1
|
Bupivacaine Induces ROS-Dependent Autophagic Damage in DRG Neurons via TUG1/mTOR in a High-Glucose Environment. Neurotox Res 2022; 40:111-126. [PMID: 35043378 DOI: 10.1007/s12640-021-00461-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Bupivacaine (BP) is a commonly clinically used local anesthetic (LA). Current studies suggest that neurological complications are increased in diabetic patients after LA application, but the molecular mechanism is poorly understood. LA-induced autophagy and neuronal injury have been reported. We hypothesized that a high-glucose environment aggravates BP-induced autophagic damage. Mouse dorsal root ganglion (DRG) neurons were treated with BP in a high-glucose environment, and the results showed that reactive oxygen species (ROS) levels increased, autophagy was activated, autophagy flux was blocked, and cell viability decreased. Pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) attenuated ROS-mediated autophagy regulation. Moreover, the expression of the long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) increased, and NAC and TUG1 siRNA inhibited the expression of TUG1/mammalian target of rapamycin (mTOR) in DRGs treated with BP in a high-glucose environment. Intriguingly, contrary to previous reports on a positive effect on neurons, we found that rapamycin, an autophagy activator, and chloroquine, an autophagy and lysosome inhibitor, both exacerbated autophagic damage. These data suggest that a high-glucose environment exacerbated BP induced ROS-dependent autophagic damage in DRG neurons through the TUG1/mTOR signaling pathway, which provides a theoretical basis and target for the clinical prevention and treatment of BP neurotoxicity in diabeties.
Collapse
|
2
|
Takahashi K, Mizukami H, Osonoi S, Ogasawara S, Hara Y, Kudoh K, Takeuchi Y, Sasaki T, Daimon M, Yagihashi S. Inhibitory effects of xanthine oxidase inhibitor, topiroxostat, on development of neuropathy in db/db mice. Neurobiol Dis 2021; 155:105392. [PMID: 34000416 DOI: 10.1016/j.nbd.2021.105392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation and oxidative stress contribute to the pathophysiology of diabetic neuropathy. According to recent evidence, the modulation of macrophage polarization in peripheral nerves represents a potential therapeutic target for diabetic neuropathy. Xanthine oxidase, which is a form of xanthin oxidoreductase, is the rate-limiting enzyme that catalyzes the degradation of hypoxanthine and xanthine into uric acid. Activation of xanthine oxidase promotes oxidative stress and macrophage activation. A preclinical study reported the beneficial effects of xanthine oxidase inhibitors on peripheral nerve dysfunction in experimental models of diabetes. However, the detailed mechanisms remain unknown. In this study, we examined the effect of the xanthine oxidase inhibitor topiroxostat on macrophage polarization and peripheral neuropathy in an obese diabetic model, db/db mice. First, the effects of xanthine oxidase inhibitors on cultured macrophages and dorsal root ganglion neurons exposed to xanthine oxidase were assessed. Furthermore, five-week-old db/db mice were administered the xanthine oxidase inhibitors topiroxostat [1 mg/kg/day (dbT1) or 2 mg/kg/day (dbT2)] or febuxostat [1 mg/kg (dbF)]. Glucose metabolism and body weight were evaluated during the experimental period. At 4 and 8 weeks of treatment, peripheral nerve functions such as nerve conduction velocities, thermal thresholds and pathology of skin and sciatic nerves were evaluated. The mRNA expression of molecules related to inflammation and oxidative stress was also measured in sciatic nerves. Untreated db/db mice and the nondiabetic db strain (db/m) were studied for comparison. An in vitro study showed that topiroxostat suppressed macrophage activation and proinflammatory but not anti-inflammatory polarization, and prevented the reduction in neurite outgrowth from neurons exposed to xanthine oxidase. Neuropathic changes exemplified by delayed nerve conduction and reduced intraepidermal nerve fiber density developed in db/db mice. These deficits were significantly prevented in the treated group, most potently in dbT2. Protective effects were associated with the suppression of macrophage infiltration, cytokine expression, and oxidative stress in the sciatic nerve and decreased plasma xanthine oxidoreductase activity. Our results revealed the beneficial effects of the xanthine oxidase inhibitor topiroxostat on neuropathy development in a mouse model of type 2 diabetes. The suppression of proinflammatory macrophage activation and oxidative stress-induced damage were suggested to be involved in this process.
Collapse
Affiliation(s)
- Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yutaro Hara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery and Pediatric Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
3
|
Exendin-4 Promotes Schwann Cell Survival/Migration and Myelination In Vitro. Int J Mol Sci 2021; 22:ijms22062971. [PMID: 33804063 PMCID: PMC7999558 DOI: 10.3390/ijms22062971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Besides its insulinotropic actions on pancreatic β cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron–IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.
