1
|
Siddique A, Rasool K. Non-carcinogenic health risks assessment of bioaerosols .. MethodsX 2025; 14:103088. [PMID: 39741892 PMCID: PMC11683212 DOI: 10.1016/j.mex.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Bioaerosols, pose potential health risks, yet quantitative assessments of non-carcinogenic risks from bioaerosol inhalation are limited. This study introduces a novel approach for assessing non-carcinogenic health risks using bioaerosol exposure data. The method employs the Average Daily Dose and Hazard Quotient (HQ) metrics, adapted from US Environmental Protection Agency guidelines, with the Reference Dose (RfD) based on thresholds from the National Institute of Occupational Safety and Health and the American Conference of Governmental Industrial Hygienists. This study utilizes a time-weighted approach, considering age-specific inhalation rates and body weights, to enhance the precision of lifetime exposure assessments. This methodology was applied to data collected over one year across multiple locations in Qatar, assessing seasonal and site-specific variations in risk. Results indicate generally low health risks, with HQ values below 1 for most sites and seasons. However, the study identified elevated HQ values at highly active sites during the dry summer, suggesting potential health concerns that need urgent attention. The proposed framework offers a replicable approach for evaluating bioaerosol-related health risks across diverse environments.•Novel adaptation of HQ-based risk assessment for bioaerosols in Qatar, incorporating a time-weighted approach.•Evaluation of seasonal and site-specific exposure dynamics.•Designed for replicability in different environmental conditions.
Collapse
Affiliation(s)
- Azhar Siddique
- Qatar Environment and Energy Research Institue (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Kashif Rasool
- Qatar Environment and Energy Research Institue (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Liu Y, Wang Y, Hao C, Li Y, Lou H, Hong Q, Dong H, Zhu H, Lai B, Liu Y, Li J. Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126243. [PMID: 40222613 DOI: 10.1016/j.envpol.2025.126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m3, and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m3, peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Changfu Hao
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yan Li
- Center for Medical Experiment, The Second Clinical Medical School of Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China.
| | - Hao Lou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Qing Hong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Hao Dong
- School of Medicine, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Haoran Zhu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Bisheng Lai
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yifan Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jinlong Li
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Alipour MB, Davoudi M, Farsiani H, Sarkhosh M, Gharib S, Miri HH. The effect of medical face masks on inhalation risk of bacterial bioaerosols in hospital waste decontamination station. Sci Rep 2024; 14:26259. [PMID: 39482346 PMCID: PMC11527977 DOI: 10.1038/s41598-024-69088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
There is insufficient research on bioaerosols in hospital waste decontamination stations. This study aimed to investigate the effect of three-layer and N95 masks in reducing the inhalation risk of bacterial bioaerosols in a waste decontamination station at a teaching hospital. Active sampling was conducted on five different days at three locations: the yard, resting room, and autoclave room in three different modes: without a mask, with a three-layer mask, and with an N95 mask. Bacterial bioaerosols passing through the masks were identified using biochemical tests and polymerase chain reaction (PCR). The median concentration and interquartile range (IQR) of bacterial bioaerosols was 217.093 (230.174) colony-forming units per cubic meter (CFU/m3), which is higher than the recommended amount by Pan American Health Organization (PAHO). The resting room had high contamination levels, with a median (IQR) of 321.9 (793.529) CFU/m3 of bacterial bioaerosols. The maximum concentration of bioaerosols was also recorded in the same room (2443.282 CFU/m3). The concentration of bacterial bioaerosols differed significantly between using a three-layer or N95 mask and not using a mask (p-value < 0.001). The non-carcinogenic risk level was acceptable in all cases, except in the resting room without a mask (Hazard Quotient (HQ) = 2.07). The predominant bacteria were Gram-positive cocci (33.98%). Micrococci (three-layer mask = 51.28%, N95 mask = 50%) and Coagulase-negative Staphylococci (three-layer mask = 30.77%, N95 mask = 31.82%) were the most abundant bioaerosols passing through the masks. The results obtained are useful for managerial decisions in hospital waste decontamination stations to reduce exposure to bioaerosols and develop useful guidelines.
