1
|
Tripathi D, Hardaniya M, Pande S, Maity D. Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging. J Imaging 2025; 11:87. [PMID: 40137199 PMCID: PMC11942650 DOI: 10.3390/jimaging11030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Optical imaging is an excellent non-invasive method for viewing visceral organs. Most importantly, it is safer as compared to ionizing radiation-based methods like X-rays. By making use of the properties of photons, this technique generates high-resolution images of cells, molecules, organs, and tissues using visible, ultraviolet, and infrared light. Moreover, optical imaging enables real-time evaluation of soft tissue properties, metabolic alterations, and early disease markers in real time by utilizing a variety of techniques, including fluorescence and bioluminescence. Innovative biocompatible fluorescent probes that may provide disease-specific optical signals are being used to improve diagnostic capabilities in a variety of clinical applications. However, despite these promising advancements, several challenges remain unresolved. The primary obstacle includes the difficulty of developing efficient fluorescent probes, and the tissue autofluorescence, which complicates signal detection. Furthermore, the depth penetration restrictions of several imaging modalities limit their use in imaging of deeper tissues. Additionally, enhancing biocompatibility, boosting fluorescent probe signal-to-noise ratios, and utilizing cutting-edge imaging technologies like machine learning for better image processing should be the main goals of future research. Overcoming these challenges and establishing optical imaging as a fundamental component of modern medical diagnoses and therapeutic treatments would require cooperation between scientists, physicians, and regulatory bodies.
Collapse
Affiliation(s)
- Divya Tripathi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mayurakshi Hardaniya
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Suchita Pande
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Jacob A, Xu HN, Stout AL, Li LZ. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210375GR. [PMID: 35945669 PMCID: PMC9360498 DOI: 10.1117/1.jbo.27.8.086001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Stratification of malignancy is valuable for cancer treatment. Both optical redox imaging (ORI) indices and nuclear-to-cytoplasmic volume/area ratio (N:C ratio) have been investigated to differentiate between cancers with varying aggressiveness, but these two methods have not been directly compared. The redox status in the cell nucleus has not been studied by ORI, and it remains unknown whether nuclear ORI indices add new biological information. AIM We sought to compare the capacity of whole-cell and subcellular ORI indices and N:C ratio to differentiate between breast cancer subtypes with varying aggressiveness and between mitotic and nonmitotic cells. APPROACH ORI indices for whole cell, cytoplasm, and nucleus as well as the N:C area ratio were generated for two triple-negative (more aggressive) and two receptor-positive (less aggressive) breast cancer cell lines by fluorescence microscopy. RESULTS We found positive correlations between nuclear and cytoplasmic ORI indices within individual cells. On average, a nuclear redox status was found to be more oxidized than cytoplasm in triple-negative cells but not in receptor-positive cells. Whole-cell and subcellular ORI indices distinguished between the receptor statuses better than the N:C ratio. However, N:C ratio was a better differentiator between nonmitotic and mitotic triple-negative cells. CONCLUSIONS Subcellular ORI analysis differentiates breast cancer subtypes with varying aggressiveness better than N:C area ratio.
Collapse
Affiliation(s)
- Annemarie Jacob
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
| | - He N. Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| | - Andrea L. Stout
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States
| | - Lin Z. Li
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Montero Llopis P, Senft RA, Ross-Elliott TJ, Stephansky R, Keeley DP, Koshar P, Marqués G, Gao YS, Carlson BR, Pengo T, Sanders MA, Cameron LA, Itano MS. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat Methods 2021; 18:1463-1476. [PMID: 34099930 DOI: 10.1038/s41592-021-01156-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.
