1
|
Mátis G, Sebők C, Horváth DG, Márton RA, Mackei M, Vörösházi J, Kemény Á, Neogrády Z, Varga I, Tráj P. Miniature chicken ileal explant culture to investigate the inflammatory response induced by pathogen-associated molecular patterns. Front Vet Sci 2025; 12:1484333. [PMID: 40171408 PMCID: PMC11960747 DOI: 10.3389/fvets.2025.1484333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Gastrointestinal inflammation leads to maldigestion and systemic diseases in poultry. To tackle the problem of the industry and to search for therapeutic candidates in vitro models are inevitable. Both immersion and air-liquid interface explant models are available, although there is limited information on the size-dependent applicability and response to different pathogen-associated molecular patterns (PAMPs) in the case of these model systems. The study aimed to compare the morphology and viability of miniature chicken gut explant cultures obtained with a biopsy punch to examine the size-dependent change over time. To verify the applicability of the model, pathogen-associated molecular patterns (PAMPs): flagellin, lipoteichoic acid (LTA) and polyinosinic polycytidylic acid (poly I:C) were applied to induce inflammation. The 2 mm diameter explants showed a decrease in metabolic activity measured by CCK-8 assay after 12 h and a significantly higher extracellular lactate dehydrogenase activity indicating cellular damage compared to the 1 mm explants, supported by histological differences after 24 h of culturing. After 12 h of incubation, the 1.5 mm explants retained columnar epithelial lining with moderate damage of the lamina propria (H&E and pan-cytokeratin staining). Exposure to 100 μg/mL poly I:C reduced the metabolic activity of the 1.5 mm explants. LTA and poly I:C increased IFN-γ concentration at both applied doses and IFN-α concentration was elevated by 50 μg/mL poly I:C treatment. Flagellin administration raised IL-2, IL-6, and RANTES levels, while higher LTA and poly I:C concentrations increased the IFN-γ/IL-10 ratio. According to the observations, the viability and integrity of the explants decreases with their size. After 12 h, the 1.5 mm diameter miniature chicken ileal explant stimulated with PAMPs can be an appropriate model to mimic diseases involving tissue damage and inflammation.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid G. Horváth
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ilona Varga
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Cortez BRDS, Guedes RMC. A review on the evolution of methods for intestinal in vitro organ culture and its application in veterinary science. Vet World 2023; 16:347-356. [PMID: 37042004 PMCID: PMC10082705 DOI: 10.14202/vetworld.2023.347-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Different techniques have been reported in studies of intestinal in vitro organ culture (IVOC). A robust compilation of all available methods is lacking in the literature, making it difficult to choose a method that corresponds to the study's demands. In this review, readers can assess the most available methods, allowing them to evaluate which is more suitable for their purposes and requirements. A simplified view of culturing intestinal explants is presented, highlighting the approachability of IVOC. Relevant findings from diverse veterinarian studies, where explants played a major role, as well as the technique used in each, are described to illustrate its applications. Finally, the strengths and limitations of the innovative intestinal IVOC methods are discussed. This review provides a collection of methods for intestinal explant culture and their possible applications in veterinary research. In this way, it aims to broaden access to IVOC techniques and aid decision-making regarding the best suited for a study's purposes.