Collapse
|
4
|
Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020; 14:565870. [PMID: 33132828 PMCID: PMC7550644 DOI: 10.3389/fnins.2020.565870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury repair has been considered a difficult problem in the field of trauma for a long time. Conventional surgical methods are not applicable in some special types of nerve injury, prompting scholars to seek to develop more effective nerve translocation repair technologies. The purpose of this study was to explore the functional state of neurons in injured lower limbs after translocation repair, with a view to preliminarily clarify the molecular mechanisms underlying this process. Eighteen Sprague–Dawley rats were divided into the normal, tibial nerve in situ repair, and common peroneal nerve transposition repair tibial nerve groups. Nerve function assessment and immunohistochemical staining of neurofilament 200 (NF-200), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) in the dorsal root ganglia were performed at 12 weeks after surgery. Tibial nerve function and neuroelectrophysiological analysis, osmic acid staining, muscle strength testing, and muscle fiber staining showed that the nerve translocation repair could restore the function of the recipient nerve to a certain extent; however, the repair was not as efficient as the in situ repair. Immunohistochemical staining showed that the translocation repair resulted in changes in the microstructure of neuronal cell bodies, and the expressions of Akt, mTOR, and p70S6K in the three dorsal root ganglia groups were significantly different (p < 0.05). This study demonstrates that the nerve translocation repair technology sets up a new reflex loop, with the corresponding neuroskeletal adjustments, in which, donor neurons dominate the recipient nerves. This indicates that nerve translocation repair technology can lead to neuronal remodeling and is important as a supplementary treatment for a peripheral nerve injury. Furthermore, the Akt/mTOR/p70S6K signaling pathway may be involved in the formation of the new neural reflex loop created as a result of the translocation repair.
Collapse
Affiliation(s)
- Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Xuejing Kang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China.,Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
5
|
Murakami T, Yokoyama T, Mizuguchi M, Toné S, Takaku S, Sango K, Nishimura H, Watabe K, Sunada Y. A low amyloidogenic E61K transthyretin mutation may cause familial amyloid polyneuropathy. J Neurochem 2020; 156:957-966. [PMID: 32852783 DOI: 10.1111/jnc.15162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/09/2020] [Accepted: 08/14/2020] [Indexed: 12/01/2022]
Abstract
Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late-onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild-type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin-T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild-type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non-myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood-nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.
Collapse
Affiliation(s)
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | - Shigenobu Toné
- Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Kazuhiko Watabe
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
6
|
Godinho MJ, Staal JL, Krishnan VS, Hodgetts SI, Pollett MA, Goodman DP, Teh L, Verhaagen J, Plant GW, Harvey AR. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors. Exp Neurol 2020; 330:113355. [PMID: 32422148 DOI: 10.1016/j.expneurol.2020.113355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Large peripheral nerve (PN) defects require bridging substrates to restore tissue continuity and permit the regrowth of sensory and motor axons. We previously showed that cell-free PN segments repopulated ex vivo with Schwann cells (SCs) transduced with lentiviral vectors (LV) to express different growth factors (BDNF, CNTF or NT-3) supported the regeneration of axons across a 1 cm peroneal nerve defect (Godinho et al., 2013). Graft morphology, the number of regrown axons, the ratio of myelinated to unmyelinated axons, and hindlimb locomotor function differed depending on the growth factor engineered into SCs. Here we extend these observations, adding more LVs (expressing GDNF or NGF) and characterising regenerating sensory and motor neurons after injection of the retrograde tracer Fluorogold (FG) into peroneal nerve distal to grafts, 10 weeks after surgery. Counts were also made in rats with intact nerves and in animals receiving autografts, acellular grafts, or grafts containing LV-GFP transduced SCs. Counts and analysis of FG positive (+) DRG neurons were made from lumbar (L5) ganglia. Graft groups contained fewer labeled sensory neurons than non-operated controls, but this decrease was only significant in the LV-GDNF group. These grafts had a complex fascicular morphology that may have resulted in axon trapping. The proportion of FG+ sensory neurons immunopositive for calcitonin-gene related peptide (CGRP) varied between groups, there being a significantly higher percentage in autografts and most neurotrophic factor groups compared to the LV-CNTF, LV-GFP and acellular groups. Furthermore, the proportion of regenerating isolectin B4+ neurons was significantly greater in the LV-NT-3 group compared to other groups, including autografts and non-lesion controls. Immunohistochemical analysis of longitudinal graft sections revealed that all grafts contained a reduced number of choline acetyltransferase (ChAT) positive axons, but this decrease was significant only in the GDNF and NT-3 graft groups. We also assessed the number and phenotype of regrowing lumbar FG+ motor neurons in non-lesioned animals, and in rats with autografts, acellular grafts, or in grafts containing SCs expressing GFP, CNTF, NGF or NT-3. The overall number of FG+ motor neurons per section was similar in all groups; however in tissue immunostained for NeuN (expressed in α- but not γ-motor neurons) the proportion of NeuN negative FG+ neurons ranged from about 40-50% in all groups except the NT-3 group, where the percentage was 82%, significantly more than the SC-GFP group. Immunostaining for the vesicular glutamate transporter VGLUT-1 revealed occasional proprioceptive terminals in 'contact' with regenerating FG+ α-motor neurons in PN grafted animals, the acellular group having the lowest counts. In sum, while all graft types supported sensory and motor axon regrowth, there appeared to be axon trapping in SC-GDNF grafts, and data from the SC-NT-3 group revealed greater regeneration of sensory CGRP+ and IB4+ neurons, preferential regeneration of γ-motor neurons and perhaps partial restoration of monosynaptic sensorimotor relays.
