1
|
Sedaka R, Lovelady C, Hallit E, Duyvestyn B, Shinde S, Moran-Reyna A, Lee G, Yamaguchi S, Maynard CL, Saigusa T. Intestinal barrier function declines during polycystic kidney disease progression. Am J Physiol Renal Physiol 2025; 328:F218-F229. [PMID: 39694536 DOI: 10.1152/ajprenal.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Most patients with autosomal dominant polycystic kidney disease (ADPKD) develop kidney cysts due to germline PKD1 mutations. In the kidney, Pkd1 loss impairs epithelial cell integrity and increases macrophage infiltration, contributing to cyst growth. Despite its role as the body's largest inflammatory cell reservoir, it has yet to be elucidated whether a similar phenotype presents in the intestines. We hypothesize that loss of Pkd1 leads to a leaky intestinal epithelial barrier and increased inflammation, before rapid cystogenesis. Control and inducible, global Pkd1 knockout (Pkd1KO) mice were euthanized at 3 and 6 mo of age (early and late stage) to evaluate kidney disease progression, small and large intestinal integrity, and inflammation. Early-stage Pkd1KO mice displayed mild cystic kidneys and tubular injury with preserved kidney function. Intestinal epithelial barrier was tighter in KO mice, which was associated with higher expression of cell-cell epithelial integrity markers. However, there was no evidence of local or systemic inflammation in either genotype. Late-stage Pkd1KO mice had severely cystic, impaired kidneys with increased expression of integrity markers, tubular injury, and inflammation. Intestinal epithelial barrier was leakier in late-stage Pkd1KO mice, accompanied by gene reduction of integrity markers, increased inflammation, and elevated water and sodium channel expression. Gut motility and fecal water excretion were increased in Pkd1KO compared with flox mice irrespective of age. Overall, kidney injury appears to precede intestinal injury in ADPKD, whereby the intestinal barrier becomes leaky as cystogenesis progresses.NEW & NOTEWORTHY Though autosomal dominant polycystic kidney disease (ADPKD) is a multisystem disorder, this is the first study to explore a kidney-gut contribution to disease progression. We identified a tightened intestinal epithelial barrier in early PKD, which becomes leaky as kidneys become more cystic, accompanied by a sustained loss of fecal water. Given the only approved ADPKD therapeutic yields adverse aquaretic events, this study emphasizes the need to evaluate extrarenal water loss in patients before prescribing.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Emily Hallit
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Branden Duyvestyn
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Aida Moran-Reyna
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Goo Lee
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Alabama, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Craig L Maynard
- Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Alabama, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
2
|
Xu T, Herkens L, Jia T, Klinkhammer BM, Kant S, Krusche CA, Buhl EM, Hayat S, Floege J, Strnad P, Kramann R, Djudjaj S, Boor P. The role of desmoglein-2 in kidney disease. Kidney Int 2024; 105:1035-1048. [PMID: 38395410 DOI: 10.1016/j.kint.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.
Collapse
Affiliation(s)
- Tong Xu
- Institute of Pathology, RWTH Aachen University, Aachen, Germany; Department of Urology, the First Affiliated Hospital of Airforce Medical University, Xi'an, China
| | - Lea Herkens
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Ting Jia
- Institute of Pathology, RWTH Aachen University, Aachen, Germany; Department of Nephrology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Claudia A Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Pavel Strnad
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany; Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
3
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
4
|
Xu Y, Kuppe C, Perales-Patón J, Hayat S, Kranz J, Abdallah AT, Nagai J, Li Z, Peisker F, Saritas T, Halder M, Menzel S, Hoeft K, Kenter A, Kim H, van Roeyen CRC, Lehrke M, Moellmann J, Speer T, Buhl EM, Hoogenboezem R, Boor P, Jansen J, Knopp C, Kurth I, Smeets B, Bindels E, Reinders MEJ, Baan C, Gribnau J, Hoorn EJ, Steffens J, Huber TB, Costa I, Floege J, Schneider RK, Saez-Rodriguez J, Freedman BS, Kramann R. Adult human kidney organoids originate from CD24 + cells and represent an advanced model for adult polycystic kidney disease. Nat Genet 2022; 54:1690-1701. [PMID: 36303074 PMCID: PMC7613830 DOI: 10.1038/s41588-022-01202-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.