Collapse
Affiliation(s)
- Barbara Ribeiro de Souza Cortez
- Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
3
|
Busch M, Ramachandran H, Wahle T, Rossi A, Schins RPF. Investigating the Role of the NLRP3 Inflammasome Pathway in Acute Intestinal Inflammation: Use of THP-1 Knockout Cell Lines in an Advanced Triple Culture Model. Front Immunol 2022; 13:898039. [PMID: 35911682 PMCID: PMC9326178 DOI: 10.3389/fimmu.2022.898039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 01/09/2023] Open
Abstract
The NLRP3 inflammasome plays an important role in intestinal homeostasis as well as inflammation. However, in vivo studies investigating the role of the NLRP3 inflammasome in inflammatory bowel disease (IBD) report contrasting results, leaving it unclear if the NLRP3 inflammasome augments or attenuates intestinal inflammation. To investigate the role of the NLRP3/caspase-1 pathway in a model of acute intestinal inflammation, we modified a previously established in vitro triple culture model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1). Using THP-1 knockout cell lines, we analyzed how the NLRP3 inflammasome and its downstream enzyme caspase-1 (CASP1) affect inflammatory parameters including barrier integrity and cytotoxicity, as well as gene expression and secretion of pro-inflammatory cytokines and mucus. Furthermore, we investigated differences in inflammation-mediated cytotoxicity towards enterocyte-like (Caco-2) or goblet-like (HT29-MTX-E12) epithelial cells. As a complementary approach, inflammation-related cytotoxicity and gene expression of cytokines was analyzed in intestinal tissue explants from wildtype (WT) and Nlrp3-/- mice. Induction of intestinal inflammation impaired the barrier, caused cytotoxicity, and altered gene expression of pro-inflammatory cytokines and mucins in vitro, while the knockout of NLRP3 and CASP1 in THP 1 cells led to attenuation of these inflammatory parameters. The knockout of CASP1 tended to show a slightly stronger attenuating effect compared to the NLRP3 knockout model. We also found that the inflammation-mediated death of goblet-like cells is NLRP3/caspase-1 dependent. Furthermore, inflammation-related cytotoxicity and upregulation of pro-inflammatory cytokines was present in ileal tissue explants from WT, but not Nlrp3-/- mice. The here presented observations indicate a pro-inflammatory and adverse role of the NLRP3 inflammasome in macrophages during acute intestinal inflammation.
Collapse
|
4
|
Nguyen DT, Famiglietti JE, Smolchek RA, Dupee Z, Diodati N, Pedro DI, Urueña JM, Schaller MA, Sawyer WG. 3D In Vitro Platform for Cell and Explant Culture in Liquid-like Solids. Cells 2022; 11:cells11060967. [PMID: 35326418 PMCID: PMC8946834 DOI: 10.3390/cells11060967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Existing 3D cell models and technologies have offered tools to elevate cell culture to a more physiologically relevant dimension. One mechanism to maintain cells cultured in 3D is by means of perfusion. However, existing perfusion technologies for cell culture require complex electronic components, intricate tubing networks, or specific laboratory protocols for each application. We have developed a cell culture platform that simply employs a pump-free suction device to enable controlled perfusion of cell culture media through a bed of granular microgels and removal of cell-secreted metabolic waste. We demonstrated the versatile application of the platform by culturing single cells and keeping tissue microexplants viable for an extended period. The human cardiomyocyte AC16 cell line cultured in our platform revealed rapid cellular spheroid formation after 48 h and ~90% viability by day 7. Notably, we were able to culture gut microexplants for more than 2 weeks as demonstrated by immunofluorescent viability assay and prolonged contractility.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Jack E. Famiglietti
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Ryan A. Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Zadia Dupee
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL 32611, USA; (Z.D.); (M.A.S.)
