1
|
Kovanda L, Hejna M, Du T, Liu Y. Butyrate Derivatives Exhibited Anti-Inflammatory Effects and Enhanced Intestinal Barrier Integrity in Porcine Cell Culture Models. Animals (Basel) 2025; 15:1289. [PMID: 40362102 PMCID: PMC12071038 DOI: 10.3390/ani15091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Butyrate and its derivatives may influence inflammatory status and physiology in a variety of organisms and organ systems. Inflammatory conditions of the gastrointestinal tract, such as post-weaning diarrhea, negatively impact swine. Dietary intervention with butyrate-based compounds should be considered a strategy to improve disease resistance in pigs. We aimed to assess the properties of different forms of butyrate treatments using porcine cell culture experiments. This assessment may inform future in vivo feed experiments designed to determine its potential application of the dietary supplements for pigs. An intestinal porcine enterocyte cell line, IPEC-J2, was seeded at 5 × 103 cells/mL in 96-well plates to confirm cell viability by MTT assay for each dose range used in the current experiments (0, 0.5, 1, 2, 4 mM butyric acid or tributyrin; 0, 1, 2, 4, 8 mM sodium butyrate or monobutyrin). For transepithelial electrical resistance (TEER) analysis, IPEC-J2 was seeded at 5 × 105 cells/mL in 12-well transwell inserts and treated with 5 levels of each butyrate derivative after adherence (n = 5). TEER was measured at 24, 48, and 72 h post-treatment to quantify intestinal barrier integrity of IPEC-J2 monolayers. Butyric acid, sodium butyrate, and monobutyrin significantly increased (p < 0.05) TEER in IPEC-J2 at different time points compared with control. Further, porcine alveolar macrophages (PAMs) were harvested from donor weaned piglets (n = 6) via bronchoalveolar lavage and isolated for primary culture (6 × 105 cells/well, 6-well plates). PAMs were treated with five levels of each butyrate derivative with or without lipopolysaccharide (LPS, 1 μg/mL) challenge. The concentrations of TNF-α and IL-1β in cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Butyric acid and sodium butyrate treatments reduced the production of TNF-α in LPS-challenged PAMs (linear; p < 0.05). Different butyrate derivatives exerted anti-inflammatory properties and improved intestinal barrier integrity.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland;
| | - Tina Du
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA; (L.K.); (T.D.)
| |
Collapse
|
2
|
Rose EC, Simon JM, Gomez-Martinez I, Magness ST, Odle J, Blikslager AT, Ziegler AL. Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine. Am J Physiol Gastrointest Liver Physiol 2025; 328:G182-G196. [PMID: 39853303 DOI: 10.1152/ajpgi.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Intestinal ischemic injury damages the epithelial barrier and predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age dependency in intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier compared with older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs, which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single-cell transcriptomics and the predicted upstream regulator, colony stimulating factor-1 (CSF-1), was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and colony-stimulating factor-1 receptor (CSF1R) co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Furthermore, the CSF-1 blockade reduced restitution in vitro, and CSF-1 improved barrier function in injured neonatal pigs in preliminary ex vivo experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.NEW & NOTEWORTHY These studies validate an approach to identify and predict upstream regulation of restituting epithelium in a unique pig intestinal ischemic injury model. Identification of potential molecular mediators of restitution, such as CSF-1, will inform the development of targeted therapeutic interventions for the medical management of patients with ischemia-mediated intestinal injury.
Collapse
Affiliation(s)
- Elizabeth C Rose
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Jeremy M Simon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ismael Gomez-Martinez
- Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Amanda L Ziegler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
3
|
Li Z, Pan Y, Zhou Y, Cui J, Ge H, Zhao W, Feng L, Tian J. Pathogenicity comparison between porcine G9P[23] and G5P[23] RVA in piglets. Vet Microbiol 2025; 301:110359. [PMID: 39742552 DOI: 10.1016/j.vetmic.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Rotavirus Group A (RVA) is a primary pathogen that causes viral diarrhea in humans and animals. Porcine rotaviruses (PoRVs) are widely epidemic in pig farms in China, causing great economic losses to the swine industry. In the past 30 years, the G5 RVA had been the main epidemic genotype in pig farms worldwide. However, G9 RVA is an emerging genotype that is gradually becoming prevalent in humans and animals. To explore its potential mechanism, we isolated G9P[23] and G5P[23] rotaviruses, named 923 H and NG523 respectively, from diarrheal samples and compared the growth curves and virulence of two strains. In vitro experiments revealed that pig small intestine epithelial cells were more susceptible to 923 H strain. In vivo experiments showed that 923 H strain was more virulent than NG523 strain, causing more severe damage to piglets. The viral load of G9 infection groups in intestinal and extra-intestinal tissues was higher than that of G5 infection group. Histopathological examination showed cell degeneration, necrosis and nuclear condensation in the jejunum of G9 RVA infection group as well as more inflammatory cell infiltration and tissue destruction in the lung of G9 RVA infection group. Our results indicate that 923 H strain is more pathogenic than NG523 strain, which provides new insights into the widespread epidemic of G9 RVA in pig farms.
Collapse
Affiliation(s)
- Zixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanxiang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jianshuang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hailiang Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, PR China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
4
|
Jiang Z, Su W, Yang M, Fu J, Gong T, Li W, Wen C, Wang X, Wang F, Jin M, Wang Y, Lu Z. Integrated multi-omics reveals the Bacillus amyloliquefaciens BA40 against Clostridium perfringens infection in weaned piglets. J Adv Res 2025:S2090-1232(25)00052-9. [PMID: 39855299 DOI: 10.1016/j.jare.2025.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Clostridium perfringens (C. perfringens) can cause necrotic enteritis and higher mortality rates in piglets, by impairing the intestinal barrier function. Bacillus amyloliquefaciens 40 (BA40) has showed potential ability to reduce C. perfringens infections, but the mechanisms responsible for its effectiveness remain unclear. OBJECTIVES This study aims to evaluate the impact of BA40 on inflammation induced by C. perfringens and to explain the mechanisms underlying its therapeutic effects. We aim to show how BA40 can bolster piglet health by strengthening the intestinal barrier and regulating immune responses. METHODS We used piglets and cellular models, alongside microbiomics, metabolomic, and transcriptomic analyses, to investigate BA40's impact on C. perfringens-induced inflammation. A model of C. perfringens infection was constructed using piglets and cells to investigate the effect of BA40 on its phenotype. Microbiomics, metabolomics, and transcriptomics analyses were subsequently used to investigate the mechanisms of protection and immune response to BA40 on the intestinal barrier of piglets. RESULTS Our study revealed significant improvements in piglet health following BA40 administration. Notably, BA40 strengthened the intestinal mucosal barrier and mitigated the inflammatory response triggered by C. perfringens BA40 decreased harmful bacteria and increased beneficial bacteria. Metabolite profiles improved, showing a reduction in harmful substances. Transscriptomics analysis indicated BA40's role in TNF/NF-κB signaling pathway, hinting at its ability to regulate immune responses and reduce intestinal inflammation. Cellular assays further confirmed BA40's capacity to diminish inflammatory cytokine release and encourage the differentiation of anti-inflammatory macrophages. CONCLUSION Datasets from the present study demonstrate that BA40 modulates gut microbes and metabolites, inhibits inflammation-related signaling pathways, and maintains gut barrier function. Our findings not only deepen our understanding of the therapeutic capacity of BA40 but also provide a theoretical foundation for the development of probiotics and alternative therapies aimed at improving piglet gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Chaoyue Wen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China.
