1
|
Varley I, Hughes DC, Greeves JP, Fraser WD, Sale C. SNPs in the vicinity of P2X7R, RANK/RANKL/OPG and Wnt signalling pathways and their association with bone phenotypes in academy footballers. Bone 2018; 108:179-185. [PMID: 29325759 DOI: 10.1016/j.bone.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
CONTEXT Genotype plays an important role in influencing bone phenotypes, such as bone mineral density, but the role of genotype in determining responses of bone to exercise has yet to be elucidated. OBJECTIVE To determine whether 10 SNPs associated with genes in the vicinity of P2X7R, RANK/RANKL/OPG and Wnt Signalling Pathways are associated with bone phenotypes in elite academy footballers (Soccer players) and to determine whether these genotypes are associated with training induced changes in bone. Design, participants, and methods: 99 elite academy footballers volunteered to participate. Peripheral computed tomography of the tibia (4%, 14%, 38% and 66% sites) was performed immediately before and 12 weeks after an increase in football training volume. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. RESULTS No significant genotype by time interactions were shown for any of the SNPs analysed (P > .05). A main effect of genotype was shown. SOST SNP rs1877632 (trabecular density), P2X7R SNPs rs1718119 (cortical thickness and CSA), rs3751143 (SSI, CSA, cortical CSA and periosteal circumference) RANK/RANKL/OPG SNPs rs9594738 (periosteal circumference), rs1021188 (cortical thickness and CSA) and rs9594759 (cortical density) were associated with bone phenotypes (P < .05). CONCLUSIONS No association was shown between P2X7R, RANK/RANKL/OPG and Wnt Signalling SNPs and a change in bone phenotypes following 12 weeks of increased training volume in elite academy footballers. However, SNPs were associated with bone phenotypes pre training. These data highlight the complexity of the interaction between SNPs in the vicinity of the RANK/RANKL/OPG, P2X7R and Wnt metabolic regulatory pathways and bone phenotypes in elite academy footballers.
Collapse
Affiliation(s)
- Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - David C Hughes
- Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston B15 3TN, UK.
| | | | - William D Fraser
- Norwich Medical School, University of East Anglia, UK; Norfolk and Norwich University Hospital, Norfolk, UK.
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Ikedo A, Arimitsu T, Kurihara T, Ebi K, Fujita S. The Effect of Ongoing Vitamin D and Low-Fat Milk Intake on Bone Metabolism in Female High-School Endurance Runners. J Clin Med Res 2017; 10:13-21. [PMID: 29238429 PMCID: PMC5722040 DOI: 10.14740/jocmr3209w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background Vitamin D and calcium are essential nutrients for bone health. In addition, vitamin D suppresses inflammatory cytokines and increases bone resorption. Therefore, improvements in bone health by calcium and vitamin D supplementation have the potential to not only improve calcium metabolism but also suppress inflammation associated with exercise training. The purpose of this study was to determine whether ongoing vitamin D supplementation and low-fat milk intake by female high-school endurance runners would improve bone metabolism by suppressing inflammatory cytokines and the parathyroid hormone (PTH). Methods Twenty female high-school runners were assigned to a vitamin D supplement and low-fat milk intake group (MKD) or a control group (CON). Participants in the MKD group consumed a vitamin D supplement (1,000 IU/day) and low-fat milk (Ca 315 mg/day) for 6 months. Bone mineral density measurements, blood samples, and questionnaires (regarding menses and diet) were carried out. The UMIN Clinical Trials Registry number is UMIN000027854. Results The 25-hydroxyvitamin D (25(OH)D) concentration in MKD was sustained and PTH concentration was decreased regardless of the state of menses. The correlation coefficients of 25(OH)D or PTH concentrations and bone metabolism markers were analyzed by partial correlation coefficient via adjusting the model for frequency of menses. CTX and 25(OH)D concentration were significantly and inversely correlated at baseline (r = -0.61, P < 0.01), 3 months (r = -0.54, P = 0.02), and 6 months (r = -0.53, P = 0.02). CTX and PTH were significantly and positively correlated at 3 months (r = 0.63, P < 0.01) and 6 months (r = 0.52, P = 0.02). The bone alkaline phosphatase (BAP)/CTX ratio and 25(OH)D concentration were significantly and positively correlated at 3 months (r = 0.59, P = 0.01) and 6 months (r = 0.56, P = 0.01). The BAP/CTX ratio and PTH were significantly and inversely correlated at 3 months (r = -0.59, P = 0.01) and 6 months (r = -0.58, P < 0.01). Conclusions This study suggested that vitamin D and low-fat milk supplementation improves bone metabolism by sustaining the 25(OH)D concentration and decreasing the PTH concentration in female high-school endurance runners regardless of the state of menses.