| | - Nickolas Diodati
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Diego I. Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Juan M. Urueña
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Matthew A. Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL 32611, USA; (Z.D.); (M.A.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
- Correspondence:
| |
Collapse
|
5
|
Mimura LAN, Fraga-Silva TFDC, de Oliveira LRC, Ishikawa LLW, Borim PA, Machado CDM, Júnior JDADCEH, da Fonseca DM, Sartori A. Preclinical Therapy with Vitamin D3 in Experimental Encephalomyelitis: Efficacy and Comparison with Paricalcitol. Int J Mol Sci 2021; 22:ijms22041914. [PMID: 33671896 PMCID: PMC7918993 DOI: 10.3390/ijms22041914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). MS and its animal model called experimental autoimmune encephalomyelitis (EAE) immunopathogenesis involve a plethora of immune cells whose activation releases a variety of proinflammatory mediators and free radicals. Vitamin D3 (VitD) is endowed with immunomodulatory and antioxidant properties that we demonstrated to control EAE development. However, this protective effect triggered hypercalcemia. As such, we compared the therapeutic potential of VitD and paricalcitol (Pari), which is a non-hypercalcemic vitamin D analog, to control EAE. From the seventh day on after EAE induction, mice were injected with VitD or Pari every other day. VitD, but not Pari, displayed downmodulatory ability being able to reduce the recruitment of inflammatory cells, the mRNA expression of inflammatory parameters, and demyelination at the CNS. Lower production of proinflammatory cytokines by lymph node-derived cells and IL-17 by gut explants, and reduced intestinal inflammation were detected in the EAE/VitD group compared to the EAE untreated or Pari groups. Dendritic cells (DCs) differentiated in the presence of VitD developed a more tolerogenic phenotype than in the presence of Pari. These findings suggest that VitD, but not Pari, has the potential to be used as a preventive therapy to control MS severity.
Collapse
Affiliation(s)
- Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
- Correspondence:
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Larissa Ragozzo Cardoso de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Patrícia Aparecida Borim
- Botucatu Medical School, Department of Tropical Diseases and Image Diagnosis, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| | - Carla de Moraes Machado
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (C.d.M.M.); (J.d.A.d.C.eH.J.)
| | - José de Anchieta de Castro e Horta Júnior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (C.d.M.M.); (J.d.A.d.C.eH.J.)
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil;
| | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| |
Collapse
|
6
|
de Campos Fraga-Silva TF, Mimura LAN, de Oliveira LRC, Dos Santos Toledo JH, Borim PA, Zorzella-Pezavento SFG, Alonso DP, Ribolla PEM, de Oliveira CAF, da Fonseca DM, Villablanca EJ, Sartori A. Selenization of S. cerevisiae increases its protective potential in experimental autoimmune encephalomyelitis by triggering an intestinal immunomodulatory loop. Sci Rep 2020; 10:22190. [PMID: 33335128 PMCID: PMC7746691 DOI: 10.1038/s41598-020-79102-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease that affects the myelinated central nervous system (CNS) neurons and triggers physical and cognitive disabilities. Conventional therapy is based on disease-modifying drugs that control disease severity but can also be deleterious. Complementary medicines have been adopted and evidence indicates that yeast supplements can improve symptoms mainly by modulating the immune response. In this investigation, we evaluated the therapeutic potential of Saccharomyces cerevisiae and its selenized derivative (Selemax) in experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice submitted to EAE induction were orally supplemented with these yeasts by gavage from day 0 to day 14 after EAE induction. Both supplements determined significant reduction in clinical signs concomitantly with diminished Th1 immune response in CNS, increased proportion of Foxp3+ lymphocytes in inguinal and mesenteric lymph nodes and increased microbiota diversity. However, Selemax was more effective clinically and immunologically; it reduced disease prevalence more sharply, increased the proportion of CD103+ dendritic cells expressing high levels of PD-L1 in mesenteric lymph nodes and reduced the intestinal inflammatory process more strongly than S. cerevisiae. These results suggest a clear gut-brain axis modulation by selenized S. cerevisiae and suggest their inclusion in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego Peres Alonso
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Alexandrina Sartori
- Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
7
|