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Perruchot MH, Boudry G, Mayeur-Nickel F, Grondin M, Wiart-Letort S, Giblin L, Grundy MML. In Vitro Evaluation of Intestinal Barrier Function after Exposure to Digested Pea Ingredients─Food Matrix Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:584-594. [PMID: 39681414 PMCID: PMC11726683 DOI: 10.1021/acs.jafc.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Dietary fibers (DF) are important components of human and animal diets. However, they can decrease protein digestibility and absorption and thus the nutritional value of a food. The aim of this study was to investigate how the form of delivery of pea DF impacted the integrity of the intestinal barrier and, thereby, the potential absorption of molecules. To this end, two pea flours, with either intact or ruptured cell walls, and two controls, pea fibers and pea protein, were digested in vitro and the digesta obtained applied onto a jejunum porcine cell line (IPEC-J2 cells). Cell viability and integrity were evaluated by transepithelial electrical resistance measurement, colorimetric assay (MTS), and immunohistochemistry for tight junction proteins. Additionally, the diffusion of FITC-dextran (FD4) and lucifer yellow (LY) through the epithelial cell monolayers was monitored. The digested pea samples did not alter the IPEC-J2 viability and permeability. For instance, no difference in the diffusion of molecules either FD4 or LY across the monolayers was observed between the different digesta and the control. Similarly, no effect was observed in ZO-1 labeling intensity compared to the control. This study demonstrated that intestinal integrity was maintained whether pea cell walls were intact or ruptured.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- NUMECAN,
INSERM, INRAE, Université de Rennes, Saint Gilles 35590, France
| | | | | | | | - Linda Giblin
- Teagasc
Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland
| | | |
Collapse
|
6
|
Christanseen S, Walls D, White B, Murphy R, Horgan K. The Efficacy of a Ferric Sillen Core-Linked Polymer in Suppressing the Pathogenicity of Campylobacter jejuni. Animals (Basel) 2024; 14:3150. [PMID: 39518873 PMCID: PMC11545373 DOI: 10.3390/ani14213150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Campylobacter spp. are considered the leading bacterial cause of human gastroenteritis in the world. The development of effective intervention strategies aimed at limiting C. jejuni infections has encountered various challenges, including a lack of an appropriate animal model. Nevertheless, recent advancements in research have clarified the molecular mechanisms underlying C. jejuni's pathogenicity, potentially opening new avenues for targeted interventions. This study evaluated the efficacy of a ferric sillen core-linked polymer (FSCLP) in lowering the proliferation and gene expression of C. jejuni virulence factors in vitro. Furthermore, this study sought to examine the impact of this FSCLP in an ex vivo environment by investigating its ability to influence the attachment to and invasion of porcine jejunal epithelial (IPEC-J2) cells by C. jejuni. Findings show that the FSCLP exhibits significant inhibitory effects on the growth of C. jejuni (p < 0.001) and decreases gene expression related to both virulence and colonisation in C. jejuni. Moreover, supplementation with the FSCLP significantly reduced the attachment of C. jejuni to IPEC-J2 cells (p < 0.01) when compared to the control. Thus, this water-soluble product presents a potential management strategy for Campylobacter infections in poultry, potentially impeding colonisation, reducing transmission, and ultimately mitigating the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Seán Christanseen
- Alltech Ireland, Summerhill Road, A86 X006 Dunboyne, Ireland; (R.M.)
| | - Dermot Walls
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, D09 E432 Dublin, Ireland;
| | - Blánaid White
- National Centre for Sensor Research, Dublin City University, D09 E432 Dublin, Ireland;
- DCU Water Institute, Dublin City University, D09 K20V Dublin, Ireland
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| | - Richard Murphy
- Alltech Ireland, Summerhill Road, A86 X006 Dunboyne, Ireland; (R.M.)
| | - Karina Horgan
- Alltech Ireland, Summerhill Road, A86 X006 Dunboyne, Ireland; (R.M.)
| |
Collapse
|
7
|
Machulin AV, Abramov VM, Kosarev IV, Deryusheva EI, Priputnevich TV, Panin AN, Manoyan AM, Chikileva IO, Abashina TN, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow's Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli. Antibiotics (Basel) 2024; 13:924. [PMID: 39452191 PMCID: PMC11505560 DOI: 10.3390/antibiotics13100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
8
|
Maluck S, Bobrovsky R, Poór M, Lange RW, Steinmetzer T, Jerzsele Á, Adorján A, Bajusz D, Rácz A, Pászti-Gere E. In Vitro Evaluation of Antipseudomonal Activity and Safety Profile of Peptidomimetic Furin Inhibitors. Biomedicines 2024; 12:2075. [PMID: 39335588 PMCID: PMC11444200 DOI: 10.3390/biomedicines12092075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibitors of the serine protease furin have been widely studied as antimicrobial agents due to their ability to block the cleavage and activation of certain viral surface proteins and bacterial toxins. In this study, the antipseudomonal effects and safety profiles of the furin inhibitors MI-1851 and MI-2415 were assessed. Fluorescence quenching studies suggested no relevant binding of the compounds to human serum albumin and α1-acid glycoprotein. Both inhibitors demonstrated significant antipseudomonal activity in Madin-Darby canine kidney cells, especially compound MI-1851 at very low concentrations (0.5 µM). Using non-tumorigenic porcine IPEC-J2 cells, neither of the two furin inhibitors induced cytotoxicity (CCK-8 assay) or altered significantly the intracellular (Amplex Red assay) or extracellular (DCFH-DA assay) redox status even at a concentration of 100 µM. The same assays with MI-2415 conducted on primary human hepatocytes also resulted in no changes in cell viability and oxidative stress at up to 100 µM. Microsomal and hepatocyte-based CYP3A4 activity assays showed that both inhibitors exhibited a concentration-dependent inhibition of the isoenzyme at high concentrations. In conclusion, this study indicates a good safety profile of the furin inhibitors MI-1851 and MI-2415, suggesting their applicability as antimicrobials for further in vivo investigations, despite some inhibitory effects on CYP3A4.
Collapse
Affiliation(s)
- Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Rivka Bobrovsky
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Roman W Lange
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Anita Rácz
- Plasma Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Hungary István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
9
|
Zheng S, Zhao Y, Zheng Z, Liu Y, Liu S, Han J. Transport of glycinin, the major soybean allergen, across intestinal epithelial IPEC-J2 cell monolayers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1360-1369. [PMID: 38689491 DOI: 10.1111/jpn.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysates transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-β-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.
Collapse
Affiliation(s)
- Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Yintong Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Ziang Zheng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, PR China
| | - Yajing Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Simiao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
10
|
Van Bockstal L, Prims S, Van Cruchten S, Ayuso M, Che L, Van Ginneken C. Cell migration and proliferation capacity of IPEC-J2 cells after short-chain fatty acid exposure. PLoS One 2024; 19:e0309742. [PMID: 39213333 PMCID: PMC11364292 DOI: 10.1371/journal.pone.0309742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Novel antimicrobial strategies are necessary to tackle using antibiotics during the suckling and weaning period of piglets, often characterized by E. coli-induced diarrhea. In the last decades, acetate, propionate, and butyrate, all short-chain fatty acids (SCFAs), have been proposed as an alternative to antibiotics. SCFAs are instrumental in promoting the proliferation of enterocytes, preserving intestinal integrity, and modulating the microbial community by suppressing the growth of pathogenic bacteria in pigs. The effect of individual SCFAs (proprionate, acetate and butyrate) on the regenerative capacity of intestinal cells was investigated via an optimized wound-healing assay in IPEC-J2 cells, a porcine jejunal epithelial cell line. IPEC-J2 cells proved a good model as they express the free fatty acid receptor 2 (FFAR2), an important SCFA receptor with a high affinity for proprionate. Our study demonstrated that propionate (p = 0.005) and acetate (p = 0.037) were more effective in closing the wound than butyrate (p = 0.190). This holds promise in using SCFA's per os as an alternative to antibiotics.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sara Prims
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Biogenesis Bagó, Development of Biotech Products, Madrid, Spain
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu City, Sichuan Province, China
| | - Chris Van Ginneken
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Rose EC, Simon JM, Gomez-Martinez I, Magness ST, Odle J, Blikslager AT, Ziegler AL. Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601271. [PMID: 38979337 PMCID: PMC11230382 DOI: 10.1101/2024.06.28.601271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs were processed for single cell RNA sequencing analysis, and predicted upstream regulators were assessed in a porcine intestinal epithelial cell line (IPEC-J2) and banked tissues. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation included colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued (but not control) neonates. Further, the CSF1R inhibitor BLZ945 reduced restitution in scratch wounded IPEC-J2 cells. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model. NEW & NOTEWORTHY These studies validate an approach to identify and predict upstream regulation of restituting epithelium in a unique pig intestinal ischemic injury model. Identification of potential molecular mediators of restitution, such as CSF-1, will inform the development of targeted therapeutic interventions for medical management of patients with ischemia-mediated intestinal injury.
