Northumbria Sleep Research, Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jehill Parikh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Kiper P, Richard M, Stefanutti F, Pierson-Poinsignon R, Cacciante L, Perin C, Mazzucchelli M, Viganò B, Meroni R. Combined Motor and Cognitive Rehabilitation: The Impact on Motor Performance in Patients with Mild Cognitive Impairment. Systematic Review and Meta-Analysis. J Pers Med 2022; 12:276. [PMID: 35207764 PMCID: PMC8874573 DOI: 10.3390/jpm12020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Mild cognitive impairment (MCI), a neurodegenerative disease leading to Alzheimer's disease or dementia, is often associated with physical complaints. Combined physical and cognitive training (PCT) has been investigated to see the effects on cognitive function, but its impact on motor functions and activities of daily living has not been explored yet. The combination of physical and cognitive training may be a valuable non-pharmacological intervention that could preserve motor function and quality of life (QoL). We aimed, therefore, to analyze if combined PCT is effective at improving motor performance in patients with an MCI. A systematic electronic literature search and a meta-analysis were conducted. The following criteria were compulsory for inclusion in the study: (1) randomized controlled trial design; (2) combined PCT compared to motor training alone or no intervention; (3) motor outcomes as a study's end point. Nine articles met the inclusion criteria. Results showed that PCT significantly enhances balance compared to motor training alone (SMD 0.56; 95% CI 0.07 to 1.06; I2 = 59%; 160 participants), whereas a significant improvement was found for mobility in the PCT group when compared to no intervention (MD -1.80; 95% CI -2.70 to -0.90; I2 = 0%; 81 participants). However, there is no evidence that people with MCI experience an increase in gait speed and QoL at the end of their practice sessions. Further investigation with larger samples and a longer period of monitoring after intervention should be undertaken.
Collapse
Affiliation(s)
- Pawel Kiper
- Physical Medicine and Rehabilitation Unit, Azienda ULSS 3 Serenissima, 30126 Venice, Italy
| | - Michelle Richard
- Department of Physiotherapy, LUNEX International University of Health Exercise and Sports, L-4671 Differdange, Luxembourg; (M.R.); (F.S.); (R.P.-P.); (R.M.)
| | - Françoise Stefanutti
- Department of Physiotherapy, LUNEX International University of Health Exercise and Sports, L-4671 Differdange, Luxembourg; (M.R.); (F.S.); (R.P.-P.); (R.M.)
| | - Romain Pierson-Poinsignon
- Department of Physiotherapy, LUNEX International University of Health Exercise and Sports, L-4671 Differdange, Luxembourg; (M.R.); (F.S.); (R.P.-P.); (R.M.)
| | - Luisa Cacciante
- Laboratory of Rehabilitation Technologies, IRCCS San Camillo Hospital, 30126 Venice, Italy;
| | - Cecilia Perin
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (C.P.); (M.M.)
- GDS Foundation, 20841 Carate Brianza, Italy;
| | - Miryam Mazzucchelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (C.P.); (M.M.)
- GDS Foundation, 20841 Carate Brianza, Italy;
| | | | - Roberto Meroni
- Department of Physiotherapy, LUNEX International University of Health Exercise and Sports, L-4671 Differdange, Luxembourg; (M.R.); (F.S.); (R.P.-P.); (R.M.)
- Luxembourg Health & Sport Sciences Research Institute A.s.b.l., L-4671 Differdange, Luxembourg
| |
Collapse
|
9
|
He H, Ding S, Jiang C, Wang Y, Luo Q, Wang Y. Information Flow Pattern in Early Mild Cognitive Impairment Patients. Front Neurol 2021; 12:706631. [PMID: 34858306 PMCID: PMC8631864 DOI: 10.3389/fneur.2021.706631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate the brain information flow pattern in patients with early mild cognitive impairment (EMCI) and explore its potential ability of differentiation and prediction for EMCI. Methods: In this study, 49 patients with EMCI and 40 age- and sex-matched healthy controls (HCs) with available resting-state functional MRI images and neurological measures [including the neuropsychological evaluation and cerebrospinal fluid (CSF) biomarkers] were included from the Alzheimer's Disease Neuroimaging Initiative. Functional MRI measures including preferred information flow direction between brain regions and preferred information flow index of each brain region parcellated by the Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) were calculated by using non-parametric multiplicative regression-Granger causality analysis (NPMR-GCA). Edge- and node-wise Student's t-test was conducted for between-group comparison. Support vector classification was performed to differentiate EMCI from HC. The least absolute shrinkage and selection operator (lasso) regression were used to evaluate the predictive ability of information flow measures for the neurological state. Results: Compared to HC, disturbed preferred information flow directions between brain regions involving default mode network (DMN), executive control network (ECN), somatomotor network (SMN), and visual network (VN) were observed in patients with EMCI. An altered preferred information flow index in several brain regions (including the thalamus, posterior cingulate, and precentral gyrus) was also observed. Classification accuracy of 80% for differentiating patients with EMCI from HC was achieved by using the preferred information flow directions. The preferred information flow directions have a good ability to predict memory and executive function, level of amyloid β, tau protein, and phosphorylated tau protein with the high Pearson's correlation coefficients (r > 0.7) between predictive and actual neurological measures. Conclusion: Patients with EMCI were presented with a disturbed brain information flow pattern, which could help clinicians to identify patients with EMCI and assess their neurological state.
Collapse
Affiliation(s)
- Haijuan He
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Shuang Ding
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Chunhui Jiang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Qiaoya Luo
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | | |
Collapse
|