DA Costa Gonçalves F, Serafini MA, Mello HF, Pfaffenseller B, Araújo AB, Visioli F, Paz AH. Bioactive factors secreted from mesenchymal stromal cells protect the intestines from experimental colitis in a three-dimensional culture. Cytotherapy 2018; 20:1459-1471. [PMID: 30523788 DOI: 10.1016/j.jcyt.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Although mesenchymal stromal cells (MSCs) have shown therapeutic potential in intestinal tissue repair, controversy concerning their short survival and poor biodistribution in recipient tissues still remains. Therefore, we investigated the paracrine role of MSC in three-dimensional culture of colon with experimental colitis. METHODS Colitis was induced in mice by oral administration of dextran sulfate sodium (DSS) for 7 days. Inflammatory responses were assessed on the basis of clinical signs, morphological, and histopathological parameters. On days 2 and 5, colonic explants were removed, and a three-dimensional culture was performed. The structural integrity of the intestinal mucosa was tested by treating the cultures with MSC or conditioned medium (CM) for 24 h, and then the colons were analyzed for histology/immunohistochemistry and interleukin (IL)-6 production. RESULTS Histological analysis demonstrated that both MSC and CM treatment reduced colon damage in organ culture. An increase in cell proliferation (Ki-67 staining) was observed after CM treatment. Additionally, MSC treatment was able to reduce CD3+ cells. The therapeutic effect of MSC and CM was mediated by the downregulation of IL-6. DISCUSSION The intestinal in vitro model has shown to be potentially useful for studying cellular interactions in a three-dimensional cell arrangement. Moreover, our results provide strong evidence that both MSC and CM treatments can alleviate colonic damage in organ culture. Importantly, these results suggest that MSC-secreted factors are able to protect the colon from inflammation caused by DSS-induced colitis independent of cell transplantation.
Collapse
Affiliation(s)
- Fabiany DA Costa Gonçalves
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Michele Aramburu Serafini
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helena Flores Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, School of Graduate Studies, Rutgers University, Newark, New Jersey, USA
| | - Bianca Pfaffenseller
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Anelise Bergmann Araújo
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Baydoun M, Vanneste SB, Creusy C, Guyot K, Gantois N, Chabe M, Delaire B, Mouray A, Baydoun A, Forzy G, Chieux V, Gosset P, Senez V, Viscogliosi E, Follet J, Certad G. Three-dimensional (3D) culture of adult murine colon as an in vitro model of cryptosporidiosis: Proof of concept. Sci Rep 2017; 7:17288. [PMID: 29230047 PMCID: PMC5725449 DOI: 10.1038/s41598-017-17304-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/19/2017] [Indexed: 01/12/2023] Open
Abstract
Cryptosporidium parvum is a major cause of diarrheal illness and was recently potentially associated with digestive carcinogenesis. Despite its impact on human health, Cryptosporidium pathogenesis remains poorly known, mainly due to the lack of a long-term culture method for this parasite. Thus, the aim of the present study was to develop a three-dimensional (3D) culture model from adult murine colon allowing biological investigations of the host-parasite interactions in an in vivo-like environment and, in particular, the development of parasite-induced neoplasia. Colonic explants were cultured and preserved ex vivo for 35 days and co-culturing was performed with C. parvum. Strikingly, the resulting system allowed the reproduction of neoplastic lesions in vitro at 27 days post-infection (PI), providing new evidence of the role of the parasite in the induction of carcinogenesis. This promising model could facilitate the study of host-pathogen interactions and the investigation of the process involved in Cryptosporidium-induced cell transformation.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,ISA-YNCREA Hauts-de-France, Lille, France.,Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Sadia Benamrouz Vanneste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Laboratoire Ecologie et Biodiversité, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Karine Guyot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Nausicaa Gantois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Magali Chabe
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Faculté de Pharmacie, Univ. de Lille, Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Anthony Mouray
- Plateforme d'Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille, Lille, France
| | - Atallah Baydoun
- Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Internal Medicine, Louis Stokes VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard Forzy
- Laboratoire de Biologie Médicale, Groupement des Hospitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Vincent Chieux
- Laboratoire de Biologie Médicale, Groupement des Hospitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Pierre Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Vincent Senez
- Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Jérôme Follet
- ISA-YNCREA Hauts-de-France, Lille, France.,Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Gabriela Certad
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France. .,Département de la Recherche Médicale, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Faculté de Médecine et Maïeutique, Université Catholique de Lille, Lille, France.
