1
|
Jing Y, Zhai J, Gao M, Xu X, Zhao ZG, Zhao ZA. Different Transcriptome Signatures of the Lymphatic and the Blood Vessels From Rat Mesentery Reveal Distinct Function Characteristics. Microcirculation 2025; 32:e70003. [PMID: 39945040 DOI: 10.1111/micc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Lymphatic vessels and blood vessels have some similarities in structure, but they have distinct contraction characteristics and functions. Revealing the detailed transcriptional differences of lymphatic, artery and vein are required for circulation research. METHODS The tissues of the mesenteric lymphatic, artery, and vein were collected from Wistar rats. The transcriptome signatures of these tissues from RNA-seq (RNA sequencing) were analyzed using bioinformatic methods. RESULTS GO (gene ontology) enrichment showed the three tissues have distinct gene expression patterns in extracellular matrix, cell adhesion molecule binding, receptor ligand activity, and contractile fiber. The genes involved in cell contractility were also differently expressed, which were enriched into the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of cytoskeleton in muscle cells, vascular smooth muscle contraction, and renin-angiotensin system. Through PPI (protein-protein interaction) analysis, we identified 43 differently expressed hub genes in the three tissues. Thirty-four transcription factors and cofactors were identified as important for the normal function of the three tissues. Furthermore, we screened out 20 potential marker genes for each tissue. CONCLUSIONS Our study described the transcriptome signatures of mesenteric lymphatic, artery, and vein, shedding light on the distinct contraction mechanisms of these tissues. These results also provided potential therapeutic targets for circulation diseases and potential markers for lymphatic and blood vessel studies.
Collapse
Affiliation(s)
- Yumeng Jing
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiayi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Yanqing District Hospital, Beijing and Yanqing Hospital, Peking University Third Hospital, Beijing, China
| | - Min Gao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Xiu Xu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| |
Collapse
|
2
|
Liu Z, Zhang C, Hao J, Chen G, Liu L, Xiong Y, Chang Y, Li H, Shimosawa T, Yang F, Xu Q. Eplerenone ameliorates lung fibrosis in unilateral ureteral obstruction rats by inhibiting lymphangiogenesis. Exp Ther Med 2022; 24:623. [PMID: 36160894 PMCID: PMC9468786 DOI: 10.3892/etm.2022.11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD) involves progressive and irreversible loss of renal function, often causing complications and comorbidities and impairing the function of various organs. In particular, lung injury is observed not only in advanced CKD but also in early-stage CKD. The present study investigated the potential involvement of mineralocorticoid receptors (MRs) and lymphatic vessels in lung injury using a 180-day unilateral ureteral obstruction (UUO) model for CKD. Changes in lung associated with lymphangiogenesis and inflammatory were analyzed in UUO rats. The pathology of the lung tissue was observed by hematoxylin and eosin and Masson's staining. Detection of the expression of lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), Podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3) and VEGF C to investigate lymphangiogenesis. The mRNA and protein expression levels of IL-1β, monocyte chemotactic protein 1, tumor necrosis factor-α, nuclear factor κB, phosphorylated serum and glucocorticoid-induced protein kinase-1 and MR were evaluated using western blot, reverse transcription-quantitative PCR, immunohistochemical staining and immunofluorescence staining. In the present study, long-term UUO caused kidney damage, which also led to lung inflammation, accompanied by lymphangiogenesis. However, treatment with eplerenone, an MR blocker, significantly reduced the severity of lung injury and lymphangiogenesis. Therefore, lymphangiogenesis contributed to lung fibrosis in UUO rats due to activation of MRs. In addition, transdifferentiation of lymphatic epithelial cells into myofibroblasts may also be involved in lung fibrosis. Collectively, these findings provided a potential mechanism for lung fibrosis in CKD and suggested that the use of eplerenone decreased kidney damage and lung fibrosis.
Collapse
Affiliation(s)
- Ziqian Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Gege Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Lingjin Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Hui Li
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba 108‑8329, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
3
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
5
|
Lymphatic Endothelial Cell Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:87-105. [PMID: 32040857 DOI: 10.1007/978-3-030-37184-5_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor lymphatics play a key role in cancer progression as they are solely responsible for transporting malignant cells to regional lymph nodes (LNs), a process that precedes and promotes systemic lethal spread. It is broadly accepted that tumor lymphatic sprouting is induced mainly by soluble factors derived from tumor-associated macrophages (TAMs) and malignant cells. However, emerging evidence strongly suggests that a subset of TAMs, myeloid-lymphatic endothelial cell progenitors (M-LECP), also contribute to the expansion of lymphatics through both secretion of paracrine factors and a self-autonomous mode. M-LECP are derived from bone marrow (BM) precursors of the monocyte-macrophage lineage and characterized by unique co-expression of markers identifying lymphatic endothelial cells (LEC), stem cells, M2-type macrophages, and myeloid-derived immunosuppressive cells. This review describes current evidence for the origin of M-LECP in the bone marrow, their recruitment tumors and intratumoral trafficking, similarities to other TAM subsets, and mechanisms promoting tumor lymphatics. We also describe M-LECP integration into preexisting lymphatic vessels and discuss potential mechanisms and significance of this event. We conclude that improved mechanistic understanding of M-LECP functions within the tumor environment may lead to new therapeutic approaches to suppress tumor lymphangiogenesis and metastasis to lymph nodes.
Collapse
|
6
|
Ran S, Wilber A. Novel role of immature myeloid cells in formation of new lymphatic vessels associated with inflammation and tumors. J Leukoc Biol 2017; 102:253-263. [PMID: 28408396 DOI: 10.1189/jlb.1mr1016-434rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggers an immune cell-driven program committed to restoring homeostasis to injured tissue. Central to this process is vasculature restoration, which includes both blood and lymphatic networks. Generation of new vessels or remodeling of existing vessels are also important steps in metastasis-the major cause of death for cancer patients. Although roles of the lymphatic system in regulation of inflammation and cancer metastasis are firmly established, the mechanisms underlying the formation of new lymphatic vessels remain a subject of debate. Until recently, generation of new lymphatics in adults was thought to occur exclusively through sprouting of existing vessels without help from recruited progenitors. However, emerging findings from clinical and experimental studies show that lymphoendothelial progenitors, particularly those derived from immature myeloid cells, play an important role in this process. This review summarizes current evidence for the existence and significant roles of myeloid-derived lymphatic endothelial cell progenitors (M-LECPs) in generation of new lymphatics. We describe specific markers of M-LECPs and discuss their biologic behavior in culture and in vivo, as well as currently known molecular mechanisms of myeloid-lymphatic transition (MLT). We also discuss the implications of M-LECPs for promoting adaptive immunity, as well as cancer metastasis. We conclude that improved mechanistic understanding of M-LECP differentiation and its role in adult lymphangiogenesis may lead to new therapeutic approaches for correcting lymphatic insufficiency or excessive formation of lymphatic vessels in human disorders.
Collapse
Affiliation(s)
- Sophia Ran
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, and Simmons Cancer Institute, Springfield, Illinois, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, and Simmons Cancer Institute, Springfield, Illinois, USA
| |
Collapse
|
7
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2017; 147:303-305. [PMID: 28247029 DOI: 10.1007/s00418-017-1541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, The University of Vermont College of Medicine, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
8
|
Ulvmar MH, Mäkinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res 2016; 111:310-21. [PMID: 27357637 PMCID: PMC4996263 DOI: 10.1093/cvr/cvw175] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin.
Collapse
Affiliation(s)
- Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| |
Collapse
|