1
|
Mate PS, Jasmin A T F, Nagpal A, Onteru SK, Rajput S, Ashutosh, Meena S. Expression and Immunolocalization of Aquaporins in the Buffalo Liver and Adipose Tissue. J Mol Histol 2024; 56:39. [PMID: 39661281 DOI: 10.1007/s10735-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
Increasing incidences of fatty liver in humans and animals worldwide is the leading cause of liver related morbidities. Currently, in the face of the growing global increase in fatty liver, and the necessity to explore new factors significantly affecting it, aquaporins (AQPs) have become the focus of interest for many researchers. AQPs are membrane integral proteins involved in the transport of water, glycerol and other small solutes. These are expressed in all tissues and play multiple roles under normal and pathophysiological conditions. Despite ongoing advancements in understanding the involvement of aquaporins in metabolic processes, there remains a notable lack of knowledge concerning cellular and subcellular localization of the AQPs in bovine tissues and organs. Understanding this could provide a new therapeutic target for metabolic syndromes such as fatty liver disease in bovine. In this study, AQPs in bovine liver, adipose tissue and gall bladder are examined using immunohistochemistry. AQP9 immunoreactivity is predominantly detected at the sinusoidal surfaces of hepatocytes. AQP8 is mostly intracellular and localized to the central vein and sinusoid, whereas AQP7 is found around the portal vein. Notably, AQP3 is observed in the bovine gall bladder and adipose tissue but not in the liver. In adipose tissue, AQP7 is also detected in the cytoplasmic membranes of adipocytes. AQPs in liver and adipose tissue were also studied using the western blotting technique. Higher AQP9 and AQP3 expression is observed in the liver and adipose tissue, respectively, indicating they are the dominant aquaporins in these tissues. This suggests they could be potential therapeutic targets for treating fatty liver disease and other metabolic disorders in bovine.
Collapse
Affiliation(s)
- Payal S Mate
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Fathima Jasmin A T
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Anju Nagpal
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Shiveeli Rajput
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sunita Meena
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Khalil M, Gena P, Di Ciaula A, Portincasa P, Calamita G. Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting. Int J Mol Sci 2024; 25:12133. [PMID: 39596202 PMCID: PMC11593884 DOI: 10.3390/ijms252212133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins permeable to water and a series of small solutes. AQPs play a key role in pathways of hepatobiliary secretion at the level of the liver, bile ducts, and gallbladder. AQP8 and -9 are pivotal in facilitating the osmotic water movement of hepatic bile, which is composed of 95% water. In the biliary tract, AQP1 and -4 are involved in the rearrangement of bile composition by mechanisms of reabsorption/secretion of water. In the gallbladder, AQP1 and -8 are also involved in trans-epithelial bidirectional water flow with the ultimate goal of bile concentration. Pathophysiologically, AQPs have been indicated as players in several hepatobiliary disorders, including cholestatic diseases and cholesterol cholelithiasis. Research on AQP function and the modulation of AQP expression is in progress, with the identification of potent and homolog-specific compounds modulating the expression or inhibiting these membrane channels with promising pharmacological developments. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to hepatobiliary function.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.K.); (A.D.C.)
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.K.); (A.D.C.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.K.); (A.D.C.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| |
Collapse
|
3
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
5
|
Hassan HM, El-Gamal R, Hamed WHE, Habotta OA, Samy M, Elmowafy R, ElNashar EM, Alghamdi MA, Aldahhan RA, Al-Khater KM, Alshehri MA, Ahmed ME. Potential role for vitamin D vs. intermittent fasting in controlling aquaporin-1 and aquaporin-3 expression in HFD-induced urinary bladder alterations in rats. Front Mol Biosci 2024; 10:1306523. [PMID: 38357327 PMCID: PMC10866000 DOI: 10.3389/fmolb.2023.1306523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.