Collapse
|
12
|
Zheng Z, Han J, Chen X, Zheng S. A Quantity-Dependent Nonlinear Model of Sodium Cromoglycate Suppression on Beta-Conglycinin Transport. Int J Mol Sci 2024; 25:6636. [PMID: 38928351 PMCID: PMC11204204 DOI: 10.3390/ijms25126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MβCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.
Collapse
Affiliation(s)
- Ziang Zheng
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Junfeng Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xinyi Chen
- College of Information Science and Engineering, Northeastern University, NO. 3-11, Wenhua Road, Shenyang 110819, China; (Z.Z.)
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
13
|
Bagaria M, Ramayo-Caldas Y, González-Rodríguez O, Vila L, Delàs P, Fàbrega E. Impact of Nutritional Strategies to Prevent Post-Weaning Diarrhoea on Performance, Behaviour, and Microbiota in Piglets from Organic Farming. Animals (Basel) 2024; 14:1730. [PMID: 38929349 PMCID: PMC11200382 DOI: 10.3390/ani14121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Organic livestock farming is committed to high environmental and animal welfare standards, although pathologies such as post-weaning diarrhoea (PWD) may appear. The main objective of this study was to assess nutritional strategies to prevent PWD in organic piglets. A total of 134 weaned piglets were fed one of three diets: high crude protein (17.8%, HCP), low crude protein (16.8%, LCP), and low crude protein supplemented with liquid whey (LCP+W). Piglets were assessed weekly for four weeks on the following parameters: diarrhoea incidence, additional health parameters, average daily gain, and behaviour. Faecal samples were taken to analyse the intestinal microbiota composition. Data were analysed using LMM and GLMM models and Shannon and Whittaker indexes. No significant effect of diet on diarrhoea incidence was found, but the LCP+W diet increased average daily gain. Pigs fed the LCP+W diet presented a lower percentage of drinking and negative social behaviour compared with the HCP diet, and LCP pigs presented higher exploration compared with HCP. In addition, LCP+W piglets showed a higher abundance of the beneficial genus Frisingicoccus. Although liquid whey did not reduce diarrhoea incidence, the benefits found in growth, microbiota composition, and reduced negative social behaviour indicate that it could be an optimal supplement to organic diets.
Collapse
Affiliation(s)
- Marc Bagaria
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Lluís Vila
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Pino Delàs
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Emma Fàbrega
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| |
Collapse
|
14
|
Li R, Wang L, Chen B, Zhang Y, Qi P. Effects of Transportation on Blood Indices, Oxidative Stress, Rumen Fermentation Parameters and Rumen Microbiota in Goats. Animals (Basel) 2024; 14:1616. [PMID: 38891663 PMCID: PMC11170990 DOI: 10.3390/ani14111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The objective of this experiment was to delve into the impacts of transportation on goats. Sixteen healthy goats were selected as experimental animals; these goats were transported at a speed ranging from 35 to 45 km/h for 20 h. The changes in the physiological indexes, blood physiological indexes, biochemical indexes, rumen fermentation indexes, and rumen microbial structure composition of goats before and after transportation were measured. The results showed that after transportation, the contents of IgM, IgA, IgG, and Thyroxine decreased very significantly, while the contents of propionic acid, Hemoglobin and Epinephrine significantly increased, and the contents of VFA, acetic acid, butyric acid, isobutyric acid, isovaleric acid, LPS, IL-1β, IL-6, TNF-α, Major Acute Phase Protein, protein carbonyl, and cortisol increased very significantly. There was no significant difference in α-diversity and β-diversity, and the relative abundance of rumen microorganisms was not significantly different at either phylum or genus levels. The experimental findings revealed that continuous transportation for a duration of 20 h can induce a severe stress response in goats, leading to compromised immune function, diminished antioxidant capacity, escalated inflammatory response, and altered rumen fermentation indices. However, the experiment did not reveal any significant impact on the structure and composition of the rumen microbiota.
Collapse
Affiliation(s)
- Rui Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.L.); (P.Q.)
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.L.); (P.Q.)
| | - Binlong Chen
- Key Laboratory of Local Characteristic Goat, Xi Chang University, Xichang 615012, China;
| | - Yi Zhang
- Key Laboratory of Local Characteristic Goat, Xi Chang University, Xichang 615012, China;
| | - Pei Qi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.L.); (P.Q.)
| |
Collapse
|
15
|
Matsumoto K, Namai F, Miyazaki A, Imamura Y, Fukuyama K, Ikeda-Ohtsubo W, Nishiyama K, Villena J, Miyazawa K, Kitazawa H. Development of an intestinal epithelial cell line and organoids derived from the same swine and characterization of their antiviral responses. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:342-351. [PMID: 39364127 PMCID: PMC11444855 DOI: 10.12938/bmfh.2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 10/05/2024]
Abstract
Intestinal homeostasis and integrity are important factors for maintaining host health. This study established intestinal epithelial cell lines and organoids from the same swine jejunal crypts to develop seamless swine intestinal in vitro evaluation systems. The study evaluated the proliferative capacity and tight junction formation of the epithelial cell line and characterized the cell differentiation potential of the intestinal organoids. The evaluation systems were subsequently exposed to the Toll-like receptor 3 (TLR3) agonist poly(I:C) to simulate viral infections and assess the antiviral responses. The results demonstrated no differences in the response to type I interferons. There were, however, significant differences in the expression of interferon-stimulated genes. This study collectively introduced a flexible evaluation system using cell lines and organoids and revealed notable differences in the expression of interferon-stimulated genes, highlighting the complexity of the immune responses in these in vitro systems and the importance of intestinal heterogeneity in assessing viral responses.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Ayako Miyazaki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshiya Imamura
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Julio Villena
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Kohtaro Miyazawa
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
16
|
Andrani M, Ferrari L, Borghetti P, Cavalli V, De Angelis E, Ravanetti F, Dall'Olio E, Martelli P, Saleri R. Short-chain fatty acids modulate the IPEC-J2 cell response to pathogenic E. coli LPS-activated PBMC. Res Vet Sci 2024; 171:105231. [PMID: 38513460 DOI: 10.1016/j.rvsc.2024.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-β. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-β modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Eleonora Dall'Olio
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| |
Collapse
|
17
|
Bao X, Gänzle MG, Wu J. Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7219-7229. [PMID: 38507577 DOI: 10.1021/acs.jafc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
18
|
van Niekerk AA, Maluck S, Mag P, Kővágó C, Kerek Á, Jerzsele Á, Steinmetzer T, Pászti-Gere E. Antiviral Drug Candidate Repositioning for Streptococcus suis Infection in Non-Tumorigenic Cell Models. Biomedicines 2024; 12:783. [PMID: 38672139 PMCID: PMC11048155 DOI: 10.3390/biomedicines12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance against zoonotic bacteria, including Streptococcus (S.) suis, highlights the need for new therapeutical strategies, including the repositioning of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different 3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory concentration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and MI-476, showed excellent antibacterial effects against S. suis. Their drug interaction potential was investigated using human liver microsomal cytochrome P450 (CYP450) measurements. In our work, non-tumorigenic IPEC-J2 cells and primary porcine hepatocytes were infected with S. suis, and the putative beneficial impact of these inhibitors was investigated on cell viability (Neutral red assay), on interleukin (IL)-6 levels (ELISA technique), and on redox balance (Amplex red method). The antibacterial inhibitors prevented S. suis-induced cell death (except MI-432) and decreased proinflammatory IL-6 levels. It was also found that MI-432 and MI-476 had antioxidant effects in an intestinal cell model upon S. suis infection. Concentration-dependent suppression of CYP3A4 function was found via application of all three inhibitors. In conclusion, our study suggests that the potential antiviral Phe(3-Am) derivatives with 2',4' dichloro-biphenyl moieties can be considered as effective drug candidates against S. suis infection due to their antibacterial effects.
Collapse
Affiliation(s)
- Ashley Anzet van Niekerk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Csaba Kővágó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| |
Collapse
|
19
|
Lin Y, Zhai JL, Wang YT, Guo PT, Zhang J, Wang CK, Jin L, Gao YY. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet Microbiol 2024; 291:110013. [PMID: 38364468 DOI: 10.1016/j.vetmic.2024.110013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-β, while decreased the content of IL-1β compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-β, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1β, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1β, the gene expressions of IL-1β, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-β and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.