| |
Collapse
|
9
|
Udden SMN, Waliullah S, Harris M, Zaki H. The Ex Vivo Colon Organ Culture and Its Use in Antimicrobial Host Defense Studies. J Vis Exp 2017. [PMID: 28287576 DOI: 10.3791/55347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestine displays an architecture of repetitive crypt structures consisting of different types of epithelial cells, lamina propia containing immune cells, and stroma. All of these heterogeneous cells contribute to intestinal homeostasis and participate in antimicrobial host defense. Therefore, identifying a surrogate model for studying immune response and antimicrobial activity of the intestine in an in vitro setting is extremely challenging. In vitro studies using immortalized intestinal epithelial cell lines or even primary crypt organoid culture do not represent the exact physiology of normal intestine and its microenvironment. Here, we discuss a method of culturing mouse colon tissue in a culture dish and how this ex vivo organ culture system can be implemented in studies related to antimicrobial host defense responses. In representative experiments, we showed that colons in organ culture express antimicrobial peptides in response to exogenous IL-1β and IL-18. Further, the antimicrobial effector molecules produced by the colon tissues in the organ culture efficiently kill Escherichia coli in vitro. This approach, therefore, can be utilized to dissect the role of pathogen- and danger-associated molecular patterns and their cellular receptors in regulating intestinal innate immune responses and antimicrobial host defense responses.
Collapse
Affiliation(s)
| | | | | | - Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center;
| |
Collapse
|
10
|
Abstract
The complex functions of the gastrointestinal tract rely on the coordinated interplay of several cell and tissue types involving epithelium, connective tissue, smooth muscles as well as cells of the immune and nervous system. It is therefore obvious, that these functions can hardly be investigated sufficiently using cell lines or two-dimensional cell cultures.Here, we describe an easy to produce three-dimensional organotypical explants culture from fetal and neonatal murine colon. This model is suitable for in vitro testing of intestinal function or the evaluation of developmental or pathological processes.
Collapse
Affiliation(s)
- Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany.
| |
Collapse
|
11
|
Delling U, Brehm W, Metzger M, Ludewig E, Winter K, Jülke H. In vivo tracking and fate of intra-articularly injected superparamagnetic iron oxide particle-labeled multipotent stromal cells in an ovine model of osteoarthritis. Cell Transplant 2014; 24:2379-90. [PMID: 25506789 DOI: 10.3727/096368914x685654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, superparamagnetic iron oxide (SPIO) particle-labeled mesenchymal stromal cells (MSCs) were injected intra-articularly into osteoarthritic knee joints. Their fate and distribution were evaluated using magnetic resonance imaging (MRI) and macroscopic and histologic postmortem examination. Osteoarthritis was induced in 12 sheep by bilateral meniscectomy. After 6 weeks, one knee joint received 10 × 10(6) SPIO-labeled MSCs (Molday Ion Rhodamine B). Contralateral knees received a control injection of a) PBS, b) SPIO in PBS, c) 10 × 10(6) nonvital SPIO-labeled MSCs in PBS, or d) no injection. MR images were acquired immediately after injection and 1, 4, 8, and 12 weeks thereafter using a 0.5-T unit and a T2* sequence. Signal intensity of synovial fluid and synovial lining was assessed semiquantitatively using a scoring system. Viable SPIO-labeled MSCs produced a strong hypointense signal in the synovial fluid immediately after injection, but normal signal intensity of the synovial fluid was observed 1 week later. Synovial lining maintained its hypointensity throughout the study period. Nonvital SPIO-labeled MSCs induced hypointense signals of the synovial fluid; synovial lining appeared weak and inconsistently hypointense in the following weeks. Pure SPIO produced a strong hyperintense signal in the synovial fluid at the time of injection only. Histologically, in all knee joints receiving viable SPIO-labeled MSCs, SPIO particles were detected (Prussian blue) within the synovial lining, dorsal fat pad, and neomeniscus tissue, but not in osteochondral samples. Few SPIO particles were detected in joints injected with nonvital SPIO-labeled MSCs. Immunohistologically, no increased cell death (TUNEL) was observed in the area of detected SPIO particles, but we did observe potential chondrogenic cell differentiation (Safranin O or S100β). We conclude that viable SPIO-labeled MSCs remain detectable within the joint for 12 weeks and attach themselves to some but not all diseased joint structures.