Collapse
Affiliation(s)
- Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Javier Perales-Patón
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Urology and Pediatric Urology, RWTH Aachen University, Aachen, Germany
- Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - James Nagai
- Institute of Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Zhijian Li
- Institute of Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Turgay Saritas
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Konrad Hoeft
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annegien Kenter
- Department of Developmental Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine and Department of Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hyojin Kim
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Claudia R C van Roeyen
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Cardiology, RWTH Aachen University, Aachen, Germany
| | - Julia Moellmann
- Department of Cardiology, RWTH Aachen University, Aachen, Germany
| | - Thimoteus Speer
- Department of Nephrology, University Hospital Homburg, Homburg, Germany
| | - Eva M Buhl
- Institute of Pathology and Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Pathology and Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Jitske Jansen
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Pathology, RIMLS, Radboudumc, Nijmegen, the Netherlands
| | - Cordula Knopp
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Bart Smeets
- Department of Pathology, RIMLS, Radboudumc, Nijmegen, the Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine and Department of Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla Baan
- Department of Internal Medicine and Department of Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine and Department of Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joachim Steffens
- Department of Urology, St Antonius Hospital, Eschweiler, Germany
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ivan Costa
- Institute of Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute of Cell and Tumor Biology, RWTH Aachen University, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Kidney Research Institute and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering (Adjunct), and Department of Laboratory Medicine & Pathology (Adjunct), University of Washington, Seattle, WA, USA
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Department of Internal Medicine and Department of Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal 2020; 72:109640. [PMID: 32305669 DOI: 10.1016/j.cellsig.2020.109640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.
Collapse
|
6
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol 2019; 234:12451-12470. [PMID: 30644092 DOI: 10.1002/jcp.28094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Talieh Malekshahabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Gilder AL, Chapin HC, Padovano V, Hueschen CL, Rajendran V, Caplan MJ. Newly synthesized polycystin-1 takes different trafficking pathways to the apical and ciliary membranes. Traffic 2018; 19:933-945. [PMID: 30125442 PMCID: PMC6237641 DOI: 10.1111/tra.12612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022]
Abstract
Mutations in the genes encoding polycystin-1 (PC1) and polycystin 2 (PC2) cause autosomal dominant polycystic kidney disease. These transmembrane proteins colocalize in the primary cilia of renal epithelial cells, where they may participate in sensory processes. PC1 is also found in the apical membrane when expressed in cultured epithelial cells. PC1 undergoes autocatalytic cleavage, producing an extracellular N-terminal fragment that remains noncovalently attached to the transmembrane C-terminus. Exposing cells to alkaline solutions elutes the N-terminal fragment while the C-terminal fragment is retained in the cell membrane. Utilizing this observation, we developed a "strip-recovery" synchronization protocol to study PC1 trafficking in polarized LLC-PK1 renal epithelial cells. Following alkaline strip, a new cohort of PC1 repopulates the cilia within 30 minutes, while apical delivery of PC1 was not detectable until 3 hours. Brefeldin A (BFA) blocked apical PC1 delivery, while ciliary delivery of PC1 was BFA insensitive. Incubating cells at 20°C to block trafficking out of the trans-Golgi network also inhibits apical but not ciliary delivery. These results suggest that newly synthesized PC1 takes distinct pathways to the ciliary and apical membranes. Ciliary PC1 appears to by-pass BFA sensitive Golgi compartments, while apical delivery of PC1 traverses these compartments.