Collapse
Affiliation(s)
- Ying Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Lei Zhai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Donkers JM, Wiese M, van den Broek TJ, Wierenga E, Agamennone V, Schuren F, van de Steeg E. A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:18. [PMID: 38841408 PMCID: PMC11149092 DOI: 10.20517/mrr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024]
Abstract
Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Maria Wiese
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Tim J. van den Broek
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Esmée Wierenga
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Valeria Agamennone
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Frank Schuren
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| |
Collapse
|
21
|
Li M, Wang M, Xi Y, Qiu S, Zeng Q, Pan Y. Isolation and Identification of a Tibetan Pig Porcine Epidemic Diarrhoea Virus Strain and Its Biological Effects on IPEC-J2 Cells. Int J Mol Sci 2024; 25:2200. [PMID: 38396878 PMCID: PMC10889329 DOI: 10.3390/ijms25042200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou 730070, China
| |
Collapse
|
22
|
Ferlisi F, De Ciucis CG, Trabalza-Marinucci M, Fruscione F, Mecocci S, Franzoni G, Zinellu S, Galarini R, Razzuoli E, Cappelli K. Olive Mill Waste-Water Extract Enriched in Hydroxytyrosol and Tyrosol Modulates Host-Pathogen Interaction in IPEC-J2 Cells. Animals (Basel) 2024; 14:564. [PMID: 38396532 PMCID: PMC10886184 DOI: 10.3390/ani14040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs.
Collapse
Affiliation(s)
- Flavia Ferlisi
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | | | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| |
Collapse
|
23
|
Georgana I, Hosmillo M, Jahun AS, Emmott E, Sorgeloos F, Cho KO, Goodfellow IG. Porcine Sapovirus Protease Controls the Innate Immune Response and Targets TBK1. Viruses 2024; 16:247. [PMID: 38400023 PMCID: PMC10892870 DOI: 10.3390/v16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Human sapoviruses (HuSaVs) and noroviruses are considered the leading cause of acute gastroenteritis worldwide. While extensive research has focused on noroviruses, our understanding of sapoviruses (SaVs) and their interactions with the host's immune response remains limited. HuSaVs have been challenging to propagate in vitro, making the porcine sapovirus (PSaV) Cowden strain a valuable model for studying SaV pathogenesis. In this study we show, for the first time, that PSaV Cowden strain has mechanisms to evade the host's innate immune response. The virus 3C-like protease (NS6) inhibits type I IFN production by targeting TBK1. Catalytically active NS6, both during ectopic expression and during PSaV infection, targets TBK1 which is then led for rapid degradation by the proteasome. Moreover, deletion of TBK1 from porcine cells led to an increase in PSaV titres, emphasizing its role in regulating PSaV infection. Additionally, we successfully established PSaV infection in IPEC-J2 cells, an enterocytic cell line originating from the jejunum of a neonatal piglet. Overall, this study provides novel insights into PSaV evasion strategies, opening the way for future investigations into SaV-host interactions, and enabling the use of a new cell line model for PSaV research.
Collapse
Affiliation(s)
- Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| |
Collapse
|
24
|
Johnsson M, Hickey JM, Jungnickel MK. Building in vitro tools for livestock genomics: chromosomal variation within the PK15 cell line. BMC Genomics 2024; 25:49. [PMID: 38200430 PMCID: PMC10782621 DOI: 10.1186/s12864-023-09931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cultured porcine cell lines are powerful tools for functional genomics and in vitro phenotypic testing of candidate causal variants. However, to be utilised for genomic or variant interrogation assays, the genome sequence and structure of cultured cell lines must be realised. In this work, we called variants and used read coverage in combination with within-sample allele frequency to detect potential aneuploidy in two immortalised porcine kidney epithelial (PK15) cell lines and in a pig embryonic fibroblast line. RESULTS We compared two PK15 cultured cells samples: a new American Type Culture Collection (ATCC) sample and one that has been utilised and passaged within the laboratory for an extended period (> 10 years). Read coverage and within-sample allele frequencies showed that several chromosomes are fully or partially aneuploid in both PK15 lines, including potential trisomy of chromosome 4 and tetrasomy of chromosome 17. The older PK15 line showed evidence of additional structural variation and potentially clonal variation. By comparison, the pig embryonic fibroblast line was free from the gross aneuploidies seen in the PK15s. CONCLUSIONS Our results show that the PK15 cell lines examined have aneuploidies and complex structural variants in their genomes. We propose that screening for aneuploidy should be considered for cell lines, and discuss implications for livestock genomics.
Collapse
Affiliation(s)
- M Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.
| | - J M Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, EH25 9RG, UK
| | - M K Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, EH25 9RG, UK.
| |
Collapse
|
25
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Akhmetzyanova AA, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Anti- Salmonella Defence and Intestinal Homeostatic Maintenance In Vitro of a Consortium Containing Limosilactobacillus fermentum 3872 and Ligilactobacillus salivarius 7247 Strains in Human, Porcine, and Chicken Enterocytes. Antibiotics (Basel) 2023; 13:30. [PMID: 38247590 PMCID: PMC10812507 DOI: 10.3390/antibiotics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1β, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia; (V.S.K.); (V.K.S.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
26
|
Boehm E, Droessler L, Amasheh S. Cannabidiol attenuates inflammatory impairment of intestinal cells expanding biomaterial-based therapeutic approaches. Mater Today Bio 2023; 23:100808. [PMID: 37779918 PMCID: PMC10539670 DOI: 10.1016/j.mtbio.2023.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Cannabis-based biomaterials have the potential to deliver anti-inflammatory therapeutics specifically to desired cells, tissues, and organs, enhancing drug delivery and the effectiveness of anti-inflammatory treatment while minimizing toxicity. As a major component of Cannabis, Cannabidiol (CBD) has gained major attention in recent years because of its potential therapeutic properties, e.g., for restoring a disturbed barrier resulting from inflammatory conditions. The aim of this study was to test the hypothesis that CBD has beneficial effects under normal and inflammatory conditions in the established non-transformed intestinal epithelial cell model IPEC-J2. CBD induced a significant increase in transepithelial electrical resistance (TER) values and a decrease in the paracellular permeability of [³H]-D-Mannitol, indicating a strengthening effect on the barrier. Under inflammatory conditions induced by tumor necrosis factor alpha (TNFα), CBD stabilized the TER and mitigated the increase in paracellular permeability. Additionally, CBD prevented the barrier-disrupting effects of TNFα on the distribution and localization of sealing TJ proteins. CBD also affected the expression of TNF receptors. These findings demonstrate the potential of CBD as a component of Cannabis-based biomaterials used in the development of novel therapeutic approaches against inflammatory pathogenesis.
Collapse
Affiliation(s)
- Elisa Boehm
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Linda Droessler
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| |
Collapse
|
27
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ahmetzyanova AA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN. Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti- Salmonella Effect with Prebiotics. Antibiotics (Basel) 2023; 12:1535. [PMID: 37887236 PMCID: PMC10604316 DOI: 10.3390/antibiotics12101535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Anna A. Ahmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
28
|
Palkovicsné Pézsa N, Kovács D, Somogyi F, Karancsi Z, Móritz AV, Jerzsele Á, Rácz B, Farkas O. Effects of Lactobacillus rhamnosus DSM7133 on Intestinal Porcine Epithelial Cells. Animals (Basel) 2023; 13:3007. [PMID: 37835613 PMCID: PMC10571805 DOI: 10.3390/ani13193007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species. We established a co-culture model, in which gastrointestinal infection was modeled using Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium). Using intestinal porcine epithelial cells (IPEC-J2), the effects of pre-, co-, and post-treatment with Lactobacillus (L.) rhamnosus on the barrier function, intracellular (IC) reactive oxygen species (ROS) production, proinflammatory cytokine (IL-6 and IL-8) response, and adhesion inhibition were tested. E. coli- and S. Typhimurium-induced barrier impairment and increased ROS production could be counteracted using L. rhamnosus (p < 0.01). S. Typhimurium-induced IL-6 production was reduced via pre-treatment (p < 0.05) and post-treatment (p < 0.01); increased IL-8 secretion was decreased via pre-, co-, and post-treatment (p < 0.01) with L. rhamnosus. L. rhamnosus demonstrated significant inhibition of adhesion for both S. Typhimurium (p < 0.001) and E. coli (p < 0.001 in both pre-treatment and post-treatment; p < 0.05 in co-treatment). This study makes a substantial contribution to the understanding of the specific benefits of L. rhamnosus. Our findings can serve as a basis for further in vivo studies carried out in pigs and humans.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Fanni Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
| | - Zita Karancsi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Alma Virág Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| |
Collapse
|
29
|
Binder ARD, Mussack V, Kirchner B, Pfaffl MW. Uptake and effects of polystyrene nanoplastics in comparison to non-plastic silica nanoparticles on small intestine cells (IPEC-J2). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115147. [PMID: 37343485 DOI: 10.1016/j.ecoenv.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Nanoplastics smaller than 1 µm accumulate as anthropogenic material in the food chain, but only little is known about their uptake and possible effects on potentially strongly exposed cells of the small intestine. The aim of the study was to observe the uptake of 100 nm polystyrene nanoplastics into a non-tumorigenic small intestine cell culture model (IPEC-J2 cells) and to monitor the effects on cell growth and gene regulation, compared to a 100 nm non-plastic silica nanoparticle reference. The intracellular uptake of both types of nanoparticles was proven via (confocal) fluorescence microscopy and complemented with transmission electron microscopy. Fluorescence microscopy showed a growth phase-dependent uptake of nanoparticles into the cells, hence further experiments included different time points related to epithelial closure, determined via electric cell substrate impedance sensing. No retardations in epithelial closure of cells after treatment with polystyrene nanoparticles could be found. In contrast, epithelial cell closure was partly negatively influenced by silica nanoparticles. An increased production of organic nanoparticles, like extracellular vesicles, was not measurable via nanoparticle tracking analysis. An assessment of messenger RNA by next generation sequencing and subsequent pathway analysis revealed that the TP53 pathway was influenced significantly by the polystyrene nanoparticle treatment. In both treatments, dysregulated mRNAs were highly enriched in the NOTCH signaling pathway compared to the non-particle control.