Collapse
Affiliation(s)
- Uta Delling
- University of Leipzig, Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Yan L, Yang C, Tang J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol Res 2013; 168:389-95. [PMID: 23545353 DOI: 10.1016/j.micres.2013.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 01/05/2023]
Abstract
Candida albicans is a common microorganism in the intestine. However, invasive C. albicans infection has emerged as a life-threatening disease in recent years. The mortality rate of invasive candidiasis is high in critically ill hosts. C. albicans can switch from the yeast to the hyphal morphology, and take advantage of the impaired intestinal mucosal barrier and insufficient immunity of the host to facilitate its colonization and penetration. Despite the availability of potent new antifungal drugs in recent years, the treatment of severe candidiasis, especially candidaemia, has not been substantially improved. In this review, the virulence factors of C. albicans, as well as the antagonistic role of the intestinal mucosal barrier will be discussed to illuminate the mechanisms of C. albicans enterogenic infections.
Collapse
Affiliation(s)
- Lei Yan
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | | | | |
Collapse
|
13
|
Bermudez-Brito M, Plaza-Díaz J, Fontana L, Muñoz-Quezada S, Gil A. In vitro cell and tissue models for studying host-microbe interactions: a review. Br J Nutr 2013; 109 Suppl 2:S27-S34. [PMID: 23360878 DOI: 10.1017/s0007114512004023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ideally, cell models should resemble the in vivo conditions; however, in most in vitro experimental models, epithelial cells are cultivated as monolayers, in which the establishment of functional epithelial features is not achieved. To overcome this problem, co-culture experiments with probiotics, dendritic cells and intestinal epithelial cells and three-dimensional models attempt to reconcile the complex and dynamic interactions that exist in vivo between the intestinal epithelium and bacteria on the luminal side and between the epithelium and the underlying immune system on the basolateral side. Additional models include tissue explants, bioreactors and organoids. The present review details the in vitro models used to study host-microbe interactions and explores the new tools that may help in understanding the molecular mechanisms of these interactions.
Collapse
Affiliation(s)
- Miriam Bermudez-Brito
- Department of Biochemistry & Molecular Biology II, School of Pharmacy and Institute of Nutrition & Food Technology José Mataix, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
14
|
Schmidt T, Stachon S, Mack A, Rohde M, Just L. Evaluation of a thin and mechanically stable collagen cell carrier. Tissue Eng Part C Methods 2011; 17:1161-70. [PMID: 21902619 DOI: 10.1089/ten.tec.2011.0201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biological function of adherent cell populations strongly depends on the physical and biochemical properties of extracellular matrix molecules. Therefore, numerous biocompatible cell carriers have been developed to specifically influence cell attachment, proliferation, cellular differentiation, and tissue formation for diverse cell culture applications and cell-based therapies. In the present study, we evaluated the mechanical and the cell biological properties of a novel, thin, and planar collagen scaffold. The cell carrier is based on fibrillar bovine collagen type I and exhibits a low material thickness coupled with a high mechanical stability as measured by tensile tests. The influence of this new biomaterial on cell viability, proliferation, and cell differentiation was analyzed using 5-bromo-2-deoxyuridine (BrdU) proliferation assay, immunocytochemistry, water-soluble tetrazolium salt-1 assay (WST-1), live cell imaging, and electron microscopy. Cell culture experiments with the human osteosarcoma cell line Saos-2, human mesenchymal stem cells, and rodent cardiomyocytes demonstrated the in vitro biocompatibility of this chemically noncrosslinked scaffold. Both the mechanical characteristics and the in vitro biocompatibility of this collagen type I carrier facilitate the engineering of thin transferable tissue constructs and offer new possibilities in the fields of cell culture techniques, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Timo Schmidt