Collapse
Affiliation(s)
- Aoi Ikedo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuma Arimitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kumiko Ebi
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
3
|
Qi Z, Liu W, Lu J. The mechanisms underlying the beneficial effects of exercise on bone remodeling: Roles of bone-derived cytokines and microRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:131-139. [PMID: 27179638 DOI: 10.1016/j.pbiomolbio.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
Bone remodeling is highly dynamic and complex in response to mechanical loading, such as exercise. In this review, we concluded that a number of individual factors are disturbing the clinical effects of exercise on bone remodeling. We updated the progress made on the differentiation of osteoblasts and osteoclasts in response to mechanical loading, hoping to provide a theoretical basis to improve bone metabolism with exercise. Increasing evidences indicate that bone is not only a structural scaffold but also an endocrine organ, which secretes osteocalcin and FGF23. Both of them have been known as a circulating hormone to promote insulin sensitivity and reduce body fat mass. The effects of exercise on these bone-derived cytokines provide a better understanding of how exercise-induced "osteokine" affects the whole-body homeostasis. Additionally, we discussed recent studies highlighting the post-transcriptional regulation of microRNAs in bone remodeling. We focus on the involvement of the microRNAs in osteoblastogenesis and osteoclastogenesis, and suggest that microRNAs may be critical for exercise-induced bone remodeling.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Kitjaroentham A, Hananantachai H, Phonrat B, Preutthipan S, Tungtrongchitr R. Low density lipoprotein receptor-related protein 5 gene polymorphisms and osteoporosis in Thai menopausal women. J Negat Results Biomed 2016; 15:16. [PMID: 27582019 PMCID: PMC5007848 DOI: 10.1186/s12952-016-0059-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
Background Osteoporosis, characterized by low bone mineral density (BMD) and high bone fracture risk, is prevalent in Thai menopausal women. Genetic factors are known to play a key role in BMD. Low density lipoprotein receptor-related protein 5 (LRP5), a co-receptor in the Wnt/beta-catenin pathway, is involved in many aspects of bone biology. As coding single nucleotide polymorphisms (cSNPs) of LRP5, including A1330V (rs3736228), and Asian-related Q89R (rs41494349) and N740N (rs2306862), are associated with lowered BMD, this study aimed to determine the relationship between these LRP5 polymorphisms and BMD in 277 Thai menopausal women. Results Only rs3736228 deviated from the Hardy–Weinberg equilibrium of allele frequency (p = 0.022). The median, range and p value for the BMD related to each SNP parameter were compared (Mann–Whitney U test). Significant differences were observed between wild-type and risk alleles for both rs3736228 (total radial, p = 0.011; and radial 33, p = 0.001) and rs2306862 (radial 33: p = 0.015) SNPs, with no significant difference for rs41494349 SNP. Linkage disequilibrium was strong for both rs3736228 and rs2306862 SNPs. Haplotype analysis identified high CC frequency in both normal and osteopenia/osteoporosis groups, with a significant odds ratio for carrying the TT haplotype; however, this was non-significant after adjusting for age. Multivariate binary logistic regression analysis performed for rs3736228 showed that individuals with a body mass index <25 kg/m2 had an increased risk of osteoporosis for each decade, but the polymorphism had no effect. Conclusions This study did not identify LRP5 polymorphisms as a risk factor for osteoporosis in Thai menopausal women. Further studies with larger sample sizes are needed to further clarify the role of LRP5 as a genetic determinant of osteoporosis. Electronic supplementary material The online version of this article (doi:10.1186/s12952-016-0059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anong Kitjaroentham
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hathairad Hananantachai
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benjaluck Phonrat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sangchai Preutthipan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Jeremić V, Alempijević T, Mijatović S, Šijački A, Dragašević S, Pavlović S, Miličić B, Krstić S. Clinical relevance of IL-6 gene polymorphism in severely injured patients. Bosn J Basic Med Sci 2014; 14:110-117. [PMID: 24856384 PMCID: PMC4333952 DOI: 10.17305/bjbms.2014.2274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/29/2014] [Indexed: 12/16/2022] Open
Abstract
In polytrauma, injuries that may be surgically treated under regular circumstances due to a systemic inflammatory response become life-threatening. The inflammatory response involves a complex pattern of humoral and cellular responses and the expression of related factors is thought to be governed by genetic variations. This aim of this paper is to examine the influence of interleukin (IL) 6 single nucleotide polymorphism (SNP) -174C/G and -596G/A on the treatment outcome in severely injured patients. Forty-seven severely injured patients were included in this study. Patients were assigned an Injury Severity Score. Blood samples were drawn within 24 h after admission (designated day 1) and on subsequent days (24, 48, 72 hours and 7 days) of hospitalization. The IL-6 levels were determined through ELISA technique. Polymorphisms were analyzed by a method of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR). Among subjects with different outcomes, no statistically relevant difference was found with regards to the gene IL-6 SNP-174G/C polymorphism. More than a half of subjects who died had the SNP-174G/C polymorphism, while this polymorphism was represented in a slightly lower number in survivors. The incidence of subjects without polymorphism and those with heterozygous and homozygous gene IL-6 SNP-596G/A polymorphism did not present statistically significant variations between survivors and those who died. The levels of IL-6 over the observation period did not present any statistically relevant difference among subjects without the IL-6 SNP-174 or IL- 6 SNP -596 gene polymorphism and those who had either a heterozygous or a homozygous polymorphism.
