1
|
Wada S, Ideno H, Nakashima K, Komatsu K, Demura N, Tomonari H, Kimura H, Tachibana M, Nifuji A. The histone H3K9 methyltransferase G9a regulates tendon formation during development. Sci Rep 2024; 14:20771. [PMID: 39237663 PMCID: PMC11377446 DOI: 10.1038/s41598-024-71570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Noboru Demura
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan.
| |
Collapse
|
2
|
Sharma SK, Poudel Sharma S, Leblanc RM. Methods of detection of β-galactosidase enzyme in living cells. Enzyme Microb Technol 2021; 150:109885. [PMID: 34489038 DOI: 10.1016/j.enzmictec.2021.109885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
The application of β-galactosidase enzyme ranges from industrial use as probiotics to medically important application such as cancer detection. The irregular activities of β-galactosidase enzyme are directly related to the development of cancers. Identifying the location and expression levels of enzymes in cancer cells have considerable importance in early-stage cancer diagnosis and monitoring the efficacy of therapies. Most importantly, the knowledge of the efficient method of detection of β-galactosidase enzyme will help in the early-stage treatment of the disease. In this review paper, we provide an overview of recent advances in the detection methods of β-galactosidase enzyme in the living cells, including the detection strategies, and approaches in human beings, plants, and microorganisms such as bacteria. Further, we emphasized on the challenges and opportunities in this rapidly developing field of development of different biomarkers and fluorescent probes based on β-galactosidase enzyme. We found that previously used chromo-fluorogenic methods have been mostly replaced by the new molecular probes, although they have certain drawbacks. Upon comparing the different methods, it was found that near-infrared fluorescent probes are dominating the other detection methods.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States; Thomas More University, 333 Thomas More Pkwy, Crestview Hills, KY 41017
| | - Sijan Poudel Sharma
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States.
| |
Collapse
|
3
|
Yuan X, Zhang L, Du J. Tbx18-positive cells-derived myofibroblasts contribute to renal interstitial fibrosis via transforming growth factor-β signaling. Exp Cell Res 2021; 405:112682. [PMID: 34118250 DOI: 10.1016/j.yexcr.2021.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that the T-box family transcription factor 18 (Tbx18) -positive cells give rise to renal mesenchymal cells and contribute to the development of the urinary system. However, it is unclear whether Tbx18-positive cells are the origin of the myofibroblasts during renal fibrosis. The present study aimed to determine the contribution of Tbx18-positive cells in kidney fibrosis and their underlying mechanism. We show that Tbx18-positive cells contribute to the development of the urinary system, especially renal fibroblasts. Following unilateral ureteral obstruction (UUO), genetic fate tracing results demonstrated that Tbx18-positive cells not only proliferate but also expand and differentiate into fibroblasts and myofibroblasts, indicating that they may act as profibrotic progenitors. Cell culture results suggest that transforming growth factor (TGF)-β promotes Tbx18-positive cells differentiation into myofibroblasts and assist their contribution to kidney fibrosis. Overall, the present study demonstrated that Tbx18-positive cells may act as profibrotic progenitor cells in a pathological condition of UUO-induced injury. Moreover, TGF-β may play a role in differentiation of Tbx18-positive cells into myofibroblasts in kidney fibrosis. These findings may provide a potential target on Tbx18-positive myofibroblast progenitors in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Allard BA, Wang W, Pottorf TS, Mumtaz H, Jack BM, Wang HH, Silva LM, Jacobs DT, Wang J, Bumann EE, Tran PV. Thm2 interacts with paralog, Thm1, and sensitizes to Hedgehog signaling in postnatal skeletogenesis. Cell Mol Life Sci 2021; 78:3743-3762. [PMID: 33683377 DOI: 10.1007/s00018-021-03806-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2-/-; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2-/-; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2-/-; Thm1aln/+ small phenotype, and further revealed that Thm2-/-; Gli2+/- mice have small stature. In Thm2-/-; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.