Collapse
Affiliation(s)
- Maria João Godinho
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jonas L Staal
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Vidya S Krishnan
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Margaret A Pollett
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Douglas P Goodman
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Lip Teh
- Plastic Surgery Centre, St John of God Hospital, Murdoch, WA 6150, Australia
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
7
|
Takaku S, Sango K. Zonisamide enhances neurite outgrowth from adult rat dorsal root ganglion neurons, but not proliferation or migration of Schwann cells. Histochem Cell Biol 2019; 153:177-184. [PMID: 31879799 PMCID: PMC7060162 DOI: 10.1007/s00418-019-01839-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 01/06/2023]
Abstract
Zonisamide, an anti-epileptic and anti-Parkinson’s disease drug, displays neurotrophic activity on cultured motor neurons and facilitates axonal regeneration after peripheral nerve injury in mice, but its underlying mechanisms remain unclear. In this study, zonisamide enhanced neurite outgrowth from cultured adult rat dorsal root ganglion (DRG) neurons in a concentration-dependent manner (1 μM < 10 μM < 100 μM), and its activity was significantly attenuated by co-treatment with a phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002 or a mitogen-activated protein kinase (MAPK) inhibitor U0126. In agreement with these findings, 100 μM zonisamide for 1 h induced phosphorylation of AKT and ERK1/2, key molecules of PI3K and MAPK signaling pathways, respectively in mouse neuroblastoma × rat DRG neuron hybrid cells ND7/23. In contrast, zonisamide failed to promote proliferation or migration of immortalized Fischer rat Schwann cells 1 (IFRS1). These findings suggest that the beneficial effects of zonisamide on peripheral nerve regeneration may be attributable to its direct actions on neurons through PI3K and MAPK pathways, rather than the stimulation of Schwann cells.
Collapse
Affiliation(s)
- Shizuka Takaku
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
8
|
Boggild S, Molgaard S, Glerup S, Nyengaard JR. Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment. J Comp Neurol 2018; 526:1267-1286. [PMID: 29405286 DOI: 10.1002/cne.24403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Nervous system development is a precisely orchestrated series of events requiring a multitude of intrinsic and extrinsic cues. Sortilin and SorCS2 are members of the Vps10p receptor family with complementary influence on some of these cues including the neurotrophins (NTs). However, the developmental time points where sortilin and SorCS2 exert their activities in conjunction or independently still remain unclear. In this study we present the characterization of the spatiotemporal expression pattern of sortilin and SorCS2 in the developing murine nervous system. Sortilin is highly expressed in the fetal nervous system with expression localized to distinct cell populations. Expression was high in neurons of the cortical plate and developing allocortex, as well as subpallial structures. Furthermore, the neuroepithelium lining the ventricles and the choroid plexus showed high expression of sortilin, together with the developing retina, spinal ganglia, and sympathetic ganglia. In contrast, SorCS2 was confined in a marked degree to the thalamus and, at E13.5, the floor plate from midbrain rostrally to spinal cord caudally. SorCS2 was also found in the ventricular zones of the ventral hippocampus and nucleus accumbens areas, in the meninges and in Schwann cells. Hence, sortilin and SorCS2 are extensively present in several distinct anatomical areas in the developing nervous system and are rarely co-expressed. Possible functions of sortilin and SorCS2 pertain to NT signaling, axon guidance and beyond. The present data will form the basis for hypotheses and study designs for unravelling the functions of sortilin and SorCS2 during the establishment of neuronal structures and connections.
Collapse
Affiliation(s)
- Simon Boggild
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Molgaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Glerup
- MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
9
|
Niimi N, Yako H, Takaku S, Kato H, Matsumoto T, Nishito Y, Watabe K, Ogasawara S, Mizukami H, Yagihashi S, Chung SK, Sango K. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism. J Neurochem 2018; 144:710-722. [DOI: 10.1111/jnc.14277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Naoko Niimi
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Hideji Yako
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Hiroshi Kato
- Sumitomo Dainippon Pharma Co., Ltd.; Osaka Japan
| | | | - Yasumasa Nishito
- Basic Technology Research Center; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kazuhiko Watabe
- Department of Medical Technology; Faculty of Health Sciences; Kyorin University; Tokyo Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Sookja K. Chung
- School of Biomedical Sciences; Research Center of Heart, Brain, Hormone and Healthy Aging and State Key Laboratory of Pharmaceutical Biotechnology; The University of Hong Kong; Hong Kong SAR China
| | - Kazunori Sango
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| |
Collapse
|
10
|
Fan K, Wang X, Zhang J, Ramos RI, Zhang H, Li C, Ye D, Kang J, Marzese DM, Hoon DSB, Hua W. Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas. Sci Rep 2017; 7:7079. [PMID: 28765641 PMCID: PMC5539284 DOI: 10.1038/s41598-017-07124-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
Abstract
Ciliary neurotrophic factor receptor α subunit (CNTFRα) and CNTF play important roles in neuron survival, glial differentiation and brain tumor growth. However, the molecular mechanisms of CNTFRα regulation and its clinical significance in glioma remain largely unknown. Here, we found CNTFRα was overexpressed in lower grade gliomas (LGG) compared with glioblastoma (GBM) and normal brain specimens in TCGA datasets and in an independent cohort. Bioinformatics analysis revealed a CpG shore of the CNTFRα gene regulated its mRNA expression in TCGA datasets. This observation was further validated with clinical specimens and functionally verified using demethylating agents. Additionally, we observed that independent of IDH mutation status, methylation of CNTFRα was significantly correlated with down-regulated CNTFRα gene expression and longer LGG patient survival. Interestingly, combination of CNTFRα methylation and IDH mutation significantly (p < 0.05) improved the prognostic prediction in LGG patients. Furthermore, the role of CNTFRα in glioma proliferation and apoptosis through the PI3K/AKT pathways was demonstrated by supplementation with exogenous CNTF in vitro and siRNA knockdown in vivo. Our study demonstrated that hypomethylation leading to CNTFRα up-regulation, together with autocrine expression of CNTF, was involved in glioma growth regulation. Importantly, DNA methylation of CNTFRα might serve as a potential epigenetic theranostic target for LGG patients.