Collapse
Affiliation(s)
- Vasilije Jeremić
- School of Medicine, University of Belgrade, Dr Subotica street 8, 11000 Belgrade, Serbia
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Pasterova street 2, 11000 Belgrade, Serbia
| | - Tamara Alempijević
- School of Medicine, University of Belgrade, Dr Subotica street 8, 11000 Belgrade, Serbia
- Clinic for Gastroenterology and Hepatology, Clinical Centre of Serbia, Dr Koste Todorovica Street 2, 11000 Belgrade, Serbia
| | - Srđan Mijatović
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Pasterova street 2, 11000 Belgrade, Serbia
| | - Ana Šijački
- School of Medicine, University of Belgrade, Dr Subotica street 8, 11000 Belgrade, Serbia
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Pasterova street 2, 11000 Belgrade, Serbia
| | - Sanja Dragašević
- Clinic for Gastroenterology and Hepatology, Clinical Centre of Serbia, Dr Koste Todorovica Street 2, 11000 Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Pasterova street 2, 11000 Belgrade, Serbia
| | - Biljana Miličić
- Institute for Medical Informatics, School of Dentistry, University of Belgrade, Dr Subotica street 15, 11000 Belgrade, Serbia
| | - Slobodan Krstić
- School of Medicine, University of Belgrade, Dr Subotica street 8, 11000 Belgrade, Serbia
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Pasterova street 2, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Eleftheriou KI, Rawal JS, James LE, Payne JR, Loosemore M, Pennell DJ, World M, Drenos F, Haddad FS, Humphries SE, Sanders J, Montgomery HE. Bone structure and geometry in young men: the influence of smoking, alcohol intake and physical activity. Bone 2013; 52:17-26. [PMID: 22985892 DOI: 10.1016/j.bone.2012.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The development of osteoporosis is influenced by peak bone mass attained in youth - the influence of lifestyle factors upon which is poorly described, especially amongst males. We sought to address this issue in a large scale study. METHODS Hip bone mineral density (dual X-ray absorptiometry, DXA), bone microarchitecture (calcaneal quantitative ultrasound, QUS) and femoral geometry (magnetic resonance imaging, MRI) were characterised in 723 healthy male military recruits (mean ± S.E. age 19.92 ± 0.09 years [range 16-18 years], height 177.67 ± 0.24 cm, weight 73.17 ± 0.37 kg) on entry to UK Army training. Association was sought with prior physical activity, smoking status and alcohol intake. RESULTS DXA measures were made in 651, MRI measures in 650, and QUS measures in 572 recruits. Increasing levels of weight-bearing physical activity enhanced periostial bone apposition, increases in both total hip and femoral neck bone mineral density (BMD; p ≤ 0.0001 in both cases), and cortical [p<0.0001] and periostial bone volumes [p=0.016]. Smoking habit was associated with preserved bone geometry, but worse BMD [p=0.0001] and QUS characteristics [p ≤ 0.0005]. Moderate alcohol consumption was associated with greater BMD [p ≤ 0.015]. CONCLUSIONS Whilst exercise (and perhaps moderate alcohol intake) is beneficial to bone morphometry, smoking is detrimental to bone mineral density in young males notable for the likely short duration of smoking to influence skeletal properties. However, differences in socio-economic status, lifestyle and related environmental factors may to some extent confound our results.