Collapse
Affiliation(s)
- Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Human Anatomy and Embryology, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Experimental Research Centre (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa. H. E. Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University and New Mansoura University, Mansoura, Egypt
| | - Ola Ali Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mervat Samy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamed ElNashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed A. Alshehri
- Nephrology Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Magda E. Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
7
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
8
|
Li X, Yang B. Non-Transport Functions of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:65-80. [PMID: 36717487 DOI: 10.1007/978-981-19-7415-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although it has been more than 20 years since the first aquaporin was discovered, the specific functions of many aquaporins are still under investigation, because various mice lacking aquaporins have no significant phenotypes. And in many studies, the function of aquaporin is not directly related to its transport function. Therefore, this chapter will focus on some unexpected functions of aquaporins, such the decreased tumor angiogenesis in AQP1 knockout mice, and AQP1 promotes cell migration, possibly by accelerating the water transport in lamellipodia of migrating cells. AQP transports glycerol, and water regulates glycerol content in epidermis and fat, thereby regulating skin hydration/biosynthesis and fat metabolism. AQPs may also be involved in neural signal transduction, cell volume regulation, and organelle physiology. AQP1, AQP3, and AQP5 are also involved in cell proliferation. In addition, AQPs have also been reported to play roles in inflammation in various tissues and organs. The functions of these AQPs may not depend on the permeability of small molecules such as water and glycerol, suggesting AQPs may play more roles in different biological processes in the body.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Liao M, Yu W, Xie Q, Zhang L, Pan Q, Zhao N, Li L, Cheng Y, Zhang X, Sun D, Chai J. Hepatic Aquaporin 10 Expression Is Downregulated by Activated NFκB Signaling in Human Obstructive Cholestasis. GASTRO HEP ADVANCES 2022; 2:412-423. [PMID: 39132646 PMCID: PMC11307722 DOI: 10.1016/j.gastha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2022] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS Recent studies reported that the hepatic expression of AQP8 and AQP9 was downregulated in bile duct-ligated (BDL) rats and that overexpression of human AQP1 in the rat liver attenuated cholestasis. However, the hepatic expression of AQP10 and its regulatory mechanism in human cholestasis remain unclear. METHODS Serum and liver samples were collected from 34 patients with obstructive cholestasis and from 12 control patients. Eight-week-old male C57BL/6J mice were intravenously injected with an adeno-associated virus 8 (AAV8) encoding human AQP10 driven by a hepatocyte-specific Alb promotor (AAV8-Alb promotor-hAQP10) for functional studies. Constructs of the AQP10 promoter and PLC/PRF/5-ASBT cell lines were used for regulatory mechanism studies. RESULTS AQP10 was significantly downregulated in patients with obstructive cholestasis and negatively associated with the serum levels of total bile acid (TBA). The hepatocyte-specific overexpression of hAQP10 significantly attenuated the cholestatic liver injury and intrahepatic bile acids (BA) accumulation in BDL mice. Conjugated BAs, such as TCA and inflammatory factor TNFα, significantly repressed AQP10 expression. Furthermore, NFκB p65/p50 directly bound to the AQP10 promotor and decreased its activity in PLC/RPF/5-ASBT cells and in the livers of patients with obstructive cholestasis. However, these changes were diminished by BAY 11-7082 (a specific inhibitor of NFκB signaling). CONCLUSION We are the first to report that AQP10 was significantly decreased in patients with obstructive cholestasis. AQP10 overexpression significantly attenuated cholestatic liver injury in BDL mice. Therefore, overexpression of hAQP10 in the liver may be a valuable strategy for cholestasis intervention.