Collapse
Affiliation(s)
| | - Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel P Keeley
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Preman Koshar
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermo Marqués
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Ya-Sheng Gao
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mark A Sanders
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A Cameron
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Hammer M, Huisman M, Rigano A, Boehm U, Chambers JJ, Gaudreault N, North AJ, Pimentel JA, Sudar D, Bajcsy P, Brown CM, Corbett AD, Faklaris O, Lacoste J, Laude A, Nelson G, Nitschke R, Farzam F, Smith CS, Grunwald D, Strambio-De-Castillia C. Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nat Methods 2021; 18:1427-1440. [PMID: 34862501 PMCID: PMC9271325 DOI: 10.1038/s41592-021-01327-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rigorous record-keeping and quality control are required to ensure the quality, reproducibility and value of imaging data. The 4DN Initiative and BINA here propose light Microscopy Metadata specifications that extend the OME data model, scale with experimental intent and complexity, and make it possible for scientists to create comprehensive records of imaging experiments.
Collapse
Affiliation(s)
- Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Ulrike Boehm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Jaime A Pimentel
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, OR, USA
| | - Peter Bajcsy
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | | | - Orestis Faklaris
- MRI, BCM, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Alex Laude
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Farzin Farzam
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Carlas S Smith
- Delft Center for Systems and Control and Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
5
|
Ladouceur AM, Brown CM. Fluorescence Microscopy Light Source Review. Curr Protoc 2021; 1:e243. [PMID: 34516049 DOI: 10.1002/cpz1.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional arc-based light sources and Light Emitting Diodes (LEDs) are described, and the pros and cons of these sources with respect to fluorescence microscopy are discussed. For multi-color applications, arc-based light sources offer white light ranging from the ultraviolet (UV) to the infrared (IR), while LEDs come in a range of colors spanning the same wavelengths. The power of traditional arc-based sources is controlled with neutral density (ND) filters, reducing power across the entire range of wavelengths, while LED-based sources can be controlled directly by modulating current passing through the electronics. Similarly, arc-based sources use physical shutters to control sample exposure to light in a range of tens to hundreds of milliseconds (ms), while LEDs can be turned ON/OFF electronically in <1 ms. The complexity of comparing and measuring light power on the sample, due to normalization of available light source spectra and complex power measurements, is discussed. The superiority of LEDs for stability of light power output is covered. Direct coupling of light sources to the microscope is more cost effective and leads to higher available light power. Various options for setting up multi-color imaging, including high-speed imaging with multiple LEDs and a triple cube, are described. A brief introduction to lasers, with suggested further reading, is included in this article. Finally, the smaller environmental footprint of LEDs relative to arc-based light sources is highlighted. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anne-Marie Ladouceur
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Lin SE, Jheng DY, Hsu KY, Liu YR, Huang WH, Lee HC, Tsai CC. Rapid pseudo-H&E imaging using a fluorescence-inbuilt optical coherence microscopic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:5139-5158. [PMID: 34513247 PMCID: PMC8407814 DOI: 10.1364/boe.431586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.
Collapse
Affiliation(s)
- Sey-En Lin
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital (Built and operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Dong-Yo Jheng
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Kuang-Yu Hsu
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Tsai
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| |
Collapse
|
7
|
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. MICROMACHINES 2021; 12:mi12030345. [PMID: 33807031 PMCID: PMC8004903 DOI: 10.3390/mi12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
High-throughput microflow cytometry has become a focal point of research in recent years. In particular, droplet microflow cytometry (DMFC) enables the analysis of cells reacting to different stimuli in chemical isolation due to each droplet acting as an isolated microreactor. Furthermore, at high flow rates, the droplets allow massive parallelization, further increasing the throughput of droplets. However, this novel methodology poses unique challenges related to commonly used fluorometry and fluorescent microscopy techniques. We review the optical sensor technology and light sources applicable to DMFC, as well as analyze the challenges and advantages of each option, primarily focusing on electronics. An analysis of low-cost and/or sufficiently compact systems that can be incorporated into portable devices is also presented.
Collapse
Affiliation(s)
- Kaiser Pärnamets
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
- Correspondence:
| | - Tamas Pardy
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Yannick Le Moullec
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Fariha Afrin
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| |
Collapse
|
8
|
In focus in HCB. Histochem Cell Biol 2019; 151:279-281. [PMID: 30879135 DOI: 10.1007/s00418-019-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|