Collapse
Affiliation(s)
- Kyriacos I Eleftheriou
- UCL Institute of Human Health and Performance, UCL Archway Campus, Highgate Hill, Archway, London, N19 5LW, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Eleftheriou KI, Rawal JS, Kehoe A, James LE, Payne JR, Skipworth JR, Puthucheary ZA, Drenos F, Pennell DJ, Loosemore M, World M, Humphries SE, Haddad FS, Montgomery HE. The Lichfield bone study: the skeletal response to exercise in healthy young men. J Appl Physiol (1985) 2011; 112:615-26. [PMID: 22114178 DOI: 10.1152/japplphysiol.00788.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm(3), P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm(3), P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm(3), P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response.
Collapse
Affiliation(s)
- Kyriacos I Eleftheriou
- UCL Centre for Health and Human Performance, University College London Hospitals, London
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eynon N, Ruiz JR, Meckel Y, Santiago C, Fiuza-Luces C, Gómez-Gallego F, Oliveira J, Lucia A. Is the −174 C/G polymorphism of theIL6gene associated with elite power performance? A replication study with two different Caucasian cohorts. Exp Physiol 2010; 96:156-62. [DOI: 10.1113/expphysiol.2010.055442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KMC. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 2010; 25:1128-37. [PMID: 20200998 DOI: 10.1002/jbmr.9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechanical loading is known to be important for maintaining the formation and resorption rates of bone. To study the mechanisms by which mechanical loading regulates osteogenesis, we investigated the role of the Wnt pathway in C2C12 cells committed to osteogenic differentiation in response to cyclic mechanical stretching. Osteoprotegerin (OPG) acts as a decoy receptor for RANKL to inhibit osteoclastogenesis and resorption of bone. Our results demonstrate that stretching leads to a sustained increase in OPG expression in C2C12 cells. The expression of osteogenic marker genes, such as osteocalcin and alkaline phosphatase, was transiently decreased by stretching at 24 hours and returned to control levels at 48 hours. The addition of inhibitors of the canonical Wnt/beta-catenin pathways, such as the secreted FZD-related peptide sRFP2, as well as siRNA-mediated knockdown, did not inhibit the effect of stretching on OPG expression. In contrast, treatment with inhibitors of noncanonical Wnt signaling, including KN93, and siRNA for Nemo-like kinase (NLK) blocked most of the mechanical inductive effect on OPG. Furthermore, stretching-induced OPG production in the culture medium was able to inhibit the osteoclast formation of bone marrow macrophages. These results suggest that mechanical stretching may play an important role in bone remodeling through the upregulation of OPG and that the mechanical signaling leading to OPG induction involves the noncanonical Wnt pathway.
Collapse
Affiliation(s)
- Hsiao-Chi Yu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Ruiz JR, Buxens A, Artieda M, Arteta D, Santiago C, Rodríguez-Romo G, Lao JI, Gómez-Gallego F, Lucia A. The -174 G/C polymorphism of the IL6 gene is associated with elite power performance. J Sci Med Sport 2009; 13:549-53. [PMID: 19853505 DOI: 10.1016/j.jsams.2009.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/27/2022]
Abstract
The -174 G/C polymorphism [rs1800795] of the IL6 gene is a candidate to explain individual variations in health and exercise related phenotypes. We compared -174 G/C genotypic and allelic frequencies in three groups of men of the same Caucasian (Spanish) descent: elite endurance athletes (cyclists, runners; n=100); elite power athletes (jumpers, throwers, sprinters; n=53) and non-athletic controls (n=100). The frequency of the GG genotype (P=0.030) and G allele (P=0.026) was higher in the power athletes group compared with the control group. The frequency of the GG genotype (P=0.033) and G allele (P=0.013) was also higher in the power athletes group compared with the endurance athletes group. The odds ratio of being a power athlete if the subject had the GG genotype (dominant model) was 2.471 (95% confidence interval: 1.242-4.915) compared to the control group or the endurance athlete group. We did not find differences between the control and endurance athlete groups. In summary, our findings suggest that the G allele of the IL6 -174 G/C polymorphism might favour sprint/power sports performance.