Collapse
Affiliation(s)
- Allison L Gilder
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Hannah C Chapin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Valeria Padovano
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Christina L Hueschen
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Vanathy Rajendran
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Fukasawa H, Kaneko M, Niwa H, Yasuda H, Kumagai H, Furuya R. Carbohydrate antigen 19-9 is significantly elevated in autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2018; 23:210-216. [PMID: 28024168 DOI: 10.1111/nep.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 12/24/2022]
Abstract
AIM Liver cysts are the most common extrarenal manifestation in patients with autosomal dominant polycystic kidney disease (ADPKD). Carbohydrate antigen 19-9 (CA19-9) is generally used as a marker for biliopancreatic malignancies, although CA19-9 levels in patients with ADPKD are largely unknown. METHODS A prospective observational study of 53 ADPKD patients and 83 non-ADPKD control subjects was performed. The serum levels of CA19-9 were studied to evaluate the association with clinical parameters and liver cysts. RESULTS The serum CA19-9 levels were significantly higher in the ADPKD group than in the control group (32.9 U/mL vs. 9.8 U/mL, respectively, P < 0.001). The serum CA19-9 levels in the ADPKD group were positively correlated with the mean blood pressure (rho = 0.335, P < 0.05), gamma-glutamyl transferase (GTP) levels (rho = 0.541, P < 0.001), the largest cyst size (rho = 0.536, P < 0.001) and the liver cyst volume (rho = 0.682, P < 0.001). Multiple regression analyses showed that the gamma-GTP levels (P < 0.001) and the liver cyst volumes (P < 0.001) were independent predictors for serum CA19-9 levels. CONCLUSIONS Serum CA19-9 levels are significantly elevated and appear to be dependent on the gamma-GTP levels and the volume of liver cysts in patients with ADPKD. Our findings indicate that the measurement of the baseline CA19-9 level in each patient with ADPKD may be useful for the interpretation of the value and the differential diagnosis of liver diseases, particularly the liver cyst infection.
Collapse
Affiliation(s)
- Hirotaka Fukasawa
- Renal Division, Department of Internal Medicine, Iwata City Hospital, Iwata, Japan
| | - Mai Kaneko
- Renal Division, Department of Internal Medicine, Iwata City Hospital, Iwata, Japan
| | - Hiroki Niwa
- Renal Division, Department of Internal Medicine, Iwata City Hospital, Iwata, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiromichi Kumagai
- The Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryuichi Furuya
- Renal Division, Department of Internal Medicine, Iwata City Hospital, Iwata, Japan
| |
Collapse
|
10
|
Fliszkiewicz M, Niemczyk M, Kulesza A, Pączek L. Carbohydrate Antigen 19-9 Level in Patients with Autosomal Dominant Polycystic Kidney Disease. Transplant Proc 2018; 50:1631-1633. [PMID: 30056872 DOI: 10.1016/j.transproceed.2018.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease, responsible for 10% of the patients on renal replacement therapy, including kidney transplantation. Recently, it was reported that the serum CA 19-9 level is significantly elevated in ADPKD patients without malignancy. Exclusion of malignancy, including tumor marker analysis, is essential in pretransplant evaluation, as well as in assessment of kidney transplantation recipients. METHODS In this study the serum CA 19-9 level in ADPKD patients without malignancy was retrospectively analyzed. The mean level of CA 19-9 was 30.3 U/mL (0.8 U/L-612 U/L). RESULTS Overall, in 24 patients (18.8%) the serum CA 19-9 level was increased above the normal level found in the general population (35 U/L), and 5 of them (4.2%) did not experience polycystic liver disease. In 4 patients (3.4%) CA 19-9 level was increased 2-fold above the norm and in 3 of them (2.5%) 3-fold over the norm and higher. A statistically significant negative correlation between serum CA 19-9 level and estimated glomerular filtration rate, both in patients with and without hepatic cysts was observed. In nearly 1 in 5 patients with ADPKD, serum CA 19-9 level should be expected to be above the norm found in the general population, despite the lack of coexistence of a tumor or cholangitis. CONCLUSION This finding should be considered during transplantation qualification and in follow-up examination after kidney transplantation.
Collapse
Affiliation(s)
- M Fliszkiewicz
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - M Niemczyk
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - A Kulesza
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - L Pączek
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Lemos FO, Ehrlich BE. Polycystin and calcium signaling in cell death and survival. Cell Calcium 2017; 69:37-45. [PMID: 28601384 DOI: 10.1016/j.ceca.2017.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
Mutations in polycystin-1 (PC1) and polycystin-2 (PC2) result in a commonly occurring genetic disorder, called Autosomal Dominant Polycystic Kidney Disease (ADPKD), that is characterized by the formation and development of kidney cysts. Epithelial cells with loss-of-function of PC1 or PC2 show higher rates of proliferation and apoptosis and reduced autophagy. PC1 is a large multifunctional transmembrane protein that serves as a sensor that is usually found in complex with PC2, a calcium (Ca2+)-permeable cation channel. In addition to decreased Ca2+ signaling, several other cell fate-related pathways are de-regulated in ADPKD, including cAMP, MAPK, Wnt, JAK-STAT, Hippo, Src, and mTOR. In this review we discuss how polycystins regulate cell death and survival, highlighting the complexity of molecular cascades that are involved in ADPKD.