Collapse
Affiliation(s)
- Anna Ronja Dorothea Binder
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, D-85354 Freising, Germany.
| | - Veronika Mussack
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, D-85354 Freising, Germany
| | - Benedikt Kirchner
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, D-85354 Freising, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, D-85354 Freising, Germany
| |
Collapse
|
30
|
Becquet P, Vazquez-Anon M, Mercier Y, Wedekind K, Mahmood T, Batonon-Alavo DI, Yan F. A systematic review of metabolism of methionine sources in animals: One parameter does not convey a comprehensive story. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:31-49. [PMID: 37009071 PMCID: PMC10060178 DOI: 10.1016/j.aninu.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/16/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The goal of this review article, based on a systematic literature search, is to critically assess the state of knowledge and experimental methodologies used to delineate the conversion and metabolism of the 2 methionine (Met) sources DL-methionine (DL-Met) and DL-2-hydroxy-4-(methylthio) butanoic acid (HMTBa). The difference in the chemical structures of HMTBa and DL-Met indicates that these molecules are absorbed and metabolized differently in animals. This review explores the methodologies used to describe the 2-step enzymatic conversion of the 3 enantiomers (D-HMTBa, L-HMTBa and D-Met) to L-Met, as well as the site of conversion at the organ and tissue levels. Extensive work was published documenting the conversion of HMTBa and D-Met into L-Met and, consequently, the incorporation into protein using a variety of in vitro techniques, such as tissue homogenates, cell lines, primary cell lines, and everted gut sacs of individual tissues. These studies illustrated the role of the liver, kidney, and intestine in the conversion of Met precursors into L-Met. A combination of in vivo studies using stable isotopes and infusions provided evidence of the wide conversion of HMTBa to L-Met by all tissues and how some tissues are net users of HMTBa, whereas others are net secreters of L-Met derived from HMTBa. Conversion of D-Met to L-Met in organs other than the liver and kidney is poorly documented. The methodology cited in the literature to determine conversion efficiency ranged from measurements of urinary, fecal, and respiratory excretion to plasma concentration and tissue incorporation of isotopes after intraperitoneal and oral infusions. Differences observed between these methodologies reflect differences in the metabolism of Met sources rather than differences in conversion efficiency. The factors affecting conversion efficiency are explored in this paper and are mostly associated with extreme dietary conditions, such as noncommercial crystalline diets that are very deficient in total sulfur amino acids with respect to requirements. Implications in the diversion of the 2 Met sources toward transsulfuration over transmethylation pathways are discussed. The strengths and weaknesses of some methodologies used are discussed in this review. From this review, it can be concluded that due to the inherent differences in conversion and metabolism of the 2 Met sources, the experimental methodologies (e.g., selecting different organs at different time points or using diets severely deficient in Met and cysteine) can impact the conclusions of the study and may explain the apparent divergences of conclusion found in the literature. It is recommended when conducting studies or reviewing the literature to properly select the experimental models that allow for differences in how the 2 Met precursors are converted to L-Met and metabolized by the animal to enable a proper comparison of their bioefficacy.
Collapse
Affiliation(s)
- Philippe Becquet
- International Methionine Analogue Association, Regus Brussels City Centre, Stéphanie Square, Avenue Louise, 65, B-1050 Brussels, Belgium
| | - Mercedes Vazquez-Anon
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| | - Yves Mercier
- Adisseo France SAS, Antony Parc II, 10 Place Du Général de Gaulle, Antony 92160, France
| | - Karen Wedekind
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| | - Tahir Mahmood
- Adisseo France SAS, Antony Parc II, 10 Place Du Général de Gaulle, Antony 92160, France
| | | | - Frances Yan
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| |
Collapse
|
31
|
Zhang Z, Fan K, Meng J, Nie D, Zhao Z, Han Z. Deoxynivalenol hijacks the pathway of Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT-3) to drive caspase-3-mediated apoptosis in intestinal porcine epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161058. [PMID: 36565876 DOI: 10.1016/j.scitotenv.2022.161058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Deoxynivalenol (DON) can easily injure the intestinal tract, which represents the first barrier against food contaminants. The intestinal toxicity induced by DON was mainly focused on mitogen-activated protein kinase (MAPK) activation, however, the underlying mechanisms by which DON triggers apoptosis by other pathways remain poorly understood. In this study, the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT-3) pathway was proposed to regulate the intrinsic apoptosis induced by DON and thoroughly investigated in intestinal porcine epithelial cells (IPEC-J2). First, DON was found to be able to efficiently inhibit cell viability and increase the release of lactate dehydrogenase. It could also enhance the activity of the cleaved caspase-3 in a time-dependent manner, accompanied by a loss of mitochondrial membrane potential and an up-regulation of the apoptosis rate. Then, the expression of genes associated with inflammation and apoptosis were investigated. DON increased the expression of IL-6, IL-1β, TNF-α, SOCS3 and Bax, but decreased the expression of Bcl-2 and Bcl-xL. Moreover, we discovered that DON robustly inhibited STAT-3 activity together with the down-regulation of JAK2, Bcl-2 and Bcl-xL, paralleling the increase in p38 phosphorylation. Furthermore, a pharmacological activation of JAK2/STAT-3 alleviated DON induced-apoptosis. Concurrent with the apoptotic pathway, during the initial exposure to DON (first 4 h), a survival pathway involving phosphorylated Erk1/2, Akt, and FoxO1 was also observed. Thus, apoptosis induced by DON was Janus faced: although the survival pathway was activated, the DON-induced apoptotic JAK2/STAT-3/caspase-3 pathway dominated, leading to an imbalance in cell homeostasis. This study provides a novel avenue to comprehensively reveal the pathological mechanisms of DON-induced intestinal disorders, which is promising for future applications to other contaminants in food and feed.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
32
|
Hu J, Chen J, Hou Q, Xu X, Ren J, Ma L, Yan X. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs. MICROBIOME 2023; 11:31. [PMID: 36814349 PMCID: PMC9948344 DOI: 10.1186/s40168-023-01468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gut fungi are increasingly recognized as important contributors to host physiology, although most studies have focused on gut bacteria. Post-translational modifications (PTMs) of proteins play vital roles in cell metabolism. However, the contribution of gut fungi to host protein PTMs remains unclear. Mining gut fungi that mediate host protein PTMs and dissecting their mechanism are urgently needed. RESULTS We studied the gut fungal communities of 56 weaned piglets and 56 finishing pigs from seven pig breeds using internal transcribed spacer (ITS) gene amplicon sequencing and metagenomics. The results showed that Kazachstania slooffiae was the most abundant gut fungal species in the seven breeds of weaned piglets. K. slooffiae decreased intestinal epithelial lysine succinylation levels, and these proteins were especially enriched in the glycolysis pathway. We demonstrated that K. slooffiae promoted intestinal epithelial glycolysis by decreasing lysine succinylation by activating sirtuin 5 (SIRT5). Furthermore, K. slooffiae-derived 5'-methylthioadenosine metabolite promoted the SIRT5 activity. CONCLUSIONS These findings provide a landscape of gut fungal communities of pigs and suggest that K. slooffiae plays a crucial role in intestinal glycolysis metabolism through lysine desuccinylation. Our data also suggest a potential protective strategy for pigs with an insufficient intestinal energy supply. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xiaojian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jing Ren
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
33
|
Wendner D, Schott T, Mayer E, Teichmann K. Beneficial Effects of Phytogenic Feed Additives on Epithelial Barrier Integrity in an In Vitro Co-Culture Model of the Piglet Gut. Molecules 2023; 28:molecules28031026. [PMID: 36770693 PMCID: PMC9920886 DOI: 10.3390/molecules28031026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Industrial farming of livestock is increasingly focused on high productivity and performance. As a result, concerns are growing regarding the safety of food and feed, and the sustainability involved in their production. Therefore, research in areas such as animal health, welfare, and the effects of feed additives on animals is of significant importance. In this study, an in vitro co-culture model of the piglet gut was used to investigate the effects of two phytogenic feed additives (PFA) with similar compositions. Intestinal porcine epithelial cells (IPEC-J2) were co-cultivated with peripheral blood mononuclear cells (PBMC) to model the complex porcine gut environment in vitro. The effects of treatments on epithelial barrier integrity were assessed by means of transepithelial electrical resistance (TEER) in the presence of an inflammatory challenge. Protective effects of PFA administration were observed, depending on treatment duration and the model compartment. After 48 h, TEER values were significantly increased by 12-13% when extracts of the PFA were applied to the basolateral compartment (p < 0.05; n = 4), while no significant effects on cell viability were observed. No significant differences in the activity of a PFA based mainly on pure chemical compounds versus a PFA based mainly on complex, natural essential oils, and extracts were found. Overall, the co-culture model was used successfully to investigate and demonstrate beneficial effects of PFAs on intestinal epithelial barrier function during an inflammatory challenge in vitro. In addition, it demonstrates that the two PFAs are equivalent in effect. This study provides useful insights for further research on porcine gut health status even without invasive in vivo trials.
