1
|
Sautillet B, Bourdillon N, Millet GP, Lemaître F, Cozette M, Delanaud S, Ahmaïdi S, Costalat G. Hot water immersion: Maintaining core body temperature above 38.5°C mitigates muscle fatigue. Scand J Med Sci Sports 2024; 34:e14503. [PMID: 37747708 DOI: 10.1111/sms.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Hot water immersion (HWI) has gained popularity to promote muscle recovery, despite limited data on the optimal heat dose. The purpose of this study was to compare the responses of two exogenous heat strains on core body temperature, hemodynamic adjustments, and key functional markers of muscle recovery following exercise-induced muscle damage (EIMD). METHODS Twenty-eight physically active males completed an individually tailored EIMD protocol immediately followed by one of the following recovery interventions: HWI (40°C, HWI40 ), HWI (41°C, HWI41 ) or warm water immersion (36°C, CON36 ). Gastrointestinal temperature (Tgi ), hemodynamic adjustments (cardiac output [CO], mean arterial pressure [MAP], and systemic vascular resistance [SVR]), pre-frontal cortex deoxyhemoglobin (HHb), ECG-derived respiratory frequency, and subjective perceptual measures were tracked throughout immersion. In addition, functional markers of muscle fatigue (maximal concentric peak torque [Tpeak ]) and muscle damage (late-phase rate of force development [RFD100-200 ]) were measured prior to EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. RESULTS By the end of immersion, HWI41 led to significantly higher Tgi values than HWI40 (38.8 ± 0.1 vs. 38.0°C ± 0.6°C, p < 0.001). While MAP was well maintained throughout immersion, only HWI41 led to increased (HHb) (+4.2 ± 1.47 μM; p = 0.005) and respiratory frequency (+4.0 ± 1.21 breath.min-1 ; p = 0.032). Only HWI41 mitigated the decline in RFD100-200 at post-24 h (-7.1 ± 31.8%; p = 0.63) and Tpeak at post-48 h (-3.1 ± 4.3%, p = 1). CONCLUSION In physically active males, maintaining a core body temperature of ~25 min within the range of 38.5°C-39°C has been found to be effective in improving muscle recovery, while minimizing the risk of excessive physiological heat strain.
Collapse
Affiliation(s)
- Benoît Sautillet
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fréderic Lemaître
- Faculty of Sport Sciences, CETAPS Laboratory, UR 3832, Normandy University, Rouen, France
| | - Maryne Cozette
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Stéphane Delanaud
- PériTox UMR_I 01 laboratory, CURS-UPJV, F-80054, University of Picardie Jules Verne, Amiens, France
| | - Saïd Ahmaïdi
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Guillaume Costalat
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
2
|
Andrade MT, Nunes‐Leite MMS, Bruzzi RS, Souza CH, Uendeles‐Pinto JP, Prado LS, Soares DD, Gonçalves DAP, Coimbra CC, Wanner SP. Predicting the body core temperature of recreational athletes at the end of a 10 km self-paced run under environmental heat stress. Exp Physiol 2023; 108:852-864. [PMID: 37018484 PMCID: PMC10988464 DOI: 10.1113/ep091017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to identify the factors predicting the body core temperature of athletes at the end of a 10 km self-paced run in a hot environment. What is the main finding and its importance? Hyperthermia in athletes subjected to self-paced running depends on several factors, highlighting the integrated control of core temperature during exercise under environmental heat stress. Five of the seven variables that significantly predicted core temperature are not invasive and, therefore, practical for use outside the laboratory environment: heart rate, sweat rate, wet-bulb globe temperature, running speed and maximal oxygen consumption. ABSTRACT Measurement of body core temperature (Tcore ) is paramount to determining the thermoregulatory strain of athletes. However, standard measurement procedures of Tcore are not practical for extended use outside the laboratory environment. Therefore, determining the factors that predict Tcore during a self-paced run is crucial for creating more effective strategies to minimize the heat-induced impairment of endurance performance and reduce the occurrence of exertional heatstroke. The aim of this study was to identify the factors predicting Tcore values attained at the end of a 10 km time trial (end-Tcore ) under environmental heat stress. Initially, we extracted data obtained from 75 recordings of recreationally trained men and women. Next, we ran hierarchical multiple linear regression analyses to understand the predictive power of the following variables: wet-bulb globe temperature, average running speed, initial Tcore , body mass, differences between Tcore and skin temperature (Tskin ), sweat rate, maximal oxygen uptake, heart rate and change in body mass. Our data indicated that Tcore increased continuously during exercise, attaining 39.6 ± 0.5°C (mean ± SD) after 53.9 ± 7.5 min of treadmill running. This end-Tcore value was primarily predicted by heart rate, sweat rate, differences between Tcore and Tskin , wet-bulb globe temperature, initial Tcore , running speed and maximal oxygen uptake, in this order of importance (β power values corresponded to 0.462, -0.395, 0.393, 0.327, 0.277, 0.244 and 0.228, respectively). In conclusion, several factors predict Tcore in athletes subjected to self-paced running under environmental heat stress. Moreover, considering the conditions investigated, heart rate and sweat rate, two practical (non-invasive) variables, have the highest predictive power.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Matheus M. S. Nunes‐Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Rúbio S. Bruzzi