Collapse
Affiliation(s)
- Fernanda O Lemos
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Piperi C, Basdra EK. Polycystins and mechanotransduction: From physiology to disease. World J Exp Med 2015; 5:200-205. [PMID: 26618106 PMCID: PMC4655249 DOI: 10.5493/wjem.v5.i4.200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Polycystins are key mechanosensor proteins able to respond to mechanical forces of external or internal origin. They are widely expressed in primary cilium and plasma membrane of several cell types including kidney, vascular endothelial and smooth muscle cells, osteoblasts and cardiac myocytes modulating their physiology. Interaction of polycystins with diverse ion channels, cell-cell and cell-extracellular matrix junctional proteins implicates them in the regulation of cell structure, mechanical force transmission and mechanotransduction. Their intracellular localization in endoplasmic reticulum further regulates subcellular trafficking and calcium homeostasis, finely-tuning overall cellular mechanosensitivity. Aberrant expression or genetic alterations of polycystins lead to severe structural and mechanosensing abnormalities including cyst formation, deregulated flow sensing, aneurysms, defective bone development and cancer progression, highlighting their vital role in human physiology.
Collapse
|
13
|
Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM, Bonventre JV, Kong T. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 2014; 47:24-32. [PMID: 25492927 DOI: 10.1152/physiolgenomics.00090.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.
Collapse
Affiliation(s)
- Jen X Xu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tzong-Shi Lu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suyan Li
- Division of Basic Neuroscience, McLean Hospital, Belmont, Massachusetts
| | - Yong Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lai Ding
- Harvard NeuroDiscovery Center, Boston, Massachusetts; and
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tianqing Kong
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
14
|
Retailleau K, Duprat F. Polycystins and partners: proposed role in mechanosensitivity. J Physiol 2014; 592:2453-71. [PMID: 24687583 DOI: 10.1113/jphysiol.2014.271346] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of the two polycystins, PC1 and PC2, lead to polycystic kidney disease. Polycystins are able to form complexes with numerous families of proteins that have been suggested to participate in mechanical sensing. The proposed role of polycystins and their partners in the kidney primary cilium is to sense urine flow. A role for polycystins in mechanosensing has also been shown in other cell types such as vascular smooth muscle cells and cardiac myocytes. At the plasma membrane, polycystins interact with diverse ion channels of the TRP family and with stretch-activated channels (Piezos, TREKs). The actin cytoskeleton and its interacting proteins, such as filamin A, have been shown to be essential for these interactions. Numerous proteins involved in cell-cell and cell-extracellular matrix junctions interact with PC1 and/or PC2. These multimeric protein complexes are important for cell structure integrity, the transmission of force, as well as for mechanosensing and mechanotransduction. A group of polycystin partners are also involved in subcellular trafficking mechanisms. Finally, PC1 and especially PC2 interact with elements of the endoplasmic reticulum and are essential components of calcium homeostasis. In conclusion, we propose that both PC1 and PC2 act as conductors to tune the overall cellular mechanosensitivity.
Collapse
Affiliation(s)
- Kevin Retailleau
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Fabrice Duprat
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| |
Collapse
|
15
|
Fedeles S, Gallagher AR. Cell polarity and cystic kidney disease. Pediatr Nephrol 2013; 28:1161-72. [PMID: 23161205 DOI: 10.1007/s00467-012-2337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Epithelial cell polarity is essential for organ development; aberrations in this process have been implicated in various diseases, including polycystic kidney disease. Establishment and maintenance of cell polarity is governed by a number of molecular processes and how these processes operate remains an interesting question. Conserved protein complexes guide both apical-basolateral polarity and planar cell polarity. In this review we discuss the recent findings that provide insights into polarity mechanisms and the intriguing crosstalk between apical-basolateral polarity and planar cell polarity, and their relationship to cystic kidney disease.