Collapse
Affiliation(s)
- Kun Fan
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaowen Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Jingwen Zhang
- Department of Ultrasound Diagnosis, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Haibo Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunjie Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiansheng Kang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America.,Sequencing center, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Yoshida S, Orimoto N, Tsukihara H, Noma T, Hakozaki A, Sasaki E. TAC-302 promotes neurite outgrowth of isolated peripheral neurons and prevents bladder denervation related bladder dysfunctions following bladder outlet obstruction in rats. Neurourol Urodyn 2017; 37:681-689. [PMID: 28745805 DOI: 10.1002/nau.23375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/30/2017] [Indexed: 11/09/2022]
Abstract
AIMS To evaluate the ability of TAC-302, a cyclohexenoic fatty alcohol derivative, to enhance neurite outgrowth in cultured rat dorsal root ganglion (DRG) neurons, and the preventive effects of TAC-302 on bladder denervation-related storage and voiding dysfunctions in rats with bladder outlet obstruction (BOO). METHODS Rat DRG neurons were cultured in the presence of TAC-302. Cell numbers and neurite lengths were quantified after a 24 h culture. BOO was achieved by partial ligature of the proximal urethra in female rats. BOO rats were divided into three groups and orally treated with vehicle of 3 or 30 mg/kg TAC-302 twice a day for 4 weeks. Cystometry was performed under conscious conditions. Immunohistochemical staining using anti-PGP9.5 of the bladder muscle layer was performed, and the innervation area was scored. RESULTS TAC-302 significantly and dose-dependently increased neurite outgrowth in cultured DRG neurons. BOO rats showed a decreased innervation area in the urinary bladder compared to sham-operated rats. BOO-induced denervation of the urinary bladder was partially prevented by oral treatment with TAC-302. TAC-302 significantly reduced the frequency of non-voiding contraction (NVC) and residual urine volume (RUV) compared with the BOO vehicle group (P < 0.05). The innervation area score exhibited significant negative correlations with NVC and RUV, indicating that they increased according to the progression of denervation. CONCLUSIONS Our data indicate that TAC-302 promotes neurite outgrowth in vitro. In addition, TAC-302 prevents BOO-induced bladder dysfunction in rats, and has a protective effect on bladder denervation.
Collapse
Affiliation(s)
- Shohei Yoshida
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| | - Naoki Orimoto
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| | - Hiroshi Tsukihara
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| | - Takahisa Noma
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| | - Atsushi Hakozaki
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| | - Eiji Sasaki
- Taiho Pharmaceutical Co. Ltd., Tsukuba Research Center, Tsukuba, Japan
| |
Collapse
|
12
|
Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons. Neurosci Lett 2016; 635:83-89. [DOI: 10.1016/j.neulet.2016.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
|
13
|
Gu YL, Gao GQ, Ma N, Ye LL, Zhang LW, Gao X, Zhang ZB. CNTF protects neurons from hypoxic injury through the activation of STAT3pTyr705. Int J Mol Med 2016; 38:1915-1921. [DOI: 10.3892/ijmm.2016.2769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
|
14
|
Tsukamoto M, Niimi N, Sango K, Takaku S, Kanazawa Y, Utsunomiya K. Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and RhoA. Histochem Cell Biol 2015; 144:249-59. [PMID: 26026990 DOI: 10.1007/s00418-015-1333-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 11/26/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is thought to preserve neurons and glia following axonal injury and neurodegenerative disorders. We investigated the neurotrophic and neuroprotective properties of exendin (Ex)-4, a synthetic GLP-1 receptor (GLP-1R) agonist, on adult rat dorsal root ganglion (DRG) neurons and PC12 cells. GLP-1R was predominantly localized on large and small peptidergic neurons in vivo and in vitro, suggesting the involvement of GLP-1 in both the large and small sensory fiber functions. Ex-4 dose-dependently (1 ≤ 10 ≤ 100 nM) promoted neurite outgrowth and neuronal survival at 2 and 7 days in culture, respectively. Treatment with 100 nM Ex-4 restored the reduced neurite outgrowth and viability of DRG neurons caused by the insulin removal from the medium and suppressed the activity of RhoA, an inhibitory regulator for peripheral nerve regeneration, in PC12 cells. Furthermore, these effects were attenuated by co-treatment with phosphatidylinositol-3'-phosphate kinase (PI3K) inhibitor, LY294002. These findings imply that Ex-4 enhances neurite outgrowth and neuronal survival through the activation of PI3K signaling pathway, which negatively regulates RhoA activity. Ex-4 and other GLP-1R agonists may compensate for the reduced insulin effects on neurons, thereby being beneficial for the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Masami Tsukamoto
- Diabetic Neuropathy Project (Former Laboratory of Peripheral Nerve Pathophysiology), Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Murakami T, Sango K, Watabe K, Niimi N, Takaku S, Li Z, Yamamura KI, Sunada Y. Schwann cells contribute to neurodegeneration in transthyretin amyloidosis. J Neurochem 2015; 134:66-74. [DOI: 10.1111/jnc.13068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kazunori Sango
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kazuhiko Watabe
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Naoko Niimi
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Shizuka Takaku
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Zhenghua Li
- Division of Developmental Genetics; Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Ken-ichi Yamamura
- Division of Developmental Genetics; Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Yoshihide Sunada
- Department of Neurology; Kawasaki Medical School; Kurashiki Japan
| |
Collapse
|
16
|
Shahaduzzaman MD, Mehta V, Golden JE, Rowe DD, Green S, Tadinada R, Foran EA, Sanberg PR, Pennypacker KR, Willing AE. Human umbilical cord blood cells induce neuroprotective change in gene expression profile in neurons after ischemia through activation of Akt pathway. Cell Transplant 2015; 24:721-35. [PMID: 25413246 DOI: 10.3727/096368914x685311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.