Collapse
Affiliation(s)
- Bailey A Allard
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Wei Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Hammad Mumtaz
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, Medical Center, University of Kansas, Kansas City, KS, 66160, USA
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Tan S, Chen Y, Gao Y, He J, Guo X, Zhang S, Zhang J, Zeng F. β-Galactosidase gene codon optimization results in post-transcriptional enhancement of expression. Gene 2020; 748:144676. [PMID: 32305635 DOI: 10.1016/j.gene.2020.144676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE lacZ encodes for β-galactosidase within the galactose operon of bacterial cells. When used as a reporter gene, bacterial "β-galactosidase" expression is often insufficient for detection in mammalian cells. We intended to optimize the lacZ codon usage according to the most frequently used codons for the seven major proteins in cow's milk, in order to pave a way for the enhancement of transgenic genes expression in eukaryotes. RESULTS We constructed modified lacZ (named olacZ) according to optional codons used for proteins expressed in cow's milk. The expression of lacZ and olacZ was then compared in HC11 (a murine mammary gland epithelial line), 293T, HeLa, Cos7, and NIH 3T3 cells. While there was no significant difference at the mRNA level between lacZ and olacZ (P > 0.05). The quantification of β-galactosidase activity and in situ staining experiments showed a 1.2-fold to 3.3-fold expression improvement when comparing olacZ with lacZ. The levels of β-galactosidase expression at the protein levels from olacZ were approximately 9.2-fold and 2.4-fold respectively for Cos7 and HC11 cells. Furthermore, a 1.9-fold tendency of enhanced expression of olacZ in mammary gland during lactation was observed in transgenic-olacZ mice. CONCLUSION This study demonstrates an alternative choice for improving lacZ reporter expression in eukaryotes, especially in the mammary gland of cattle or goats.
Collapse
Affiliation(s)
- Shuo Tan
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Yuan Chen
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Yue Gao
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Jiaping He
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Xinbing Guo
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Simin Zhang
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China
| | - Jingzhi Zhang
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China.
| | - Fanyi Zeng
- Shanghai Jiao Tong University Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, 24/1400 West Beijing Road, Shanghai 200040, PR China; Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, PR China; Department of Histoembryology, Genetics and Development, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
6
|
Klarlund JK, Callaghan JD, Stella NA, Kowalski RP, McNamara NA, Shanks RMQ. Use of Collagen Binding Domains to Deliver Molecules to the Cornea. J Ocul Pharmacol Ther 2019; 35:491-496. [PMID: 31593501 DOI: 10.1089/jop.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: The combined activity of the tear film and blinking is remarkably efficient at removal of foreign materials from the ocular surface. This has prevented the use of certain classes of drugs for the treatment of ocular surface problems. We propose that the use of peptide and protein domains that bind to moieties on the cornea could be used to deliver therapeutics by anchoring the drugs on the ocular surface long enough to provide therapeutic effects. Methods: In this study, we evaluated 4 different collagen binding domains fused to bacterial β-galactosidase for delivery of a reporter protein to collagen I and collagen IV-coated plates, rabbit corneas, and Herpes simplex virus (HSV-1) infected mouse corneas. Results: All 4 domains bound to collagen I and IV in vitro, whereas only a 10 amino acid (AA) sequence from bovine von Willebrand factor (vWF) and a 215 AA collagen binding domain from the bacterial protein ColH efficiently bound to abraded rabbit corneas. To test binding to corneas in a clinically relevant model, we assessed binding of the vWF collagen binding peptide fusions to HSV-1 infected mouse corneas. We observed that the vWF derived peptide mediated attachment to infected corneas, whereas the reporter protein without a collagen binding domain did not bind. Conclusions: Moving forward, the vWF collagen binding peptide could be used as an anchor to deliver therapeutics to prevent scarring and vision loss from damaged corneal surfaces due to disease and inflammation.