Collapse
Affiliation(s)
- Sorin Fedeles
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208029, 333 Cedar Street, New Haven, CT 06520-8029, USA
| | | |
Collapse
|
16
|
Cattaneo I, Condorelli L, Terrinoni AR, Antiga L, Sangalli F, Remuzzi A. Shear stress reverses dome formation in confluent renal tubular cells. Cell Physiol Biochem 2011; 28:673-82. [PMID: 22178879 DOI: 10.1159/000335813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIMS It has been shown that MDCK cells, a cell line derived from canine renal tubules, develop cell domes due to fluid pumped under cell monolayer and focal detachment from the adhesion surface. In vitro studies have shown that primary cilia of kidney tubular epithelial cells act as mechanosensors, increasing intracellular calcium within seconds upon changes in fluid shear stress (SS) on cell membrane. We then studied the effect of prolonged SS exposure on cell dome formation in confluent MDCK cell monolayers. METHODS A parallel plate flow chamber was used to apply laminar SS at 2 dynes/cm(2) to confluent cell monolayers for 6 hours. Control MDCK cell monolayers were maintained in static condition. The effects of Ca(2+) blockade and cell deciliation on SS exposure were also investigated. RESULTS Seven days after reaching confluence, static cultures developed liquid filled domes, elevating from culture plate. Exposure to SS induced almost complete disappearance of cell domes (0.4±0.8 vs. 11.4±2.8 domes/mm(2), p < 0.01, n=14). SS induced dome disappearance took place within minutes to hours, as shown by time-lapse videomicroscopy. Exposure to SS importantly affected cell cytoskeleton altering actin stress fibers expression and organization, and the distribution of tight junction protein ZO-1. Dome disappearance induced by flow was completely prevented in the presence of EGTA or after cell deciliation. CONCLUSIONS These data indicate that kidney tubular cells are sensitive to apical flow and that these effects are mediated by primary cilia by regulation of Ca(2+) entry in to the cell. SS induced Ca(2+) entry provokes contraction of cortical actin ring that tenses cell-cell borders and decreases basal stress fibers. These processes may increase paracellular permeability and decrease basal adhesion making dome disappear. Elucidation of the effects of apical fluid flow on tubular cell function may open new insights on the pathophysiology of kidney diseases associated with cilia dysfunction.
Collapse
Affiliation(s)
- Irene Cattaneo
- Department of Biomedical Engineering, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Chapin HC, Rajendran V, Caplan MJ. Polycystin-1 surface localization is stimulated by polycystin-2 and cleavage at the G protein-coupled receptor proteolytic site. Mol Biol Cell 2010; 21:4338-48. [PMID: 20980620 PMCID: PMC3002387 DOI: 10.1091/mbc.e10-05-0407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The localization of polycystin (PC)1) to the plasma membrane requires coexpression with PC2 and cleavage at the PC1 G protein-coupled receptor proteolytic site. Neither the PC1 binding capacity of PC2 nor its channel function is required for this effect. Polycystin (PC)1 and PC2 are membrane proteins implicated in autosomal dominant polycystic kidney disease. A physiologically relevant cleavage at PC1's G protein-coupled receptor proteolytic site (GPS) occurs early in the secretory pathway. Our results suggest that PC2 increases both PC1 GPS cleavage and PC1's appearance at the plasma membrane. Mutations that prevent PC1's GPS cleavage prevent its plasma membrane localization. PC2 is a member of the trp family of cation channels and is an important PC1 binding partner. The effect of PC2 on PC1 localization is independent of PC2 channel activity, as tested using channel-inhibiting PC2 mutations. PC1 and PC2 can interact through their C-terminal tails, but removing the C-terminal tail of either protein has no effect on PC1 surface localization in human embryonic kidney 293 cells. Experiments in polarized LLC-PK cells show that apical and ciliary PC1 localization requires PC2 and that this delivery is sensitive to PC2 truncation. In sum, our work shows that PC2 expression is required for the movement of PC1 to the plasma and ciliary membranes. In fibroblast cells this localization effect is independent of PC2's channel activity or PC1 binding ability but involves a stimulation of PC1's GPS cleavage before the PC1 protein's surface delivery.