Collapse
Affiliation(s)
- M D Shahaduzzaman
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Askvig JM, Watt JA. The MAPK and PI3K pathways mediate CNTF-induced neuronal survival and process outgrowth in hypothalamic organotypic cultures. J Cell Commun Signal 2015; 9:217-31. [PMID: 25698661 PMCID: PMC4580676 DOI: 10.1007/s12079-015-0268-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
While collateral sprouting has been shown to occur in a variety of neuronal populations, the factor or factors responsible for mediating the sprouting response remain largely un-defined. There is evidence indicating that ciliary neurotrophic factor (CNTF) may play an important role in promoting neuronal survival and process outgrowth in neuronal phenotypes tested to date. We previously demonstrated that the astrocytic Jak-STAT pathway is necessary to mediate CNTF-induced oxytocinergic (OT) neuronal survival; however, the mechanism (s) of CNTF-mediated process outgrowth remain unknown. Our working hypothesis is that CNTF mediates differential neuroprotective responses via different intracellular signal transduction pathways. In order to test this hypothesis, we utilized stationary hypothalamic organotypic cultures to assess the contribution of the MAPK-ERK and PI3-AKT pathways to OT neuron survival and process outgrowth. Our results demonstrate that the MAPK-ERK½ pathway mediates CNTF-induced neuronal survival. Moreover, we show that inhibition of the p38-, JNK-MAPK, and mTOR pathways prevents loss OT neurons following axotomy. We also provide quantitative evidence indicating that CNTF promotes process outgrowth of OT neurons via the PI3K-AKT pathway. Together, these data indicate that distinct intracellular signaling pathways mediate diverse neuroprotective processes in response to CNTF.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA.
| | - John A Watt
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Room 1701 Stop 9037, 501 N Columbia Road, Grand Forks, ND, 58203, USA.
| |
Collapse
|
18
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
19
|
Park KW, Lin CY, Lee YS. Expression of suppressor of cytokine signaling-3 (SOCS3) and its role in neuronal death after complete spinal cord injury. Exp Neurol 2014; 261:65-75. [PMID: 24959867 DOI: 10.1016/j.expneurol.2014.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022]
Abstract
The present study investigates the endogenous expression of Suppressor of Cytokine Signaling-3 (SOCS3) after spinal cord injury (SCI) and its effect on SCI-induced cell death in vivo. In addition, we determined whether a reduction of SOCS3 expression induced by microinjection of short hairpin RNA (shSOCS3) carried by lentivirus into spinal cord provides cellular protection after SCI. We demonstrated that complete transection of rat T8 spinal cord induced SOCS3 expression at the mRNA and protein levels as early as 2days post-injury, which was maintained up to 14days. SOCS3 immunoreactivity was detected in neurons and activated microglia after SCI. We also demonstrated that SCI induces phosphorylation of proteins that are involved in signal transduction and transcription-3 (STAT3) in neurons, which induced SOCS3 expression. Western blot analyses and double-immunofluorescent staining showed significant up-regulation of the pro-apoptotic protein Bax, increases in the ratio of Bax to the anti-apoptotic protein Bcl-2, and up-regulation of cleaved caspase-3 in neurons. Treatment with shSOCS3 inhibited SCI-induced mRNA expression of SOCS3 2days post-injury and suppressed SCI-induced Bax expression 7days after SCI, both rostral and caudal to the lesion. Moreover, treatment with shSOCS3 inhibited SCI-induced neuronal death and protected neuronal morphology both rostral and caudal to the injury site 7days post-injury. Our results suggest that the STAT3/SOCS3 signaling pathway plays an important role in regulating neuronal death after SCI.