Collapse
|
34
|
Palócz O, Erdélyi B, Sátorhelyi P, Csikó G. Impact of heat-inactivated Lactobacillus on inflammatory response in endotoxin- and chemotherapeutic-treated porcine enterocytes. Res Vet Sci 2023; 154:132-137. [PMID: 36584521 DOI: 10.1016/j.rvsc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Several factors such as pathogen bacteria, or oral chemotherapy disturb the intestinal integrity, leading to several undesirable effects. Inactivated probiotics may be beneficial in safely redress the physiological functions of the intestinal epithelium. Our aim is to determine the effect of tyndallized Lactobacillus on LPS- and 5-fluorouracil-treated porcine jejunal cells. IPEC-J2 cells derived from porcine jejunal epithelium were used as the in vitro model. The enterocyte cell cultures were treated with 109Lactobacillus reuteri cells/ml or 10 μg/ml lipopolysaccharides (LPS) or 100 μM 5-fluorouracil separately and simultaneously. We determined the alterations in mRNA levels of inflammatory mediators IL6, CXCL8/IL8, TNF. Furthermore, the protein level of IL-6 and IL-8 were measured. The fluorouracil treatment upregulated the IL6 gene expression, the endotoxin treatment upregulated the IL8 and TNF level. The heat-inactivated Lactobacillus increased the IL-8 level both at the gene expression and protein level. The co-administration of the non-viable probiotic with the 5-fluorouracil and the LPS resulted in decrease of IL6, IL8, and TNF level. The immune-modulator effect of tyndallized probiotic product is demonstrated in porcine jejunal cells. The inactivated Lactobacillus was able to prevent the accumulation of the selected inflammatory mediators in LPS- or 5-fluorouracil-exposed enterocytes.
Collapse
Affiliation(s)
- Orsolya Palócz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary.
| | - Balázs Erdélyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary
| |
Collapse
|
35
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
36
|
Raev SA, Omwando AM, Guo Y, Raque MS, Amimo JO, Saif LJ, Vlasova AN. Glycan-mediated interactions between bacteria, rotavirus and the host cells provide an additional mechanism of antiviral defence. Benef Microbes 2022; 13:383-396. [PMID: 36239669 DOI: 10.3920/bm2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Limited efficacy of rotavirus (RV) vaccines in children in developing countries and in animals remains a significant problem necessitating further search for additional approaches to control RV-associated gastroenteritis. During cell attachment and entry events, RV interacts with cell surface O-glycans including histo-blood group antigens (HBGAs). Besides modulation of the protective immunity against RV, several commensal and probiotic bacteria were shown to express HBGA-like substances suggesting that they may affect RV attachment and entry into the host cells. Moreover, some beneficial bacteria have been shown to possess the ability to bind host HBGAs via sugar specific proteins called lectins. However, limited research has been done to evaluate the effects of HBGA-expressing and/or HBGA-binding bacteria on RV infection. The aim of this study was to investigate the ability of selected commensal and probiotic bacteria to bind different RV strains via HBGAs and to block RV infection of IPEC-J2 cells. Our data indicated that Gram-negative probiotic Escherichia coli Nissle 1917 (E. coli Nissle 1917) and commensal Gram-positive (Streptococcus bovis and Bifidobacterium adolescentis) and Gram-negative (Bacteroides thetaiotaomicron, Clostridium clostridioforme and Escherichia coli G58 (E. coli G58) bacteria of swine origin expressed HBGAs which correlated with their ability to bind group A and C RVs. Additionally, Gram-positive E. coli 1917 and E. coli G58 demonstrated the ability to block RV attachment onto IPEC-J2 cells. Taken together, our results support the hypothesis that physical interactions between RVs and HBGA-expressing beneficial bacteria may limit RV replication.
Collapse
Affiliation(s)
- S A Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - A M Omwando
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - Y Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - M S Raque
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - J O Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - L J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - A N Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
37
|
Yin Y, Ma J, Van Waesberghe C, Devriendt B, Favoreel HW. Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell. Front Immunol 2022; 13:1016982. [PMID: 36405751 PMCID: PMC9666427 DOI: 10.3389/fimmu.2022.1016982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.
Collapse
|
38
|
Leblanc D, Raymond Y, Lemay MJ, Champagne CP, Brassard J. Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells. Arch Virol 2022; 167:1999-2010. [PMID: 35794494 PMCID: PMC9402510 DOI: 10.1007/s00705-022-05510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Rotavirus infections in nursing or post-weaning piglets are known to cause diarrhea, which can lead to commercial losses. Probiotic supplementation is used as a prophylactic or therapeutic approach to dealing with microbial infections in humans and animals. To evaluate the effect of probiotic bacteria on porcine rotavirus infections, non-transformed porcine intestinal epithelial IPEC-J2 cells were used as an in vitro model, and three different procedures were tested. When cells were exposed to seven probiotics at concentrations of 105, 106, or 107 CFU/mL for 16 h and removed before rotavirus challenge, infection reduction rates determined by flow cytometry were as follows: 15% (106) and 18% (105) for Bifidobacterium longum R0175, 15% (107) and 16% (106) for B. animalis lactis A026, and 15% (105) for Lactobacillus plantarum 299V. When cells were exposed to three selected probiotic strains for 1 h at higher concentrations, that is, 108 and 5 × 108 CFU/mL, before infection with rotavirus, no significant reduction was observed. When the probiotic bacteria were incubated with the virus before cell infection, a significant 14% decrease in the infection rate was observed for B. longum R0175. The results obtained using a cell-probiotics-virus platform combined with flow cytometry analysis suggest that probiotic bacteria can have a protective effect on IPEC-J2 cells before infection and can also prevent rotavirus infection of the cells.