Collapse
Affiliation(s)
- Hannah C Chapin
- Departments of Cell Biology and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
18
|
Waanders E, van Keimpema L, Brouwer JT, van Oijen MGH, Aerts R, Sweep FCGJ, Nevens F, Drenth JPH. Carbohydrate antigen 19-9 is extremely elevated in polycystic liver disease. Liver Int 2009; 29:1389-95. [PMID: 19515221 DOI: 10.1111/j.1478-3231.2009.02055.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Carbohydrate antigen 19-9 (CA19-9) is used as a biomarker to differentiate benign from malignant gastrointestinal disorders. We examined the value of CA19-9 measurement in polycystic livers after observing high CA19-9 cyst fluid levels in a benign polycystic liver case. METHODS We determined CA19-9 levels in serum (n=120) and hepatic cyst fluid (n=81), from patients with polycystic livers (n=109) and simple hepatic cysts (n=24). Further, we analysed CA19-9 expression in normal and polycystic liver tissue (n=17). RESULTS Cyst fluid CA19-9 levels from both polycystic livers and simple hepatic cysts were extremely high (median 91 000 U/ml, range 14-15 870 000 U/ml; median 85 000 U/ml, range 332-1 744 000 U/ml respectively). Serum CA19-9 levels were significantly higher in polycystic liver patients (median 30 U/ml, range 0-1200 U/ml) compared with patients with simple hepatic cysts (median 10 U/ml, range 3-200 U/ml, P=0.0011). Serum CA19-9 levels correlated with those in cyst fluid (r=0.3979, P=0.0399), polycystic liver volume (r=0.3870, P=0.0025) and the size of the largest cyst (simple cysts group; r=0.5319, P=0.0280). Cyst epithelia showed strong CA19-9 expression. Evacuation of cyst fluid in four patients resulted in a dramatic decrease in the serum CA19-9 levels (60-95%). CONCLUSIONS CA19-9 levels are high in the cyst fluid and serum of polycystic liver disease patients due to production and secretion by cyst epithelia. It does not reflect malignancy in these patients and may be of value as a biomarker for intervention efficiency assessment.
Collapse
Affiliation(s)
- Esmé Waanders
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong ACM. Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 2009; 122:1410-7. [PMID: 19351715 DOI: 10.1242/jcs.045021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited human renal disease and is caused by mutations in two genes, PKD1 (85%) and PKD2 (15%). Cyst epithelial cells are characterised by a complex cellular phenotype including changes in proliferation, apoptosis, basement membrane composition and apicobasal polarity. Since polycystin 1 (PC1), the PKD1 protein, has been located in the basolateral membrane of kidney epithelial cells, we hypothesised that it might have a key role in mediating or stabilising cell-cell interactions. In non-ciliated L929 cells, stable or transient surface expression of the PC1 extracellular domain was sufficient to confer an adhesive phenotype and stimulate junction formation. In MDCK cells, we found that PC1 was recruited to the lateral membranes coincident with E-cadherin within 30 minutes after a ;calcium switch'. Recruitment of both proteins was significantly delayed when cells were treated with a PC1 blocking antibody raised to the PKD domains. Finally, PC1 and E-cadherin could be coimmunoprecipitated together from MDCK cells. We conclude that PC1 has a key role in initiating junction formation via initial homophilic interactions and facilitates junction assembly and the establishment of apicobasal polarity by E-cadherin recruitment.
Collapse
Affiliation(s)
- Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, Sheffield Kidney Institute, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
20
|
Yu ASL, Kanzawa SA, Usorov A, Lantinga-van Leeuwen IS, Peters DJM. Tight junction composition is altered in the epithelium of polycystic kidneys. J Pathol 2008; 216:120-8. [PMID: 18666097 DOI: 10.1002/path.2392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Kidney cysts in autosomal dominant polycystic kidney disease (ADPKD) undergo progressive enlargement together with luminal fluid secretion. This involves active, uphill transcellular Cl(-) transport which drives passive Na(+) and water secretion. Implicit in this mechanism is the assumption that the paracellular permeability of the cyst epithelium to Cl(-) must be very low. Claudins are tight junction (TJ) transmembrane proteins that determine the ion selectivity of paracellular barriers. The aim of this study was to determine the expression and localization of claudins within renal cysts in a mouse hypomorphic model of ADPKD and in human patients. We found that the majority of cysts were of collecting duct origin. Claudins normally expressed in collecting duct (3, 4, 7, 8, and 10) were found in small cysts. However, only claudin-7 persisted at substantive levels in the dedifferentiated epithelium of large, presumably late-stage cysts, where it was localized both at the TJ and basolaterally. The constitutively expressed TJ proteins, ZO-1 and occludin, were also abundantly expressed and correctly localized, suggesting that the basic infrastructure of the TJ is preserved. A previous study suggested that claudin-7 may function as a paracellular Cl(-) barrier. We postulate that the role of claudin-7 in ADPKD is to seal the paracellular route in Cl(-)-secreting cyst epithelium, preventing backleak of Cl(-), and that it thereby plays a permissive role in fluid secretion and cyst growth.