Collapse
Affiliation(s)
- Keun Woo Park
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Kaiser A, Kale A, Novozhilova E, Siratirakun P, Aquino JB, Thonabulsombat C, Ernfors P, Olivius P. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture. Brain Res 2014; 1566:12-23. [DOI: 10.1016/j.brainres.2014.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 01/14/2023]
|
21
|
Liu H, Liu G, Bi Y. CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro. Neurosci Lett 2014; 569:110-5. [DOI: 10.1016/j.neulet.2014.03.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/15/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022]
|
22
|
Nogueira-Silva C, Piairo P, Carvalho-Dias E, Veiga C, Moura RS, Correia-Pinto J. The role of glycoprotein 130 family of cytokines in fetal rat lung development. PLoS One 2013; 8:e67607. [PMID: 23826327 PMCID: PMC3691159 DOI: 10.1371/journal.pone.0067607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/24/2013] [Indexed: 11/24/2022] Open
Abstract
The glycoprotein 130 (gp130) dependent family of cytokines comprises interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and oncostatin M (OSM). These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM) were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Paulina Piairo
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Carvalho-Dias
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Carla Veiga
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
- * E-mail:
| |
Collapse
|
23
|
Takaku S, Yanagisawa H, Watabe K, Horie H, Kadoya T, Sakumi K, Nakabeppu Y, Poirier F, Sango K. GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem Int 2013; 62:330-9. [DOI: 10.1016/j.neuint.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
|
24
|
Saleh A, Schapansky J, Smith DR, Young N, Odero GL, Aulston B, Fernyhough P, Glazner GW. Normalization of NF-κB activity in dorsal root ganglia neurons cultured from diabetic rats reverses neuropathy-linked markers of cellular pathology. Exp Neurol 2012; 241:169-78. [PMID: 23159890 DOI: 10.1016/j.expneurol.2012.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Dorsal root ganglia (DRG) sensory neurons cultured from 3 to 5 month streptozotocin (STZ)-induced diabetic rats exhibit structural and biochemical changes seen in peripheral nerve fibers in vivo, including axonal swellings, oxidative damage, reduced axonal sprouting, and decreased NF-κB activity. NF-κB is a transcription factor required by DRG neurons for survival and plasticity, and regulates transcription of antioxidant proteins (e.g. MnSOD). We hypothesized that the diabetes-induced decrease in NF-κB activity in DRG contributes to pathological phenomena observed in cultured DRG neurons from diabetic rats. METHODS NF-κB localization was assessed in intact DRG and neuron cultures using immunostaining. NF-κB activity was manipulated in sensory neuron cultures derived from age-matched normal or 3-5 month STZ-diabetic rats using pharmacological means and lentiviral expression of shRNA. The impact of diabetes and altered NF-κB activity on neuronal phenotype involved analysis of neurite outgrowth, neurite morphology, oxidative stress (lipid peroxidation) and expression of MnSOD. RESULTS STZ-induced diabetes caused a significant decrease in nuclear localization of NF-κB subunits p50 and c-rel, but no change in p65 in intact DRG. Inhibition of NF-κB in normal neuron cultures significantly increased axonal swellings and oxidative stress, and reduced both neurite outgrowth and expression of MnSOD. These phenomena mimicked markers of pathology in cultured DRG neurons from diabetic rats. Enhancement of NF-κB activity in cultured diabetic DRG neurons ameliorated the sub-optimal neurite outgrowth and MnSOD levels triggered by diabetes. Exogenous insulin enhanced nuclear localization of p50 and c-rel but not p65 in diabetic neuronal cultures. CONCLUSION/INTERPRETATION The diabetes-induced decrease of nuclear localization of NF-κB subunits p50 and c-rel in DRG contributes to development of in vitro markers of peripheral neuropathy, possibly through impaired mitochondrial ROS scavenging by deficient MnSOD.
Collapse
Affiliation(s)
- A Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Askvig JM, Lo DY, Sudbeck AW, Behm KE, Leiphon LJ, Watt JA. Inhibition of the Jak-STAT pathway prevents CNTF-mediated survival of axotomized oxytocinergic magnocellular neurons in organotypic cultures of the rat supraoptic nucleus. Exp Neurol 2012; 240:75-87. [PMID: 23123407 DOI: 10.1016/j.expneurol.2012.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that ciliary neurotrophic factor (CNTF) enhances survival and process outgrowth from magnocellular neurons in the paraventricular (PVN) and the supraoptic (SON) nuclei. However, the mechanisms by which CNTF facilitates these processes remain to be determined. Therefore, the aim of this study was to identify the immediate signal transduction events that occur within the rat SON following administration of exogenous rat recombinant CNTF (rrCNTF) and to determine the contribution of those intracellular signaling pathway(s) to neuronal survival and process outgrowth, respectively. Immunohistochemical and Western blot analyses demonstrated that axonal injury and acute unilateral pressure injection of 100 ng/μl of rrCNTF directly over the rat SON resulted in a rapid and transient increase in phosphorylated-STAT3 (pSTAT3) in astrocytes but not neurons in the SON in vivo. Utilizing rat hypothalamic organotypic explant cultures, we then demonstrated that administration of 25 ng/ml rrCNTF for 14days significantly increased the survival and process outgrowth of OT magnocellular neurons. In addition, pharmacological inhibition of the Jak-STAT pathway via AG490 and cucurbitacin I significantly reduced the survival of OT magnocellular neurons in the SON and PVN; however, the contribution of the Jak-STAT pathway to CNTF-mediated process outgrowth remains to be determined. Together, these data indicate that CNTF-induced survival of OT magnocellular neurons is mediated indirectly through astrocytes via the Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Anatomy & Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Saleh A, Roy Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Martens C, Morrow D, Schartner E, Frizzi KE, Calcutt NA, Fernyhough P. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 2012; 65:65-73. [PMID: 23022047 DOI: 10.1016/j.neuropharm.2012.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
Abstract
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Role of nuclear factor-κB in oxidative stress associated with rabies virus infection of adult rat dorsal root ganglion neurons. J Virol 2012; 86:8139-46. [PMID: 22623795 DOI: 10.1128/jvi.00550-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies in an experimental model of rabies showed major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult rat dorsal root ganglion (DRG) neurons infected with the challenge virus standard-11 strain of rabies virus (CVS) showed axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress and reduced axonal growth compared to that of mock-infected DRG neurons. We have evaluated whether nuclear factor (NF)-κB might act as a critical bridge linking CVS infection and oxidative stress. On Western immunoblotting, CVS infection induced expression of the NF-κB p50 subunit compared to that of mock infection. Ciliary neurotrophic factor, a potent activator of NF-κB, had no effect on mock-infected rat DRG neurons and reduced the number of 4-HNE-labeled puncta. SN50, a peptide inhibitor of NF-κB, and CVS infection had an additive effect in producing axonal swellings, indicating that NF-κB is neuroprotective. The fluorescent signal for subunit p50 was quantitatively evaluated in the nucleus and cytoplasm of mock- and CVS-infected rat DRG neurons. At 24 h postinfection (p.i.), there was a significant increase in the nucleus/cytoplasm ratio, indicating increased transcriptional activity of NF-κB, perhaps as a response to stress. At both 48 and 72 h p.i., there was significantly reduced nuclear localization of NF-κB. CVS infection may induce oxidative stress by inhibiting nuclear activation of NF-κB. A rabies virus protein may directly inhibit NF-κB activity. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection.