Collapse
Affiliation(s)
- Danielle Leblanc
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Yves Raymond
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Marie-Josée Lemay
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Claude P Champagne
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada.
| |
Collapse
|
39
|
Mecocci S, De Paolis L, Fruscione F, Pietrucci D, De Ciucis CG, Giudici SD, Franzoni G, Chillemi G, Cappelli K, Razzuoli E. In vitro evaluation of immunomodulatory activities of goat milk Extracellular Vesicles (mEVs) in a model of gut inflammation. Res Vet Sci 2022; 152:546-556. [PMID: 36179548 DOI: 10.1016/j.rvsc.2022.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy; Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| |
Collapse
|
40
|
Nash T, Vervelde L. Advances, challenges and future applications of avian intestinal in vitro models. Avian Pathol 2022; 51:317-329. [PMID: 35638458 DOI: 10.1080/03079457.2022.2084363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and probiotic microorganisms, as well as its role in the spread of infectious diseases in both the developing and developed world. A paucity of physiologically relevant models has limited research in this essential field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The intestine is characterized by a complex cellular composition with numerous functions, unique dynamic locations and interdependencies making this organ challenging to recreate in vitro. This review illustrates the in vitro tools that aim to recapitulate this intestinal environment; from the simplest cell lines, which mimic select features of the intestine but lack anatomical and physiological complexity, to the more recently developed complex 3D enteroids, which recreate more of the intestine's intricate microanatomy, heterogeneous cell populations and signalling gradients. We highlight the benefits and limitations of in vitro intestinal models and describe their current applications and future prospective utilizations in intestinal biology and pathology research. We also describe the scope to improve on the current systems to include, for example, microbiota and a dynamic mechanical environment, vital components which enable the intestine to develop and maintain homeostasis in vivo. As this review explains, no one model is perfect, but the key to choosing a model or combination of models is to carefully consider the purpose or scientific question.
Collapse
Affiliation(s)
- Tessa Nash
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
The Impact of Quercetin and Its Methylated Derivatives 3-o-Methylquercetin and Rhamnazin in Lipopolysaccharide-Induced Inflammation in Porcine Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11071265. [PMID: 35883756 PMCID: PMC9312192 DOI: 10.3390/antiox11071265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress in the small intestine can lead to inflammation and barrier malfunction. The present study describes the effect of quercetin (Q), 3-o-methylquercetin (QM), and rhamnazin (R) on cell viability, paracellular permeability, production of intracellular reactive oxygen species (ROS), extracellular hydrogen peroxide (H2O2), and interleukin-6 (IL-6) after challenging jejunal cells (IPEC-J2) with different types (Salmonella enterica ser. Typhimurium, Escherichia coli O111:B4, and E. coli O127:B8) of lipopolysaccharides (LPS) applied in 10 µg/mL concentration. The intracellular ROS level increased after all LPS treatments, which could be decreased by all tested flavonoid compounds in 50 µM concentration. Extracellular H2O2 production significantly increased after Q and R treatment (50 µM). S. Typhimurium LPS could significantly increase IL-6 production of enterocytes, which could be alleviated by Q, QM, and R (50 µM) as well. Using fluorescein isothiocyanate dextran (FD4) tracer dye, we could demonstrate that S. Typhimurium LPS significantly increased the permeability of the cell layer. The simultaneous treatments of S. Typhimurium LPS and the flavonoid compounds showed no alteration in FD4 penetration compared to untreated cells. These results highlight that Q, QM, and R are promising substances that can be used to protect intestinal epithelial cells from the deteriorating effects of oxidative stress.
Collapse
|
42
|
Boger KD, Sheridan AE, Ziegler AL, Blikslager AT. Mechanisms and modeling of wound repair in the intestinal epithelium. Tissue Barriers 2022; 11:2087454. [PMID: 35695206 PMCID: PMC10161961 DOI: 10.1080/21688370.2022.2087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The intestinal epithelial barrier is susceptible to injury from insults, such as ischemia or infectious disease. The epithelium's ability to repair wounded regions is critical to maintaining barrier integrity. Mechanisms of intestinal epithelial repair can be studied with models that recapitulate the in vivo environment. This review focuses on in vitro injury models and intestinal cell lines utilized in such systems. The formation of artificial wounds in a controlled environment allows for the exploration of reparative physiology in cell lines modeling diverse aspects of intestinal physiology. Specifically, the use of intestinal cell lines, IPEC-J2, Caco-2, T-84, HT-29, and IEC-6, to model intestinal epithelium is discussed. Understanding the unique systems available for creating intestinal injury and the differences in monolayers used for in vitro work is essential for designing studies that properly capture relevant physiology for the study of intestinal wound repair.
Collapse
Affiliation(s)
- Kasey D Boger
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ana E Sheridan
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
43
|
Zhou N, Tian Y, Wu H, Cao Y, Li R, Zou K, Xu W, Lu L. Protective Effect of Resveratrol on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Molecules 2022; 27:molecules27113542. [PMID: 35684483 PMCID: PMC9182484 DOI: 10.3390/molecules27113542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a polyphenolic compound with anti-oxidation effects. The mechanisms underlying the antioxidant effects of resveratrol in duck intestinal epithelial cells remain unclear. The protective effects of resveratrol against oxidative stress induced by H2O2 on immortalized duck intestinal epithelial cells (IDECs) were investigated. IDECs were established by transferring the lentivirus-mediated simian virus 40 large T (SV40T) gene into small intestinal epithelial cells derived from duck embryos. IDECs were morphologically indistinguishable from the primary intestinal epithelial cells. The marker protein cytokeratin 18 (CK18) was also detected in the cultured cells. We found that resveratrol significantly increased the cell viability and activity of catalase and decreased the level of intracellular reactive oxygen species and malondialdehyde, as well as the apoptosis rate induced by H2O2 (p < 0.05). Resveratrol up-regulated the expression of NRF2, p-NRF2, p-AKT, and p-P38 proteins and decreased the levels of cleaved caspase-3 and cleaved caspase-9 and the ratio of Bax to Bcl-2 in H2O2-induced IDECs (p < 0.05). Our findings revealed that resveratrol might alleviate oxidative stress by the PI3K/AKT and P38 MAPK signal pathways and inhibit apoptosis by altering the levels of cleaved caspase-3, cleaved caspase-9, Bax, and Bcl-2 in IDECs exposed to H2O2.
Collapse
Affiliation(s)
- Ning Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
- Correspondence: (W.X.); (L.L.); Tel.: +86-133-0681-3018 (L.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (N.Z.); (Y.T.); (Y.C.); (R.L.)
- Correspondence: (W.X.); (L.L.); Tel.: +86-133-0681-3018 (L.L.)
| |
Collapse
|
44
|
Saleri R, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, Andrani M, Martelli P. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porcine Health Manag 2022; 8:21. [PMID: 35590351 PMCID: PMC9118747 DOI: 10.1186/s40813-022-00264-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (β-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). Results The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through β-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced β-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). Conclusions The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.
Collapse
Affiliation(s)
- Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
45
|
Effects of Bacillus licheniformis and Bacillus subtilis on Gut Barrier Function, Proinflammatory Response, ROS Production and Pathogen Inhibition Properties in IPEC-J2—Escherichia coli/Salmonella Typhimurium Co-Culture. Microorganisms 2022; 10:microorganisms10050936. [PMID: 35630380 PMCID: PMC9145911 DOI: 10.3390/microorganisms10050936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises serious concerns worldwide. Probiotics offer a promising alternative to enhance growth promotion in farm animals; however, their mode of action still needs to be elucidated. The IPEC-J2 cell line (porcine intestinal epithelial cells) is an appropriate tool to study the effect of probiotics on intestinal epithelial cells. In our experiments, IPEC-J2 cells were challenged by two gastrointestinal (GI) infection causing agents, Escherichia coli (E. coli) or Salmonella enterica ser. Typhimurium (S. Typhimurium). We focused on determining the effect of pre-, co-, and post-treatment with two probiotic candidates, Bacillus licheniformis or Bacillus subtilis, on the barrier function, proinflammatory cytokine (IL-6 and IL-8) response, and intracellular reactive oxygen species (ROS) production of IPEC-J2 cells, in addition to the adhesion inhibition effect. Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis) proved to be anti-inflammatory and had an antioxidant effect under certain treatment combinations, and further effectively inhibited the adhesion of pathogenic bacteria. Interestingly, they had little effect on paracellular permeability. Based on our results, Bacillus licheniformis and Bacillus subtilis are both promising candidates to contribute to the beneficial effects of probiotic multispecies mixtures.