Collapse
Affiliation(s)
- A S L Yu
- Division of Nephrology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA.
| | | | | | | | | |
Collapse
|
21
|
Rizk D, Chapman A. Treatment of autosomal dominant polycystic kidney disease (ADPKD): the new horizon for children with ADPKD. Pediatr Nephrol 2008; 23:1029-36. [PMID: 18259779 DOI: 10.1007/s00467-007-0706-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Polycystic kidney disease (PKD) is the most common inherited renal disorder. Patients with PKD remain clinically asymptomatic for decades, while significant anatomic and physiologic systemic changes take place. Sequencing of the responsible genes and identification of their protein products have significantly expanded our understanding of the pathophysiology of PKD. The molecular basis for cystogenesis is being unraveled, leading to new targets for therapy and giving hope to millions of people suffering from PKD. This has direct implications for children with PKD with regard to screening for the disease and identification of high-risk individuals. In this article we provide a review of the clinical manifestations in children with autosomal dominant polycystic kidney disease (ADPKD), the genetic and molecular basis for the disease, and a concise review of potential therapies being evaluated.
Collapse
Affiliation(s)
- Dana Rizk
- Emory School of Medicine, VA Medical Center, Decatur, GA 30033, USA.
| | | |
Collapse
|
22
|
Abstract
Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways.
Collapse
|
23
|
Natoli TA, Gareski TC, Dackowski WR, Smith L, Bukanov NO, Russo RJ, Husson H, Matthews D, Piepenhagen P, Ibraghimov-Beskrovnaya O. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures. Am J Physiol Renal Physiol 2008; 294:F73-83. [DOI: 10.1152/ajprenal.00362.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of novel therapies for polycystic kidney disease (PKD) requires assays that adequately reflect disease biology and are adaptable to high-throughput screening. Here we describe an embryonic cystic kidney organ culture model and demonstrate that a new mutant allele of the Pkd1 gene ( Pkd1 tm1Bdgz) modulates cystogenesis in this model. Cyst formation induced by cAMP is influenced by the dosage of the mutant allele: Pkd1 tm1Bdgz −/− cultures develop a larger cystic area compared with +/+ counterparts, while Pkd1 tm1Bdgz +/− cultures show an intermediate phenotype. A similar relationship between the degree of cystogenesis and mutant gene dosage is seen in cystic kidney organ cultures derived from mice with a mutated Nek8 gene ( Nek8 jck). Both Pkd1− and Nek8− cultures display altered cell-cell junctions, with reduced E-cadherin expression and altered desmosomal protein expression, similar to ADPKD epithelia. Additionally, characteristic ciliary abnormalities are identified in cystic kidney cultures, with elevated ciliary polycystin 1 expression in Nek8 homozygous cultures and elevated ciliary Nek8 protein expression in Pkd1 homozygotes. These data suggest that the Nek8 and Pkd1 genes function in a common pathway to regulate cystogenesis. Moreover, compound Pkd1 and Nek8 heterozygous adult mice develop a more aggressive cystic disease than animals with a mutation in either gene alone. Finally, we validate the kidney organ culture cystogenesis assay as a therapeutic testing platform using the CDK inhibitor roscovitine. Therefore, embryonic kidney organ culture represents a relevant model for studying molecular cystogenesis and a rapid tool for the screening for therapies that block cystic growth.