Collapse
|
28
|
Bryan DJ, Litchfield CR, Manchio JV, Logvinenko T, Holway AH, Austin J, Summerhayes IC, Rieger-Christ KM. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays. Proteome Sci 2012; 10:9. [PMID: 22325251 PMCID: PMC3295716 DOI: 10.1186/1477-5956-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/10/2012] [Indexed: 01/19/2023] Open
Abstract
Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite spatiotemporal expression profile of peripheral nerve regeneration.
Collapse
Affiliation(s)
- David J Bryan
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department of Plastic and Reconstructive Surgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - C Robert Litchfield
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Jeffrey V Manchio
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department Surgery, Section of General Surgery, Saint Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Tanya Logvinenko
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Antonia H Holway
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - John Austin
- Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - Ian C Summerhayes
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Kimberly M Rieger-Christ
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| |
Collapse
|
29
|
Harel R, Iannotti CA, Hoh D, Clark M, Silver J, Steinmetz MP. Oncomodulin affords limited regeneration to injured sensory axons in vitro and in vivo. Exp Neurol 2011; 233:708-16. [PMID: 22078758 DOI: 10.1016/j.expneurol.2011.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/06/2011] [Accepted: 04/17/2011] [Indexed: 12/12/2022]
Abstract
Oncomodulin, an ~12 kDa Ca(2+)-binding protein secreted from activated macrophages, has been shown to promote axonal regeneration from retinal ganglion cells (RGCs) following optic nerve injury. However, to date, the axonal growth-promoting capacity of oncomodulin in other models of 'regenerative failure' has not been evaluated. We assessed the capability of preconditioning treatment with oncomodulin to promote sensory axonal regeneration in an in vitro spot model of regenerative failure, and across the dorsal root zone (DREZ) after root crush injury. Neither the direct exposure of adult rat DRGs to oncomodulin, nor preconditioning of DRGs by intraganglionic injection of oncomodulin, stimulated axonal outgrowth in the in vitro proteoglycan spot gradient assay. However, direct exposure of unconditioned DRGs to both oncomodulin and db-cAMP in vitro, as well as preconditioning of DRGs with the combined treatment in vivo, resulted in significant, albeit modest, neurite extension across the inhibitory proteoglycan barrier. We next quantified axon regeneration through the C8 DREZ in adult rats after oncomodulin and/or db-cAMP preconditioning and chondroitinase (ChABC) injection into the DREZ immediately following a root crush injury. Axonal regeneration across the DREZ was not observed in control animals, or after injection of ChABC-alone. Treatment with oncomodulin- or db-cAMP-alone resulted in extremely sparse regeneration. However, significant, but meager, sensory axon regeneration across the DREZ was observed using the oncomodulin/ db-cAMP combination (p<0.001), supporting findings from previous studies suggesting that cAMP is necessary for the growth-promoting effects of oncomodulin. Although our results support a role for oncomodulin in macrophage-induced axonal regeneration, the effects of oncomodulin/db-cAMP on sensory regeneration were extremely limited in comparison to previous studies in the same injury model using zymosan.
Collapse
Affiliation(s)
- Ran Harel
- Center for Spine Health, Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Rathje M, Pankratova S, Nielsen J, Gotfryd K, Bock E, Berezin V. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130. Eur J Cell Biol 2011; 90:990-9. [PMID: 22000729 DOI: 10.1016/j.ejcb.2011.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential.
Collapse
Affiliation(s)
- Mette Rathje
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K. Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 2011; 89:898-908. [DOI: 10.1002/jnr.22605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 01/17/2023]
|
32
|
Bockelmann J, Klinkhammer K, von Holst A, Seiler N, Faissner A, Brook GA, Klee D, Mey J. Functionalization of electrospun poly(ε-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of schwann cell migration and axonal growth. Tissue Eng Part A 2010; 17:475-86. [PMID: 20819000 DOI: 10.1089/ten.tea.2010.0369] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The best available treatment of peripheral nerve lesions involves transplantation of an autologous nerve. This approach, however, entails sensory deficits at the donor site and requires additional surgery. Such limitations have motivated the search for a bioengineering solution to design artificial implants. For this purpose we are producing orientated biodegradable microfibers of poly(ε-caprolactone) (PCL) with electrospinning. The present study describes the functionalization of these electrospun fibers with biologically active peptides to produce guidance structures for Schwann cell migration and axonal regeneration. For the chemical modification PCL was blended with star-shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (PCL/sPEG) as a covalent linker for the peptide GRGDS, derived from extracellular matrix proteins. To test biological functions of electrospun fibers, Schwann cell migration and axonal growth from dorsal root ganglia explants were investigated with time lapse video microscopy. Migrating Schwann cells as well as growing sensory axons closely followed the electrospun fibers with occasional leaps between adjacent fibers. Cell migration was characterized by frequent changes in velocity and direction reversals. Comparison of substrates showed that functionalized fibers caused more Schwann cells to move out of the explants, supported faster cell migration and axonal growth than the nonfunctional fibers. Using inhibitors of intracellular signaling kinases, we found that these biological effects required activation of the phosphatidyl inositol-3-kinase pathway. Since sPEG-containing fibers also showed low levels of nonspecific protein adsorption, which is desirable in the context of artificial implant design, the peptide modification of fibers appears to provide good substrates for nerve repair.