Collapse
|
46
|
Fu Q, Lin Q, Chen D, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, He J. β-defensin 118 attenuates inflammation and injury of intestinal epithelial cells upon enterotoxigenic Escherichia coli challenge. BMC Vet Res 2022; 18:142. [PMID: 35440001 PMCID: PMC9017018 DOI: 10.1186/s12917-022-03242-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Antimicrobial peptides including various defensins have been attracting considerable research interest worldwide, as they have potential to substitute for antibiotics. Moreover, AMPs also have immunomodulatory activity. In this study, we explored the role and its potential mechanisms of β-defensin 118 (DEFB118) in alleviating inflammation and injury of IPEC-J2 cells (porcine jejunum epithelial cell line) upon the enterotoxigenic Escherichia coli (ETEC) challenge. Results The porcine jejunum epithelial cell line (IPEC-J2) pretreated with or without DEFB118 (25 μg/mL) were challenged by ETEC (1×106 CFU) or culture medium. We showed that DEFB118 pretreatment significantly increased the cell viability (P<0.05) and decreased the expressions of inflammatory cytokines such as the interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in IPEC-J2 cells exposure to ETEC (P<0.05). Interestingly, DEFB118 pretreatment significantly elevated the abundance of the major tight-junction protein zonula occludens-1 (ZO-1), but decreased the number of apoptotic cells upon ETEC challenge (P<0.05). The expression of caspase 3, caspase 8, and caspase 9 were downregulated by DEFB118 in the IPEC-J2 cells exposure to ETEC (P<0.05). Importantly, DEFB118 suppressed two critical inflammation-associated signaling proteins, nuclear factor-kappa-B inhibitor alpha (IκB-α) and nuclear factor-kappaB (NF-κB) in the ETEC-challenged IPEC-J2 cells. Conclusions DEFB118 can alleviate ETEC-induced inflammation in IPEC-J2 cells through inhibition of the NF-κB signaling pathway, resulting in reduced secretion of inflammatory cytokines and decreased cell apoptosis. Therefore, DEFB118 can act as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Qingqing Fu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, P. R. China. .,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province, 611130, P. R. China.
| |
Collapse
|
47
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
48
|
Palkovicsné Pézsa N, Kovács D, Gálfi P, Rácz B, Farkas O. Effect of Enterococcus faecium NCIMB 10415 on Gut Barrier Function, Internal Redox State, Proinflammatory Response and Pathogen Inhibition Properties in Porcine Intestinal Epithelial Cells. Nutrients 2022; 14:nu14071486. [PMID: 35406099 PMCID: PMC9002907 DOI: 10.3390/nu14071486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023] Open
Abstract
In farm animals, intestinal diseases caused by Salmonella spp. and Escherichia coli may lead to significant economic loss. In the past few decades, the swine industry has largely relied on the prophylactic use of antibiotics to control gastrointestinal diseases. The development of antibiotic resistance has become an important issue both in animal and human health. The use of antibiotics for prophylactic purposes has been banned, moreover the new EU regulations further restrict the application of antibiotics in veterinary use. The swine industry seeks alternatives that are capable of maintaining the health of the gastrointestinal tract. Probiotics offer a promising alternative; however, their mode of action is not fully understood. In our experiments, porcine intestinal epithelial cells (IPEC-J2 cells) were challenged by Salmonella Typhimurium or Escherichia coli and we aimed at determining the effect of pre-, co-, and post-treatment with Enterococcus faecium NCIMB 10415 on the internal redox state, paracellular permeability, IL-6 and IL-8 secretion of IPEC-J2 cells. Moreover, the adhesion inhibition effect was also investigated. Enterococcus faecium was able to reduce oxidative stress and paracellular permeability of IPEC-J2 cells and could inhibit the adhesion of Salmonella Typhimurium and Escherichia coli. Based on our results, Enterococcus faecium is a promising candidate to maintain the health of the gastrointestinal tract.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
- Correspondence:
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Péter Gálfi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| |
Collapse
|
49
|
Cornelius V, Droessler L, Boehm E, Amasheh S. Concerted action of berberine in the porcine intestinal epithelial model IPEC-J2: Effects on tight junctions and apoptosis. Physiol Rep 2022; 10:e15237. [PMID: 35384371 PMCID: PMC8981188 DOI: 10.14814/phy2.15237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
The plant alkaloid berberine has been shown to have many beneficial effects on human health. This has led to its use as a treatment for various cancer types, obesity, and diabetes. Moreover, a described barrier-strengthening effect in human cancer cell lines indicates that it might be useful for the treatment of inflammatory bowel disease. Detailed information regarding its effects on intestinal epithelium remains limited. In our current study, we describe the impact of berberine on a non-transformed porcine small intestinal epithelial cell model, IPEC-J2. Incubation of IPEC-J2 monolayers with berberine revealed dose- and time-dependent effects on barrier properties. A viability assay confirmed the specific effect of berberine on the apoptotic pathway, paralleled by the internalization of the sealing tight-junction (TJ) proteins claudin-1, claudin-3, and occludin within 6 h. Hence, the barrier function of the cells was reduced, as shown by the reduced transepithelial electrical resistance and the increased [3 H]-D-Mannitol flux. A decrease of claudin-1, claudin-3, and occludin expression was also observed after 24 h, whereas ZO-1 expression was not significantly changed. These data indicate an early effect on both cell viability and barrier integrity, followed by a general effect on TJ architecture. The intracellular co-localization of claudin-1 and occludin or claudin-3 and occludin points to an initial induction of apoptosis accompanied by the internalization of sealing TJ proteins. Although barrier strengthening has been reported in cancerogenic epithelial models, our results show a barrier-weakening action, which represents a new aspect of the effect of berberine on epithelia. These results agree with the known toxic potential of plant alkaloids in general and show that berberine is also capable of exerting adverse effects in the intestinal epithelium.
Collapse
Affiliation(s)
- Valeria Cornelius
- Department of Veterinary MedicineInstitute of Veterinary PhysiologyFreie Universität BerlinGermany
| | - Linda Droessler
- Department of Veterinary MedicineInstitute of Veterinary PhysiologyFreie Universität BerlinGermany
| | - Elisa Boehm
- Department of Veterinary MedicineInstitute of Veterinary PhysiologyFreie Universität BerlinGermany
| | - Salah Amasheh
- Department of Veterinary MedicineInstitute of Veterinary PhysiologyFreie Universität BerlinGermany
| |
Collapse
|
50
|
Marks H, Grześkowiak Ł, Martinez-Vallespin B, Dietz H, Zentek J. Porcine and Chicken Intestinal Epithelial Cell Models for Screening Phytogenic Feed Additives—Chances and Limitations in Use as Alternatives to Feeding Trials. Microorganisms 2022; 10:microorganisms10030629. [PMID: 35336204 PMCID: PMC8951747 DOI: 10.3390/microorganisms10030629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Numerous bioactive plant additives have shown various positive effects in pigs and chickens. The demand for feed additives of natural origin has increased rapidly in recent years to support the health of farm animals and thus minimize the need for antibiotics and other drugs. Although only in vivo experiments can fully represent their effect on the organism, the establishment of reliable in vitro methods is becoming increasingly important in the goal of reducing the use of animals in experiments. The use of cell models requires strict control of the experimental conditions so that reliability and reproducibility can be achieved. In particular, the intestinal porcine epithelial cell line IPEC-J2 represents a promising model for the development of new additives. It offers the possibility to investigate antioxidative, antimicrobial, anti- or pro-proliferative and antiviral effects. However, the use of IPEC-J2 is limited due to its purely epithelial origin and some differences in its morphology and functionality compared to the in vivo situation. With regard to chickens, the development of a reliable intestinal epithelial cell model has attracted the attention of researchers in recent years. Although a promising model was presented lately, further studies are needed to enable the standardized use of a chicken cell line for testing phytogenic feed additives. Finally, co-cultivation of the currently available cell lines with other cell lines and the development of organoids will open up further application possibilities. Special emphasis was given to the IPEC-J2 cell model. Therefore, all publications that investigated plant derived compounds in this cell line were considered. The section on chicken cell lines is based on publications describing the development of chicken intestinal epithelial cell models.
Collapse
Affiliation(s)
- Hannah Marks
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
- Correspondence:
| | - Łukasz Grześkowiak
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Beatriz Martinez-Vallespin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| |
Collapse
|