Collapse
|
24
|
Stokely ME, Hwang SY, Hwang JY, Fan B, King MA, Inokuchi K, Koulen P. Polycystin-1 can interact with homer 1/Vesl-1 in postnatal hippocampal neurons. J Neurosci Res 2007; 84:1727-37. [PMID: 17016857 DOI: 10.1002/jnr.21076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystin-1 (PC-1) has been identified as critical to development of the nervous system, but the significance of PC-1 expression in neurons remains undefined, and little is known of its roles outside the kidney, where mutation results in autosomal dominant polycystic kidney disease (ADPKD). In kidney, PC-1 interacts with cadherins, catenins, and its cognate calcium channel polycystin-2 (PC-2), which in turn interacts with a number of actin-regulatory proteins. Because some of the proteins that interact with PC-1 in kidney also participate in synaptic remodeling and plasticity in the hippocampus, we decided to test PC-1's potential to interact with a recently discovered type of plasticity-associated protein (homer 1a/Vesl-1S) in postnatal mouse hippocampus. Homer 1a/Vesl-1S is an activity-induced protein believed to participate in synaptic remodeling/plasticity responses to temporal lobe seizure and learning. Here we report the following. 1) PC-1 contains a homer-binding motif (PPxxF), which lies within its purported cytoplasmic domain. 2) Immunoreactivity for PC-1 (PC-1-ir) is highly colocalized with homer 1a immunoreactivity (H1a-ir) in primary cultured hippocampal neurons. 3) PC-1-ir and H1a-ir are present and appear to be colocalized in mouse hippocampus but not cortex on postnatal day 2 (P2), when higher frequencies of spontaneous activity are normal for hippocampus compared with cortex. 4) An endogenous PC-1-ir band with the correct size for the reported C-terminal G-protein-sensitive domain cleavage product of PC-1 (approximately 150 kDa) coimmunoprecipitates with endogenous homer 1/Vesl-1 proteins from mouse brain, suggesting that PC-1 can interact with homer 1/Vesl-1 proteins in postnatal hippocampal neurons.
Collapse
Affiliation(s)
- Martha E Stokely
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
26
|
Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 2006; 17:2821-31. [PMID: 16928806 DOI: 10.1681/asn.2006020136] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.
Collapse
Affiliation(s)
- Laurie A Smith
- Genzyme Corporation, 5 Mountain Road, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bui-Xuan EF, Li Q, Chen XZ, Boucher CA, Sandford R, Zhou J, Basora N. More than colocalizing with polycystin-1, polycystin-L is in the centrosome. Am J Physiol Renal Physiol 2006; 291:F395-406. [PMID: 16609150 DOI: 10.1152/ajprenal.00282.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycystin-1 and polycystin-2 are involved in autosomal dominant polycystic kidney disease by unknown mechanisms. These two proteins are located in primary cilia where they mediate mechanosensation, suggesting a link between cilia function and renal disease. In this study, we sought to characterize the subcellular localization of polycystin-L, a closely related member of polycystin-2, in epithelial renal cell lines. We have shown that endogenous polycystin-l subcellular distribution is different in proliferative and nonproliferative cultures. Polycystin-L is found mostly in the endoplasmic reticulum in subconfluent cell cultures, while in confluent cells it is redistributed to sites of cell-cell contact and to the primary cilium as is polycystin-1. Subcellular fractionation confirmed a common distribution of polycystin-L and polycystin-1 in the fractions corresponding to those containing the plasma membrane of postconfluent cells. Reciprocal coimmunoprecipitation experiments showed that polycystin-L was associated with polycystin-1 in a common complex in both subconfluent and confluent cell cultures. Interestingly, we also identified a novel site for a polycystin member (polycystin-L) in unciliated cells, the centrosome, which allowed us to reveal an involvement of polycystin-l in cell proliferation.
Collapse
Affiliation(s)
- Eva-Flore Bui-Xuan
- Département de Physiologie et Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Taatjes DJ, Roth J. Recent progress in histochemistry and cell biology: the state of the art 2005. Histochem Cell Biol 2005; 124:547-74. [PMID: 16283358 DOI: 10.1007/s00418-005-0110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Advances in the field of histochemistry, a multidisciplinary area including the detection, localization and functional characterization of molecules in single cells and complex tissues, often drives the attainment of new knowledge in the broadly defined discipline of cell biology. These two disciplines, histochemistry and cell biology, have been joined in this journal to facilitate the flow of information with celerity from technical advancement in histochemical procedures, to their utilization in experimental models. This review summarizes advancements in these fields during the past year.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Microscopy Imaging Center, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|