Collapse
Affiliation(s)
- Min Liao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenjing Yu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Marine College, Shandong University, Weihai, China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Cheng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Dequn Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Centrone M, D’Agostino M, Ranieri M, Mola MG, Faviana P, Lippolis PV, Silvestris DA, Venneri M, Di Mise A, Valenti G, Tamma G. dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells. Front Cell Dev Biol 2022; 10:919438. [PMID: 35874817 PMCID: PMC9304624 DOI: 10.3389/fcell.2022.919438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D’Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | | | | | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Grazia Tamma,
| |
Collapse
|
11
|
Zhao D, Yu S, Guo P, Zhang X, Tang Y, Dong C, Zhao S, Li L, Al‐Dhamin Z, Ai R, Xue N, Dong S, Nan Y. Identification of potential plasma markers for hepatitis B virus related chronic hepatitis and liver fibrosis/cirrhosis. J Med Virol 2022; 94:3900-3910. [PMID: 35420168 DOI: 10.1002/jmv.27761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Dandan Zhao
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Songhao Yu
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Peilin Guo
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Xiaoxiao Zhang
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Yuhui Tang
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Chen Dong
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Suxian Zhao
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Lu Li
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Zaid Al‐Dhamin
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Rong Ai
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Ningning Xue
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Shiming Dong
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| | - Yuemin Nan
- Department of Traditional and Western Medical HepatologyThird Hospital of Hebei Medical University050051ShijiazhuangChina
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver DiseasesChina
| |
Collapse
|
12
|
Wang Z, Cheng Y, Su W, Zhang H, Li C, Routledge MN, Gong Y, Qiao B. Organ Specific Differences in Alteration of Aquaporin Expression in Rats Treated with Sennoside A, Senna Anthraquinones and Rhubarb Anthraquinones. Int J Mol Sci 2021; 22:ijms22158026. [PMID: 34360801 PMCID: PMC8347161 DOI: 10.3390/ijms22158026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Senna and rhubarb are often used as routine laxatives, but there are differences in mechanism of action and potential side effects. Here, we studied metabolites of senna anthraquinones (SAQ), rhubarb anthraquinones (RAQ) and their chemical marker, sennoside A (SA), in a rat diarrhea model. In in vitro biotransformation experiments, SAQ, RAQ and SA were incubated with rat fecal flora solution and the metabolites produced were analyzed using HPLC. In in vivo studies, the same compounds were investigated for purgation induction, with measurement of histopathology and Aqps gene expression in six organs. The results indicated that SAQ and RAQ had similar principal constituents but could be degraded into different metabolites. A similar profile of Aqps down-regulation for all compounds was seen in the colon, suggesting a similar mechanism of action for purgation. However, in the kidneys and livers of the diarrhea-rats, down-regulation of Aqps was found in the RAQ-rats whereas up-regulation of Aqps was seen in the SAQ-rats. Furthermore, the RAQ-rats showed lower Aqp2 protein expression in the kidneys, whilst the SA-rats and SAQ-rats had higher Aqp2 protein expression in the kidneys. This may have implications for side effects of SAQ or RAQ in patients with chronic kidney or liver diseases.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Ying Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Wenting Su
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Hongxia Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Chu Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Michael N. Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (M.N.R.); (B.Q.)
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
- Correspondence: (M.N.R.); (B.Q.)
| |
Collapse
|
13
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Ciurea AM, Vere CC, Popp CG, Streba CT, Caliţa M, Pirici D, Cercelaru L, Schenker M, Gheonea DI, Pirici I. E-cadherin and aquaporin 1 co-expression analysis in hepatocellular carcinoma: a pilot study. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:427-434. [PMID: 35024730 PMCID: PMC8848220 DOI: 10.47162/rjme.62.2.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the main primary liver malignancy, being associated with both health and economic burden worldwide. Recently, novel molecular markers and possible therapeutic targets were identified. Different adhesion molecules, as well as possible angiogenesis-associated targets can be prime candidates when investigating novel therapies. Considering these premises, our goal was to study the co-existence of E-cadherin and aquaporin 1 (AQP1) in a series of HCC diagnosed patients. Utilizing archived tissue fragments from 17 patients diagnosed with well-to-moderate and poorly differentiated HCC, as well as four samples of normal liver tissue and using a highly specific biotin-free tyramide amplification technique, we have assessed here the expression of E-cadherin and AQP1 during HCC carcinogenesis. Moreover, as we have observed that some of the AQP1 expression seems membrane-bound, we have sought to evaluate their co-localization. Our data showed, as expected, that E-cadherin decreases from control tissue to low-grade and respectively, high-grade HCC. AQP1 was expressed, also as already known, at the level of endothelial blood vessels and bile ducts epithelia, however, we have showed here for the first time that this water pore is also expressed in the cytoplasm and membranes of hepatocytes, both in control and HCC tissue. Moreover, AQP1 expression parallels the decrease of E-cadherin expression during carcinogenesis, but together with this downregulation, we have also found a spatial decrease in the colocalization of the two proteins. Altogether, utilizing a biotin-free tyramide signal amplification technique, this study shows for the first time that AQP1 is expressed at the level of liver epithelia, in both control and HCC tissue.