Collapse
Affiliation(s)
- Jonatan R Ruiz
- Department of Biosciences and Nutrition, Unit for Preventive Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kruk M, Ralston SH, Albagha OME. LRP5 Polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int 2009; 84:171-9. [PMID: 19148563 DOI: 10.1007/s00223-008-9207-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 11/29/2008] [Indexed: 10/21/2022]
Abstract
Genetic factors are important in the pathogenesis of osteoporosis, but little is known about the genetic determinants of treatment response. Previous studies have shown that polymorphisms of the LRP5 gene are associated with bone mineral density (BMD), but the relationship between LRP5 polymorphisms and response to bisphosphonate treatment in osteoporosis has not been studied. In this study we investigated LRP5 polymorphisms in relation to treatment response in a group of 249 osteoporotic or osteopenic men who participated in a 24-month randomized double blind placebo-controlled trial of risedronate treatment. BMD and biochemical markers of bone turnover were measured at baseline and after 6, 12, and 24 months of follow-up. We analyzed two coding polymorphisms of LRP5, which have previously been associated with BMD, V667M (rs4988321) and A1330V (rs3736228), and found a significant association between the A1330V polymorphism and hip BMD at baseline. Subjects with the 1330 Val/Val genotype had 8.4% higher total-hip BMD compared with the other genotype groups (P = 0.009), and similar associations were observed at the femoral neck (P = 0.01) and trochanter (P = 0.002). There was no association between A1330V and spine BMD, however, or between the V667M polymorphism and BMD at any site. The difference in hip BMD between A1330V genotype groups remained significant throughout the study, but there was no evidence of a genotype-treatment interaction in either risedronate- or placebo-treated patients. In conclusion, the LRP5 A1330V polymorphism is associated with hip BMD in osteoporotic men, but allelic variations in LRP5 do not appear to be associated with response to bisphosphonate treatment.
Collapse
Affiliation(s)
- Marcin Kruk
- Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
13
|
Evans RK, Antczak AJ, Lester M, Yanovich R, Israeli E, Moran DS. Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 2009; 40:S660-70. [PMID: 18849868 DOI: 10.1249/mss.0b013e318189422b] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Stress fracture susceptibility results from accelerated bone remodeling after onset of novel exercise and may be reflected in bone turnover changes. It is unknown if the bone turnover response to exercise is different between sexes. PURPOSE To assess disparity between sexes in bone metabolism markers during military recruit training and to evaluate relationships between bone turnover markers and factors that may affect bone metabolism. METHODS Volunteers were age-matched men (n = 58) and women (n = 199), 19 yr old, entering gender-integrated combat training. Blood was collected at 0, 2, and 4 months and anthropometric and fitness measures at 0 and 4 months. Serum was analyzed for biomarkers reflecting bone formation (bone alkaline phosphatase and procollagen I N-terminal peptide), bone resorption (C-telopeptide cross-links of type I collagen and tartrate-resistant acid phosphatase), endocrine regulation (parathyroid hormone, calcium, and 25(OH)D), and inflammation (interleukin 1B, interleukin 6, and tumor necrosis factor alpha). Data were analyzed using ANOVA, correlation, and regression analyses. RESULTS Bone turnover markers were higher in men (P < 0.01) and increased similarly for both sexes from 0 to 2 months (P < 0.01). Independent of gender, VO2max (R = 0.477) and serum calcium (R = 0.252) predicted bone formation activity (bone alkaline phosphatase) at baseline (P < 0.01). Serum calcium and parathyroid hormone decreased (2.0 and 6.4%, respectively) from 0 to 2 months (P < 0.001), returning to baseline at 4 months for both sexes. Men exhibited a decrease in 25(OH)D from 0 to 4 months (P = 0.007). Changes in endocrine regulators were significantly correlated with changes in bone turnover markers. Inflammatory markers did not differ between sexes and did not increase. CONCLUSION Military training increased bone formation and resorption markers in 2 months, suggesting rapid onset of strenuous exercise accelerates bone turnover similarly in men and women. Although bone turnover markers were higher in men than women, bone formation status may be related to aerobic fitness and serum calcium independent of gender and may be affected by small changes in endocrine regulators related to nutrition.
Collapse
Affiliation(s)
- Rachel K Evans
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Environmental stimuli interact with common genetic variants to determine individual characteristics including physical performance: ∼80% of variation in arm eccentric flexor strength and grip strength may be genetically determined. However, many physical characteristics and physiological processes determine physical performance, and each is regulated by a large number of genes: strong genetic influences on maximum exertional oxygen uptake, heart size, lean mass, skeletal muscle growth, and bone mineral density have all been described. To date few variants strongly influencing global performance have been identified. One such is the presence (Insertion, I allele) rather than absence (Deletion, D allele) of a DNA segment in the gene encoding angiotensin-converting enzyme (ACE): The I allele has been associated with fatigue resistance/endurance, and the D-allele with strength gain.