Collapse
Affiliation(s)
- Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jake D Callaghan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nancy A McNamara
- School of Optometry, University of California, Berkeley, Berkeley, California.,Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Shimada A, Ideno H, Arai Y, Komatsu K, Wada S, Yamashita T, Amizuka N, Pöschl E, Brachvogel B, Nakamura Y, Nakashima K, Mizukami H, Ezura Y, Nifuji A. Annexin A5 Involvement in Bone Overgrowth at the Enthesis. J Bone Miner Res 2018; 33:1532-1543. [PMID: 29694681 DOI: 10.1002/jbmr.3453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/08/2018] [Accepted: 08/12/2018] [Indexed: 01/12/2023]
Abstract
Little is known about the molecular mechanisms of enthesis formation in mature animals. Here, we report that annexin A5 (Anxa5) plays a critical role in the regulation of bone ridge outgrowth at the entheses. We found that Anxa5 is highly expressed in the entheses of postnatal and adult mice. In Anxa5-deficient (Anxa5-/- ) mice, the sizes of bone ridge outgrowths at the entheses of the tibias and femur were increased after age 7 weeks. Bone overgrowth was not observed at the fibrous enthesis where the fibrocartilage layer does not exist. More ALP-expressing cells were observed in the fibrocartilage layer in Anxa5-/- mice than in wild-type (WT) mice. Calcein and Alizarin Red double labeling revealed more mineralized areas in Anxa5-/- mice than WT mice. To examine the effects of mechanical forces, we performed tenotomy in which transmission of contractile forces by the tibial muscle was impaired by surgical muscle release. In tenotomized mice, bone overgrowth at the enthesis in Anxa5-/- mice was decreased to a level comparable to that in WT mice at 8 weeks after the operation. The tail-suspended mice also showed a decrease in bone overgrowth to similar levels in Anxa5-/- and WT mice at 8 weeks after hindlimb unloading. These results suggest that bone overgrowth at the enthesis requires mechanical forces. We further examined effects of Anxa5 gene knockdown (KD) in primary cultures of osteoblasts, chondrocytes, and tenocytes in vitro. Anxa5 KD increased ALP expression in tenocytes and chondrocytes but not in osteoblasts, suggesting that increased ALP activity in the fibrocartilaginous tissue in Anxa5-/- mice is directly caused by Anxa5 deletion in tenocytes or fibrocartilage cells. These data indicate that Anxa5 prevents bone overgrowth at the enthesis, whose formation is mediated through mechanical forces and modulating expression of mineralization regulators. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Akemi Shimada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hisashi Ideno
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshinori Arai
- Nihon University, School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Wada
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ernst Pöschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bent Brachvogel
- Experimental Neonatology, Department of Pediatrics and Adolescent Medicine, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroaki Mizukami
- Division of Genetics Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Leite Dantas R, Brachvogel B, Schied T, Bergmeier V, Skryabin B, Vogl T, Ludwig S, Wixler V. The LIM-Only Protein Four and a Half LIM Domain Protein 2 Attenuates Development of Psoriatic Arthritis by Blocking Adam17-Mediated Tumor Necrosis Factor Release. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2388-2398. [DOI: 10.1016/j.ajpath.2017.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
9
|
Tuck E, Estabel J, Oellrich A, Maguire AK, Adissu HA, Souter L, Siragher E, Lillistone C, Green AL, Wardle-Jones H, Carragher DM, Karp NA, Smedley D, Adams NC, Bussell JN, Adams DJ, Ramírez-Solis R, Steel KP, Galli A, White JK. A gene expression resource generated by genome-wide lacZ profiling in the mouse. Dis Model Mech 2015; 8:1467-78. [PMID: 26398943 PMCID: PMC4631787 DOI: 10.1242/dmm.021238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/10/2015] [Indexed: 01/26/2023] Open
Abstract
Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥ 21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource.
Collapse
Affiliation(s)
- Elizabeth Tuck
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jeanne Estabel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Anika Oellrich
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, Canada M5T 3H7
| | - Luke Souter
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Angela L Green
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Natasha A Karp
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Damian Smedley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Niels C Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - James N Bussell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Karen P Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
10
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|