Collapse
Affiliation(s)
- Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristin Constantin Vere
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Costin Teodor Streba
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, Romania
| | - Mihaela Caliţa
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - Liliana Cercelaru
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dan Ionuţ Gheonea
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionica Pirici
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
15
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
16
|
Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020; 11:5666. [PMID: 33168815 PMCID: PMC7653938 DOI: 10.1038/s41467-020-19491-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporin 3 (AQP3) is a transporter of water, glycerol and hydrogen peroxide (H2O2) that is expressed in various epithelial cells and in macrophages. Here, we developed an anti-AQP3 monoclonal antibody (mAb) that inhibited AQP3-facilitated H2O2 and glycerol transport, and prevented liver injury in experimental animal models. Using AQP3 knockout mice in a model of liver injury and fibrosis produced by CCl4, we obtained evidence for involvement of AQP3 expression in nuclear factor-κB (NF-κB) cell signaling, hepatic oxidative stress and inflammation in macrophages during liver injury. The activated macrophages caused stellate cell activation, leading to liver injury, by a mechanism involving AQP3-mediated H2O2 transport. Administration of an anti-AQP3 mAb, which targeted an extracellular epitope on AQP3, prevented liver injury by inhibition of AQP3-mediated H2O2 transport and macrophage activation. These findings implicate the involvement of macrophage AQP3 in liver injury, and provide evidence for mAb inhibition of AQP3-mediated H2O2 transport as therapy for macrophage-dependent liver injury.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Posfai D, Maher SP, Roesch C, Vantaux A, Sylvester K, Péneau J, Popovici J, Kyle DE, Witkowski B, Derbyshire ER. Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. Cell Chem Biol 2020; 27:719-727.e5. [PMID: 32330444 PMCID: PMC7303948 DOI: 10.1016/j.chembiol.2020.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Plasmodium vivax infects hepatocytes to form schizonts that cause blood infection, or dormant hypnozoites that can persist for months in the liver before leading to relapsing blood infections. The molecular processes that drive P. vivax schizont and hypnozoite survival remain largely unknown, but they likely involve a rich network of host-pathogen interactions, including those occurring at the host-parasite interface, the parasitophorous vacuole membrane (PVM). Using a recently developed P. vivax liver-stage model system we demonstrate that host aquaporin-3 (AQP3) localizes to the PVM of schizonts and hypnozoites within 5 days after invasion. This recruitment is also observed in P. vivax-infected reticulocytes. Chemical treatment with the AQP3 inhibitor auphen reduces P. vivax liver hypnozoite and schizont burden, and inhibits P. vivax asexual blood-stage growth. These findings reveal a role for AQP3 in P. vivax liver and blood stages and suggest that the protein may be targeted for therapeutic treatment. Host aquaporin-3 (AQP3) is recruited to P. vivax hypnozoites and schizonts The AQP3 inhibitor auphen inhibits P. vivax hypnozoites and schizonts Host AQP3 is recruited to P. vivax-infected erythrocytes derived from patient samples Auphen inhibits blood stages of clinical P. vivax isolates
Collapse
Affiliation(s)
- Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr, ste 370, Athens, GE 30602, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr, ste 370, Athens, GE 30602, USA
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia.