Collapse
Affiliation(s)
- Hugh Montgomery
- Institute for Human Health and Performance, University College London, Archway Campus, London N19 5LW, United Kingdom
| | - Latif Safari
- Department of Physiology, University of Tehran, Iran
| |
Collapse
|
15
|
Kesavan C, Baylink DJ, Kapoor S, Mohan S. Novel loci regulating bone anabolic response to loading: expression QTL analysis in C57BL/6JXC3H/HeJ mice cross. Bone 2007; 41:223-30. [PMID: 17543594 DOI: 10.1016/j.bone.2007.04.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/30/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
Variations in the expression levels of bone marker genes among the inbred strains of mice in response to mechanical loading (ML) are largely determined by genetic factors. To explore this, we performed four-point bending on tibiae of 10-week female F2 mice of B6XC3H cross using 9N at 2 Hz, 36 cycles, once per day for 12 days. We collected tibiae from these mice for RNA extraction. We then measured the expression changes of bone marker genes, bone sialoprotein (BSP), alkaline phosphatase (ALP) and housekeeping genes, beta-actin and peptidylprolyl isomerase A (PPIA), by using real-time PCR in both the loaded and the non-loaded tibiae of F2 mice (n=241). A genome-wide scan was performed using 111 micro satellite markers in DNA sample collected from these mice. Mean increase in gene expression, expressed as fold change, ranges from 2.8 to 3.0 for BSP and 2.7 to 2.8 for ALP. Both showed a skewed distribution with a heritability response of 87 to 91%. Absence of significant correlation between the increased gene expression vs. body weight (BW) and bone size (BS) suggests that bone response to loading is independent of BS or BW. Non-parametric mapping (MapQTL program 5) revealed that BSP and ALP expression in response to bending was regulated by several significant and suggestive QTL: Loci regulating both BSP and ALP were located on Chr 8 (60.1 cM), 16 (45.9 cM), 17 (14.2 cM), 18 (38.0 cM) and Chr 19 (3.3 cM); Loci specific to BSP were found on Chrs 1 (LOD score 10.4 at 91.8 cM), 5 (5.2 at 73.2 cM) and 9 (7.0 at 13.1 cM); Loci regulating only ALP were found on Chrs 1 (7.6 at 46 and 75.4 cM), 3 (8.3 at 47 cM) and 4 (5.6 at 54.6 cM). QTLs on Chrs 1, 3, 8, 9, 17 and 18 correspond to QTLs we previously reported by pQCT measurements, thus validating these findings. In addition, we found that the QTL associated with non-loaded tibiae for BSP and ALP on Chrs 4, 16 and 18 was identical to the QTLs associated with ML. This finding suggests that regions on these chromosomes are responsible for natural variation in expression of BSP and ALP as well as for ML. This is the first expression study to provide evidence for the presence of multiple genetic loci regulating bone anabolic response to loading in the B6XC3H intercross and will lead to a better understanding of how exercise improves the skeletal mass.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | | | | | | |
Collapse
|
16
|
Kiel DP, Ferrari SL, Cupples LA, Karasik D, Manen D, Imamovic A, Herbert AG, Dupuis J. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone 2007; 40:587-96. [PMID: 17137849 PMCID: PMC1845172 DOI: 10.1016/j.bone.2006.09.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
Polymorphisms in the LRP5 gene have been associated with bone mineral density (BMD) in men and/or women. However, the functional basis for this association remains obscure. We hypothesized that LRP5 alleles could modulate Wnt signaling and the relationship between physical activity and BMD. This genetic association study was performed in the population-based Framingham Study Offspring Cohort, and included a subset of 1797 unrelated individuals who provided blood samples for DNA and who had BMD measurements of the hip and spine. Ten single-nucleotide polymorphisms (SNPs) spanning the LRP5 gene were genotyped and used for association and interaction analyses with BMD by regression methods. LRP5 haplotypes were transiently co-expressed with Wnt3a, MesD and Dkk1 in HEK293 cells and their activity evaluated by the TCF-Lef reporter assay. Six out of ten SNPs in LRP5 were associated with one or more of the femur or spine BMDs in men or women after adjustment for covariates, and these associations differed between genders. In men< or =age 60 years, 3 SNPs were significantly associated with BMD: rs2306862 on Exon 10 with femoral neck BMD (p=0.01) and Ward's BMD (p=0.01); rs4988321/p. V667M with Ward's BMD (p=0.02); and intronic rs901825 with trochanter BMD (p=0.03). In women, 3 SNPs in intron 2 were significantly associated with BMD: rs4988330 for trochanter (p=0.01) and spine BMD (p=0.003); rs312778 with femoral neck BMD (p=0.05); and rs4988331 with spine BMD (p=0.04). For each additional rare allele, BMD changed by 3-5% in males and 2-4% in females. Moreover, there was a significant interaction between physical activity and rs2306862 in exon 10 (p for interaction=0.02) and rs3736228/p. A1330V in exon 18 (p for interaction=0.05) on spine BMD in men. In both cases, the TT genotype was associated with lower BMD in men with higher physical activity scores, conversely with higher BMD in men with lower physical activity scores. In vitro, TCF-Lef activity in presence of Wnt3a was significantly reduced in cells expressing LRP5 haplotypes carrying the T allele of exon 10 and 18 compared to the wild-type allele, whereas co-expression of Dkk1 completely inhibited Wnt3a response through all LRP5 haplotypes. In summary, genetic variation in exons 10 and 18 of the LRP5 gene modulates Wnt signaling and the relationship between physical activity and BMD in men. These observations suggest that Wnt-LRP5 may play a role in the adaptation of bone to mechanical load in humans, and may explain some gender-related differences in bone mass.