Collapse
|
33
|
Jang SY, Shin YK, Jung J, Lee SH, Seo SY, Suh DJ, Park HT. Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor. Neurosci Lett 2010; 485:37-42. [PMID: 20800647 DOI: 10.1016/j.neulet.2010.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/19/2010] [Indexed: 01/31/2023]
Abstract
Neurotrophic cytokines, such as ciliary neurotrophic factor (CNTF) play an important role in the development and regeneration of the nervous system. In the present study, we screened gene expression induced by CNTF in adult dorsal root ganglion (DRG) neurons using the Illumina microarray. We found that the expression of both short and long forms of collapsin response-mediator protein 4 (CRMP4) was increased in cultured primary sensory neurons by CNTF. In addition, sciatic nerve injury induced the expression of CRMP4 mRNA and protein in DRG neurons. Finally, the increased CRMP4 protein was transported into peripheral axons following nerve injury. These findings indicate that CRMP4 may be a target gene for CNTF in the regenerative axon growth of DRG neurons after injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Hu LY, Sun ZG, Wen YM, Cheng GZ, Wang SL, Zhao HB, Zhang XR. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience 2010; 169:1046-62. [PMID: 20678995 DOI: 10.1016/j.neuroscience.2010.05.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/23/2010] [Accepted: 05/20/2010] [Indexed: 12/25/2022]
Abstract
The protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal S6 protein kinase (p70S6K) signaling pathway, as a central controller of cell growth, proliferation, survival, and differentiation in response to extracellular signals, growth factors, nutrient availability, energy status of the cell, and stress, has recently gained attention in neuroscience. The effects of this signaling pathway on repair of spinal cord injury (SCI), however, have not been well elucidated. ATP is increasingly recognized as an important regulator of signal transduction pathways, and plays important roles in functional recovery after nervous system injury. In the present study, we examined the ATP-induced changes of the Akt/mTOR/p70S6K signaling pathway in injured spinal cord of adult rats and potential therapeutic effects of this pathway on SCI-induced locomotor dysfunction. SCI was produced by extradural weight-drop using modified Allen's stall with damage energy of 50 g-cm force. The rats were divided into four groups: SCI plus ATP, SCI plus saline, SCI plus ATP and rapamycin, and sham-operated. Using immunostaining studies, Western blot analyses and real-time qualitative RT-PCR analyses, we demonstrated that the Akt/mTOR/p70S6K signaling pathway is present in the injured spinal cord and the expression of its components at the protein and mRNA levels is significantly elevated by exogenous administration of ATP following SCI. We observed the effectiveness of the activated Akt/mTOR/p70S6K signaling pathway in improving locomotor recovery, significantly increasing the expression of nestin, neuronal nuclei (NeuN), neuron specific enolase (NSE), and neurofilament 200 (NF200), and relatively inhibiting excessive reactive astrogliosis after SCI in a rapamycin-sensitive manner. We concluded that ATP injection produced a significant activation of the Akt/mTOR/p70S6K signaling pathway in the injured spinal cord and that enhancement of rapamycin-sensitive signaling produces beneficial effects on SCI-induced motor function defects and repair potential. We suggest that modulation of this protein kinase signaling pathway activity should be considered as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- L Y Hu
- Second Clinical Medical College, Lanzhou University, 82 Cui Ying Men, Lanzhou 730030, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Van der Walt A, Butzkueven H, Kolbe S, Marriott M, Alexandrou E, Gresle M, Egan G, Kilpatrick T. Neuroprotection in multiple sclerosis: a therapeutic challenge for the next decade. Pharmacol Ther 2010; 126:82-93. [PMID: 20122960 DOI: 10.1016/j.pharmthera.2010.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is the commonest cause of progressive neurological disability amongst young, Caucasian adults. MS is considered to be an auto-immune disease that results from an attack against myelin, the layer which surrounds axons. The pathophysiology of MS is complex, with both demyelination and axonal degeneration contributing to what is essentially an inflammatory neurodegenerative disease. Axonal loss is increasingly being accepted as the histopathological correlate of neurological disability. Currently, the underpinnings of neurodegeneration in MS, and how to promote neuroprotection are only partly understood. No established treatments that directly reduce nervous system damage or enhance its repair are currently available. Moreover, the ability of currently available immunomodulatory therapies used to treat MS, such as interferon-beta, to prevent long-term disability is uncertain. Results from short-term randomized-controlled trials suggest a partial benefit with regards to disability outcomes, but this is yet to be established in long-term studies. Novel neuroprotective agents have been identified in preclinical studies but their development is being hampered by the absence of appropriate clinical platforms to test them. In this article, we will discuss some of the principal therapeutic candidates that could provide neuroprotection in MS and emerging methodologies by which to test them.
Collapse
Affiliation(s)
- Anneke Van der Walt
- The Royal Melbourne Hospital, Grattan St. Parkville, Melbourne, Australia; Centre for Neuroscience, University of Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
37
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|