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA; Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Stroke among Patients with Hypertension. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9358290. [PMID: 32309443 PMCID: PMC7136773 DOI: 10.1155/2020/9358290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
Background Dysregulations of AQP7 and AQP9 were found to be related to lipid metabolism abnormality, which had been proven to be one of the mechanisms of stroke. However, limited epidemiological studies explore the associations between AQP7 and AQP9 and the risk of stroke among patients with hypertension in China. Aims We aimed to investigate the associations between genetic variants in AQP7 and AQP9 and the risk of stroke among patients with hypertension, as well as to explore gene-gene and gene-environment interactions. Methods Baseline blood samples were drawn from 211 cases with stroke and 633 matched controls. Genomic DNA was extracted by a commercially available kit. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs2542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results Participants with the rs2989924 GG genotype were found to be with a 1.74-fold increased risk of stroke compared to those with the AA+AG genotype, and this association remained significant after adjustment for potential confounders (odds ratio (OR): 1.74, 95% confidence interval (CI): 1.23-2.46). The SNP rs3758269 CC+TT genotype was found to be with a 33% decreased risk of stroke after multivariate adjustment (OR: 0.67, 95% CI: 0.45-0.99) compared to the rs3758269 CC genotype. The significantly increased risk of stroke was prominent among males, patients aged 60 or above, and participants who were overweight and with a harbored genetic variant in SNP rs2989924. After adjusting potential confounders, the SNP rs3758269 CT+TT genotype was found to be significantly associated with a decreased risk of stroke compared to the CC genotype among participants younger than 60 years old or overweight. No statistically significant associations were observed between genotypes of rs2542743, rs57139208, or rs16939881 with the risk of stroke. Neither interactions nor linkage disequilibrium had been observed in this study. Conclusions This study suggests that SNPs rs2989924 and rs3758269 are associated with the risk of stroke among patients with hypertension, while there were no statistically significant associations between rs2542743, rs57139208, and rs16939881 and the risk of stroke being observed.
Collapse
|
19
|
Xu W, Chen S, Zhong G, Liu H, Xiu L, Yu X, Chen F, Li N, Lv Y. Effects of a combination of Japanese Raisin Tree Seed and Flower of Lobed Kudzuvine against acute alcohol-induced liver injury in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
20
|
LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology 2019; 534:87-95. [PMID: 31220652 DOI: 10.1016/j.virol.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a unique type of gastric carcinomas that promoter hypermethylation of tumor-related genes is extremely frequent to be found. Aquaporin 3 (AQP3) is a small membrane transport protein that plays a crucial role in cancer progression and metastasis. However, there is no experimental study on the expression of AQP3 in EBVaGC and the regulation mechanism of EBV on AQP3. In this study, the loss of AQP3 was contributed by the hypermethylation status of AQP3 promoter in EBVaGC which was caused by elevated expression of DNMT3a. In addition, stable and transient transfection system in SGC7901 showed that viral latent membrane protein 2A (LMP2A) activated phosphorylated ERK and up-regulated DNMT3a. Taken together, LMP2A induced the phosphorylation of ERK, which activated DNMT3a transcription and caused AQP3 expression loss through CpG island methylation of AQP3 promoter in EBVaGC.