Collapse
Affiliation(s)
- Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 2007; 38:1863-88. [PMID: 17095919 DOI: 10.1249/01.mss.0000233789.01164.4f] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed, but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, in the early version of the gene map, 29 loci were depicted. In contrast, the 2005 human gene map for physical performance and health-related phenotypes includes 165 autosomal gene entries and QTL, plus five others on the X chromosome. Moreover, there are 17 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes. Thus, the map is growing in complexity. Unfortunately, progress is slow in the field of genetics of fitness and performance, primarily because the number of laboratories and scientists focused on the role of genes and sequence variations in exercise-related traits continues to be quite limited.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Kesavan C, Mohan S, Srivastava AK, Kapoor S, Wergedal JE, Yu H, Baylink DJ. Identification of genetic loci that regulate bone adaptive response to mechanical loading in C57BL/6J and C3H/HeJ mice intercross. Bone 2006; 39:634-43. [PMID: 16713414 DOI: 10.1016/j.bone.2006.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/14/2006] [Accepted: 03/20/2006] [Indexed: 11/15/2022]
Abstract
Strain-dependent differences in bone adaptive responses to loading among inbred mouse strains suggest that genetic background contributes significantly to adaptation to exercise. To explore the genetic regulation of response to loading, we performed a genome-wide search for linkage in a cross between two strains, a good responder, C57BL6/J (B6), and a poor responder, C3H/HeJ (C3H). Using a four-point bending model, the right tibia was loaded by applying 9 N force for 36 cycles for 12 days in 10-week-old female B6xC3H F2 mice. Changes in bone density (BMD) and bone size were evaluated in vivo by pQCT. Measurements from non-loaded left tibia were used as an internal control to calculate loading-induced percent increase in BMD and bone size, thus excluding the possibility of identifying background QTL(s) due to natural allelic variation in mapping strains. A genome-wide scan was performed using 111 microsatellite markers in DNA samples collected from 329 F2 mice. Heritability of bone adaptive response to loading was between 70 and 80%. The mean increase, expressed as percent of unloaded tibia, was 5% for BMD, 9% for periosteal circumference (PC), and 14% for cortical thickness in F2 mice (n = 329). All these phenotypes showed normal distributions. Absence of significant correlation between BMD response to four-point bending and body weight or bone size suggested that the bone adaptive response was independent of bone size. Interval mapping revealed that BMD response to four-point bending was influenced by three significant loci on Chrs 1 (log-of-odds ratio score (LOD) 3.4, 91.8 cM), 3 (LOD 3.6, 50.3 cM), and 8 (LOD 4.2, 60.1 cM) and one suggestive QTL on Chr 9 (LOD 2.5, 33.9 cM). Loading-induced increases in PC and Cth were influenced by four significant loci on Chrs 8 (LOD 3.0, 68.9 cM), 9 (LOD 3.0, 13.1 cM), 17 (LOD 3.0, 39.3 cM), and 18 (LOD 3.0, 0 cM) and two suggestive loci on Chr 9 (LOD 2.2, 24 cM) and 11 (LOD 2.1, 69.9 cM). Pairwise analysis showed the presence of several significant and suggestive interactions between loci on Chrs 1, 3, 8, and 13 for BMD trait. This is the first study that provides evidence for the presence of multiple genetic loci regulating bone anabolic responses to loading in the B6xC3H intercross. Knowledge of the genes underlying these loci could provide novel approaches to improve skeletal mass.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
LaMothe JM, Hamilton NH, Zernicke RF. Strain rate influences periosteal adaptation in mature bone. Med Eng Phys 2005; 27:277-84. [PMID: 15823468 DOI: 10.1016/j.medengphy.2004.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 04/07/2004] [Indexed: 11/23/2022]
Abstract