Collapse
Affiliation(s)
- Morvarid Boroumand Alipour
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Davoudi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyfollah Gharib
- Department of Occupational Health and Safety Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian Miri
- Infant Research Center, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Han Y, Yu X, Cao Y, Liu J, Wang Y, Liu Z, Lyu C, Li Y, Jin X, Zhang Y, Zhang Y. Transport and risk of airborne pathogenic microorganisms in the process of decentralized sewage discharge and treatment. WATER RESEARCH 2024; 256:121646. [PMID: 38657309 DOI: 10.1016/j.watres.2024.121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Sewage treatment processes are a critical anthropogenic source of bioaerosols and may present significant health risks to plant workers. Compared with the specialization and scale of urban sewage treatment, many decentralized treatment models are flexible and extensive. These treatment facilities are usually close to residential areas owing to the pipe network layout and other restrictions. Bioaerosols generated by these facilities may present a serious and widespread occupational and non-occupational exposure risk to nearby residents, particularly the elderly and children. An understanding of the characteristics and exposure risks of bioaerosols produced during decentralized sewage treatment is lacking. We compared bioaerosol emission characteristics and potential exposure risks under four decentralized sewage discharge methods and treatment models: small container collection (SCC), open-channel discharge (OCD), single household/combined treatment (SHCT), and centralized treatment (CT) in northwest China. The OCD mode had the highest bioaerosol production, whereas the CT mode had the lowest. The OCD model contained the most pathogenic bacterial species, up to 43 species, including Sphingomonas, Pseudomonas, Cladosporium, and Alternaria. Risk assessments indicated bioaerosol exposure was lower in the models with sewage treatment (SHCT and CT) than in those without (SCC and OCD). Different populations exhibited large variations in potential risks owing to differences in time spent indoors and outdoors. The highest risk was observed in males exposed to the SCC model. This study provides a theoretical basis and theories for the future joint prevention and control of the bioaerosol exposure risk from decentralized sewage treatment.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xuezheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zipeng Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Chenlei Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yilin Li
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Xu Jin
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yuxiang Zhang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, PR China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Vishwakarma YK, Mayank, Ram K, Gogoi MM, Banerjee T, Singh RS. Bioaerosol emissions from wastewater treatment process at urban environment and potential health impacts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121202. [PMID: 38805959 DOI: 10.1016/j.jenvman.2024.121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The inlet of wastewater treatment plants (WWTPs) contains pathogenic microorganisms which during aeration and by mechanical mixing through wind typically aerosolized microbes into ambient air. Bioaerosol emission and its characterization (bacterial and fungal) was investigated considering low-flow and high-flow inlet of wastewater treatment plant. Generation of bioaerosols was found influenced by prevailing seasons while both during summer and winter, fungal concentration (winter: 1406 ± 517; summer: 1743 ± 271 CFU/m3) was higher compared to bacterial concentration (winter: 1077 ± 460; summer: 1415 ± 588 CFU/m3). Bioaerosols produced from WWTPs were predominately in the size range of 2.1-4.7 μm while fraction of fungal bioaerosols were also in ultra-fine range (0.65 μm). Bioaerosols reaching to the air from WWTPs varied seasonally and was calculated by aerosolization ratio. During summer, aerosolization of the bioaerosols was nearly 6 times higher than winter. To constitute potential health effects from the exposure to these bioaerosols, biological characterization, antibiotics resistance and the health survey of the nearby area were also performed. The biological characterization of the bioaerosols samples were done through metagenomic approach using 16s and ITS metagenomic sequencing. Presence of 167 genus of bacteria and 41 genus of fungi has been found. Out of this, bacillus (73%), curtobacterium (21%), pseudomonas, Exiguo bacterium, Acinetobacter bacillaceae, Enterobacteriaceae and Prevotella were the dominant genus (top 10) of bacteria. In case of fungi, xylariales (49%), Hypocreales (19%), Coperinopsis (9%), Alternaria (8%), Fusarium (6%), Biopolaris, Epicoccum, Pleosporaceae, Cladosporium and Nectriaceae were dominant. Antibiotics like, Azithromycin and cefixime were tested on the most dominant bacillus showed resistance on higher concentration of cefixime and lower concentration of azithromycin. Population-based health survey in WWTP nearby areas (50-150 m periphery) found several types of diseases/symptoms including respiratory problem, skin rash/irritation, change in smell and taste, eye irritation within the resident population and workers.
Collapse
Affiliation(s)
| | - Mayank
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Kirpa Ram
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India.
| | - Mukunda M Gogoi
- Space Physics Laboratory, Vikram Sarabhai Space Centre, ISRO, Trivandrum, 695022, India.
| | - Tirthankar Banerjee
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India.
| | - R S Singh
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Lanzarini NM, Federigi I, Marinho Mata R, Neves Borges MD, Mendes Saggioro E, Cioni L, Verani M, Carducci A, Costa Moreira J, Ferreira Mannarino C, Pereira Miagostovich M. Human adenovirus in municipal solid waste leachate and quantitative risk assessment of gastrointestinal illness to waste collectors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:308-317. [PMID: 34922305 DOI: 10.1016/j.wasman.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Leachate is a variable effluent from waste management systems generated during waste collection and on landfills. Twenty-two leachate samples from waste collection trucks and a landfill were collected from March to December 2019 in the municipality of Rio de Janeiro (Brazil) and were analyzed for Human Adenovirus (HAdV), bacterial indicators and physico-chemical parameters. For viral analysis, samples were concentrated by ultracentrifugation and processed for molecular analysis using QIAamp Fast DNA Stool mini kit® for DNA extraction followed by nested-PCR and qPCR/PMA-qPCR TaqMan® system. HAdV was detected by nested-PCR in 100% (9/9) and 83.33% (12/13) of the truck and landfill leachate samples, respectively. Viral concentrations ranged from 8.31 × 101 to 6.68 × 107 genomic copies per 100 ml by qPCR and PMA-qPCR. HAdV species A, B, C, and F were characterized using nucleotide sequencing. HAdV were isolated in A549 culture cells in 100% (9/9) and 46.2% (6/13) from truck and landfill leachate samples, respectively. Regardless of the detection methods, HAdV concentration was predicted by the quantity of total suspended solids. A quantitative microbial risk assessment was performed to measure the probability of gastrointestinal (GI) illness attributable to inadvertent oral ingestion of truck leachate, revealing the higher probability of disease for the direct splashing into the oral cavity (58%) than for the gloved hand-to-mouth (33%). In a scenario where waste collectors do not wear gloves as protective personal equipment, the risk increases to 67%. This is the first study revealing infectious HAdV in solid waste leachate and indicates a potential health risk for waste collectors.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil.
| | - Ileana Federigi
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Rafaela Marinho Mata
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil; Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Denise Neves Borges
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy
| | - Marco Verani
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Annalaura Carducci
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy
| | - Josino Costa Moreira
- Center for Studies on Workers' Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|