Collapse
|
21
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
22
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
23
|
Investigate of AQP gene expression in the liver of mice after ischemia–reperfusion. Mol Biol Rep 2018; 45:1769-1774. [DOI: 10.1007/s11033-018-4320-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
|
24
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
26
|
da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci 2018; 75:1973-1988. [PMID: 29464285 PMCID: PMC11105723 DOI: 10.1007/s00018-018-2781-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Porto, Portugal
| | - Joana P G Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
27
|
Posfai D, Sylvester K, Reddy A, Ganley JG, Wirth J, Cullen QE, Dave T, Kato N, Dave SS, Derbyshire ER. Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection. PLoS Pathog 2018; 14:e1007057. [PMID: 29775485 PMCID: PMC5979039 DOI: 10.1371/journal.ppat.1007057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/31/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Within the liver a single Plasmodium parasite transforms into thousands of blood-infective forms to cause malaria. Here, we use RNA-sequencing to identify host genes that are upregulated upon Plasmodium berghei infection of hepatocytes with the hypothesis that host pathways are hijacked to benefit parasite development. We found that expression of aquaporin-3 (AQP3), a water and glycerol channel, is significantly induced in Plasmodium-infected hepatocytes compared to uninfected cells. This aquaglyceroporin localizes to the parasitophorous vacuole membrane, the compartmental interface between the host and pathogen, with a temporal pattern that correlates with the parasite’s expansion in the liver. Depletion or elimination of host AQP3 expression significantly reduces P. berghei parasite burden during the liver stage and chemical disruption by a known AQP3 inhibitor, auphen, reduces P. falciparum asexual blood stage and P. berghei liver stage parasite load. Further use of this inhibitor as a chemical probe suggests that AQP3-mediated nutrient transport is an important function for parasite development. This study reveals a previously unknown potential route for host-dependent nutrient acquisition by Plasmodium which was discovered by mapping the transcriptional changes that occur in hepatocytes throughout P. berghei infection. The dataset reported may be leveraged to identify additional host factors that are essential for Plasmodium liver stage infection and highlights Plasmodium’s dependence on host factors within hepatocytes. Plasmodium parasites undergo an obligatory morphogenesis and replication within the liver before they invade red blood cells and cause malaria. The liver stage is clinically silent but essential for the Plasmodium parasite to complete its life cycle. During this time, the parasite relies on the host cell to support a massive replication event, yet host factors that are critical to this expansion are largely unknown. We identify human aquaporin-3 (AQP3), a water and glycerol channel, as essential for the proper development of the parasite within the liver cell. AQP3 localizes to the parasitophorous vacuole membrane, the interface between the host cytoplasm and the parasite, possibly aiding in the nutritional uptake for the parasite. Genetic disruption or treatment with the AQP3 inhibitor auphen, reduces parasite load in liver and blood cells.
Collapse
Affiliation(s)
- Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
| | - Anupama Reddy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jack G. Ganley
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Johannes Wirth
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Quinlan E. Cullen
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Tushar Dave
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nobutaka Kato
- The Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, United States of America
| | - Sandeep S. Dave
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Emily R. Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Iena FM, Lebeck J. Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19010154. [PMID: 29300344 PMCID: PMC5796103 DOI: 10.3390/ijms19010154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
The aquaglyceroporin AQP7 is a pore-forming transmembrane protein that facilitates the transport of glycerol across cell membranes. Glycerol is utilized both in carbohydrate and lipid metabolism. It is primarily stored in white adipose tissue as part of the triglyceride molecules. During states with increased lipolysis, such as fasting and diabetes, glycerol is released from adipose tissue and metabolized in other tissues. AQP7 is expressed in adipose tissue where it facilitates the efflux of glycerol, and AQP7 deficiency has been linked to increased glycerol kinase activity and triglyceride accumulation in adipose tissue, leading to obesity and secondary development of insulin resistance. However, AQP7 is also expressed in a wide range of other tissues, including kidney, muscle, pancreatic β-cells and liver, where AQP7 also holds the potential to influence whole body energy metabolism. The aim of the review is to summarize the current knowledge on AQP7 in adipose tissue, as well as AQP7 expressed in other tissues where AQP7 might play a significant role in modulating whole body energy metabolism.