Mechanical forces influence bone form and function. Although the adaptive capabilities of bone are well known, the nuances of the mechanical stimuli regulating adaptation remain elusive. Recently, it was suggested that strain rate influences bone adaptation, and impact exercises with high strain rates during growth may be more osteogenic than low impact aerobic exercises. Building on those findings, we hypothesized that higher rates of mechanical loading would evoke greater adaptive responses than lower rates of loading in mature bone. To test that hypothesis, skeletally mature (16 weeks) female C57BL/6 mice underwent non-invasive exogenous cantilever bending of the right tibia with a 1 Hz trapezoidal waveform for 60 s, 5 days per week, for 4 weeks. Loading was calibrated (strain gauge) to induce peak magnitudes of 1000 microepsilon on the lateral tibial middiaphysis. Mice were randomly assigned to three groups based on strain rate of the applied load: low (0.004 s(-1); n = 14), medium (0.020 s(-1); n = 15), and high (0.100 s(-1); n = 14). Calcein injections (i.p., 10 mg kg(-1)) permitted histomorphometric analyses of bone formation. Loading significantly enhanced periosteal mineral apposition rate (MAR), mineralizing surface (MS), and bone formation rate (BFR BS(-1)) in all three strain rate groups, relative to control tibiae. Furthermore, a graded dose-response relation was observed between the applied strain rate and periosteal BFR BS(-1). These increases in MAR, MS, and BFR BS(-1) were not seen on the endosteal surface. Endosteal adaptation was not statistically different between loaded and control tibiae in most endosteal indices of bone adaptation. Moreover, endosteal adaptation did not increase with strain rate. Understanding the nature of the stimuli to which bone cells respond to may underpin the development of non-pharmacological treatments devised to enhance bone mass.
Collapse
Affiliation(s)
- Jeremy M LaMothe
- Faculty of Kinesiology, McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Alta., Canada
| | | | | |
Collapse
|
21
|
Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc 2004; 36:1451-69. [PMID: 15354024 DOI: 10.1249/01.mss.0000139902.42385.5f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the 2003 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2003 and includes association studies with candidate genes, genome-wide scans with polymorphic markers, and single-gene defects causing exercise intolerance to variable degrees. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, 29 loci were depicted on the first edition of the map. In contrast, the 2003 human gene map for physical performance and health-related phenotypes includes 109 autosomal gene entries and QTL, plus two on the X chromosome. Moreover, there are 15 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F, Tornvall P. Genetic Predisposition of the Interleukin-6 Response to Inflammation: Implications for a Variety of Major Diseases? Clin Chem 2004; 50:2136-40. [PMID: 15364891 DOI: 10.1373/clinchem.2004.037531] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: A single-nucleotide polymorphism (SNP) in the promoter region of the interleukin-6 (IL-6) gene at position −174 (G>C) has been reported to be associated with a variety of major diseases, such as Alzheimer disease, atherosclerosis, and cardiovascular disease, cancer, non-insulin-dependent diabetes mellitus, osteoporosis, sepsis, and systemic-onset juvenile chronic arthritis. However, authors of previous in vitro and in vivo studies have reported conflicting results regarding the functionality of this polymorphism. We therefore aimed to clarify the role of the −174 SNP for the induction of IL-6 in vivo.
Methods: We vaccinated 20 and 18 healthy individuals homozygous for the −174 C and G alleles, respectively, with 1 mL of Salmonella typhii vaccine. IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were measured in the blood at baseline and up to 24 h after vaccination.
Results: Individuals with the G genotype had significantly higher plasma IL-6 values at 6, 8, and 10 h after vaccination than did individuals with the C genotype (P <0.005). There were no differences between the two genotypes regarding serum concentrations of IL-1β and TNF-α before or after vaccination.
Conclusions: The −174 G>C SNP in the promoter region of the IL-6 gene is functional in vivo with an increased inflammatory response associated with the G allele. Considering the central role of IL-6 in a variety of major diseases, the present finding might be of major relevance.
Collapse
Affiliation(s)
- Marie Bennermo
- Department of Medicine, Danderyd University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|