- Institute of Anatomy, Center for Regenerative Biology and Medicine, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Adaptation, adhesion and invasion during interaction of Candida albicans with the host – Focus on the function of cell wall proteins. Int J Med Microbiol 2011; 301:384-9. [DOI: 10.1016/j.ijmm.2011.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Randall KJ, Turton J, Foster JR. Explant culture of gastrointestinal tissue: a review of methods and applications. Cell Biol Toxicol 2011; 27:267-84. [PMID: 21384137 DOI: 10.1007/s10565-011-9187-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/25/2011] [Indexed: 01/06/2023]
Abstract
The gastrointestinal (GI) tract is an important target organ for the toxicity of xenobiotics. The toxic effects of xenobiotics on this complex, heterogeneous structure have been difficult to model in vitro and have traditionally been assessed in vivo. The explant culture of GI tissue offers an alternative approach. Historically, the organotypic culture of the GI tract proved far more challenging than the culture of other tissues, and it was not until the late 1960s that Browning and Trier described the means by which intestinal tissues could be successfully cultured. This breakthrough provided a tool researchers could utilise, and adapt, to investigate topics such as the pathogenesis of inflammatory intestinal diseases, the effect of growth factors and cytokines on intestinal proliferation and differentiation, and the testing of novel xenobiotics for efficacy and safety. This review considers that intestinal explant culture shows much potential for the application of a relatively under-used procedure in future biomedical research. Furthermore, there appear to be many instances where the technique may provide experimental solutions where both cell culture and in vivo models have been unable to deliver conclusive and convincing findings.
Collapse
Affiliation(s)
- Kevin J Randall
- Safety Assessment UK, AstraZeneca, Alderley Park, Macclesfield, Cheshire, UK.
| | | | | |
Collapse
|
17
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
18
|
Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 2009; 136:2214-25.e1-3. [PMID: 19505425 DOI: 10.1053/j.gastro.2009.02.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 01/13/2009] [Accepted: 02/10/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Enteric nervous system stem cells (ENSSCs) provide potential therapeutic tools to replenish absent ganglia in Hirschsprung's disease. Although full-thickness human postnatal gut tissue can be used to generate ENSSCs, reliance on its harvesting from surgical resection poses significant practical limitations. This study aimed to explore whether gut tissue obtained utilizing minimally invasive routine endoscopy techniques could be used to generate ENSSCs and whether such cells retain the potential to generate an ENS upon transplantation into aganglionic gut. METHODS Postnatal human gut mucosal tissue obtained from children undergoing gastrointestinal endoscopy was used to generate cell cultures in which ENSSCs were contained within neurosphere-like bodies (NLBs). These NLBs were characterized by immunostaining, and their potential to generate components of the ENS, in vitro and upon transplantation into models of aganglionic gut, was examined. RESULTS Gut mucosal biopsy specimens were obtained from 75 children (age, 9 months-17 years). The biopsy specimens contained neural cells and ENSSCs and, on culturing, generated characteristic NLBs at all ages examined. Postnatal mucosa-derived NLBs contained cells that, akin to their embryonic counterparts, were proliferating, expressed ENSSC markers, were bipotent, and capable of generating large colonies in clonogenic cultures and multiple ENS neuronal subtypes. Upon transplantation, cells from NLBs colonized cultured recipient aganglionic chick and human hindgut to generate ganglia-like structures and enteric neurons and glia. CONCLUSIONS The results represent a significant practical advance toward the development of definitive cell replenishment therapies for ENS disorders such as Hirschsprung's disease.
Collapse
Affiliation(s)
- Marco Metzger
- Gastroenterology, Institute of Child Health, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Tissue Culture Models. MOLECULAR PATHOLOGY LIBRARY 2009. [PMCID: PMC7122392 DOI: 10.1007/978-0-387-89626-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|