Collapse
Affiliation(s)
- Francesco Maria Iena
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
29
|
Abstract
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Collapse
|
30
|
Abstract
Aquaporins (AQPs ) are expressed in most exocrine and endocrine secretory glands. Consequently, summarizing the expression and functions of AQPs in secretory glands represents a daunting task considering the important number of glands present in the body, as well as the number of mammalian AQPs - thirteen. The roles played by AQPs in secretory processes have been investigated in many secretory glands. However, despite considerable research, additional studies are clearly needed to pursue our understanding of the role played by AQPs in secretory processes. This book chapter will focus on summarizing the current knowledge on AQPs expression and function in the gastrointestinal tract , including salivary glands, gastric glands, Duodenal Brunner's gland, liver and gallbladder, intestinal goblets cells, exocrine and endocrine pancreas, as well as few other secretory glands including airway submucosal glands, lacrimal glands, mammary glands and eccrine sweat glands.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
31
|
Tie L, Wang D, Shi Y, Li X. Aquaporins in Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:105-113. [PMID: 28258568 DOI: 10.1007/978-94-024-1057-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Di Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yundi Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
32
|
Gena P, Buono ND, D'Abbicco M, Mastrodonato M, Berardi M, Svelto M, Lopez L, Calamita G. Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. Eur J Cell Biol 2016; 96:61-69. [PMID: 28049557 DOI: 10.1016/j.ejcb.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Liver is crucial in the homeostasis of glycerol, an important metabolic intermediate. Plasma glycerol is imported by hepatocytes mainly through Aquaporin-9 (AQP9), an aquaglyceroporin channel negatively regulated by insulin in rodents. AQP9 is of critical importance in glycerol metabolism since hepatic glycerol utilization is rate-limited at the hepatocyte membrane permeation step. Glycerol kinase catalyzes the initial step for the conversion of the imported glycerol into glycerol-3-phosphate, a major substrate for de novo synthesis of glucose (gluconeogenesis) and/or triacyglycerols (lipogenesis). A model addressing the glucose-insulin system to describe the hepatic glycerol import and metabolism and the correlation with the glucose homeostasis is lacking so far. Here we consider a system of first-order ordinary differential equations delineating the relevance of hepatocyte AQP9 in liver glycerol permeability. Assuming the hepatic glycerol permeability as depending on the protein levels of AQP9, a mathematical function is designed describing the time course of the involvement of AQP9 in mouse hepatic glycerol metabolism in different nutritional states. The resulting theoretical relationship is derived fitting experimental data obtained with murine models at the fed, fasted or re-fed condition. While providing useful insights into the dynamics of liver AQP9 involvement in male rodent glycerol homeostasis our model may be adapted to the human liver serving as an important module of a whole body-model of the glucose metabolism both in health and metabolic diseases.
Collapse
Affiliation(s)
- Patrizia Gena
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Nicoletta Del Buono
- Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Marcello D'Abbicco
- Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Maria Mastrodonato
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Marco Berardi
- Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche (CNR), via De Blasio, 5-70132 Bari, Italy
| | - Maria Svelto
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Luciano Lopez
- Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy
| | - Giuseppe Calamita
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona, 4-70125 Bari, Italy.
| |
Collapse
|
33
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
34
|
Pelagalli A, Squillacioti C, Mirabella N, Meli R. Aquaporins in Health and Disease: An Overview Focusing on the Gut of Different Species. Int J Mol Sci 2016; 17:1213. [PMID: 27472320 PMCID: PMC5000611 DOI: 10.3390/ijms17081213] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
35
|
Zhang WG, Li CF, Liu M, Chen XF, Shuai K, Kong X, Lv L, Mei ZC. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett 2016; 378:111-9. [PMID: 27216981 DOI: 10.1016/j.canlet.2016.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Aquaporin 9 (AQP9) is the main aquaglyceroporin in the liver. Few studies have been performed regarding the role of AQP9 in hepatocellular carcinoma (HCC). Here, we report the expression and function of AQP9 in HCC tissues and cell lines. We found that AQP9 mRNA and protein levels were down-regulated in HCC tissues and human hepatoma cell lines compared to the para-cancer normal liver tissues and normal hepatocyte line, respectively. In a human HCC SMMC-7721 cell line, over-expression of AQP9 suppressed cell invasion in vitro and xenograft tumor growth in vivo. AQP9 over-expression increased the expression of E-cadherin and decreased the expression of N-cadherin in SMMC-7721 cells and xenografted tumors, which was correlated with decreased levels of phosphoinositide 3-kinase (PI3K) and p-Akt. Conversely, using siRNA to knock down AQP9 over-expression could reverse the phenotype caused by AQP9 over-expression. Our findings suggest that AQP9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Wen-Guang Zhang
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Chuan-Fei Li
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Min Liu
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xiao-Feng Chen
- The First Branch of the First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Kai Shuai
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xin Kong
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zhe-Chuan Mei
- Department of Gastroenterology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
36
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|