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Carlos H. Souza
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - João P. Uendeles‐Pinto
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Luciano S. Prado
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| |
Collapse
|
3
|
Tseng CK, Liu TT, Lin TC, Cheng CP. Expression of heme oxygenase-1 in type II pneumocytes protects against heatstroke-induced lung damage. Cell Stress Chaperones 2021; 26:67-76. [PMID: 32844330 PMCID: PMC7736423 DOI: 10.1007/s12192-020-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022] Open
Abstract
Heatstroke (HS) is an acute clinical disease characterized by abnormal hyperthermia and multi-organ dysfunction. Heme oxygenase (HO)-1, also called heat shock protein (HSP)32, is induced by hyperthermia and also plays protective roles in many lung disease models. Based on this phenomenon, we investigated the protective role of endogenous HO-1 in heat-induced lung damage in rats. Male Sprague-Dawley (SD) rats were separated into three groups: (a) normothermic sham, (b) HS, and (c) SnPP (inhibitor of HO-1) pretreatment rats. In the HS group, rats were killed at various time points (1, 3, 6, and 12 h after heat exposure) in order to analyze messenger ribonucleic acid (mRNA) and protein levels. Lung sections were examined for tissue damage and localization of HO-1 using immunofluorescence double labeling. We found that HS induced lung pathology (congested and thickened lung septa). The level of HO-1 mRNA was increased at 1 h, and the protein level peaked at 6 h after heat exposure. Pretreatment with SnPP (tin-protoporphyrin IX, 30 mg/kg, intraperitoneal injection for 1 h before heat exposure) aggravated the lung damage. Furthermore, we demonstrated HO-1 expression in lung type II pneumocytes. Our results suggest that endogenous HO-1 is protective against HS-induced lung damage. Induction of HO-1 may be a potential therapeutic strategy for treating heat-related diseases.
Collapse
Affiliation(s)
- Chin-Kun Tseng
- Tri-Service General Hospital Songsang Branch, National Defense Medical Center, Taipei, Taiwan
- Department Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Ta Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
- Nursing Department, Center for General Education, Kang-Ning University, Tainan, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, No.161, Sec. 6, Min-Chuan E. Rd., Neihu, 114, Taipei, Taiwan.
| |
Collapse
|
4
|
Marshall H, Chrismas BCR, Suckling CA, Roberts JD, Foster J, Taylor L. Chronic probiotic supplementation with or without glutamine does not influence the eHsp72 response to a multi-day ultra-endurance exercise event. Appl Physiol Nutr Metab 2017; 42:876-883. [PMID: 28460195 DOI: 10.1139/apnm-2017-0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Probiotic and glutamine supplementation increases tissue Hsp72, but their influence on extracellular Hsp72 (eHsp72) has not been investigated. The aim of this study was to investigate the effect of chronic probiotic supplementation, with or without glutamine, on eHsp72 concentration before and after an ultramarathon. Thirty-two participants were split into 3 independent groups, where they ingested probiotic capsules (PRO; n = 11), probiotic + glutamine powder (PGLn; n = 10), or no supplementation (CON; n = 11), over a 12-week period prior to commencement of the Marathon des Sables (MDS). eHsp72 concentration in the plasma was measured at baseline, 7 days pre-race, 6-8 h post-race, and 7 days post-race. The MDS increased eHsp72 concentrations by 124% (F[1,3] = 22.716, p < 0.001), but there was no difference in the response between groups. Additionally, PRO or PGLn supplementation did not modify pre- or post-MDS eHsp72 concentrations compared with CON (p > 0.05). In conclusion, the MDS caused a substantial increase in eHsp72 concentration, indicating high levels of systemic stress. However, chronic PRO or PGLn supplementation did not affect eHsp72 compared with control pre- or post-MDS. Given the role of eHsp72 in immune activation, the commercially available supplements used in this study are unlikely to influence this cascade.
Collapse
Affiliation(s)
- Hannah Marshall
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | | | - Craig Anthony Suckling
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Justin D Roberts
- c Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Josh Foster
- a Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford MK41 9EA, UK
| | - Lee Taylor
- d ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopaedic and Sports Medicine Hospital, Aspire Zone, PO Box 29222, Doha, Qatar.,e School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TT, UK
| |
Collapse
|
5
|
Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 2016; 21:1021-1035. [PMID: 27511024 PMCID: PMC5083671 DOI: 10.1007/s12192-016-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK.
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK.
| | - James A Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford, UK
| | - Peter W Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
6
|
Taylor L, Lee BJ, Gibson OR, Midgley AW, Watt P, Mauger A, Castle P. Effective microorganism - X attenuates circulating superoxide dismutase following an acute bout of intermittent running in hot, humid conditions. Res Sports Med 2016; 24:130-44. [PMID: 27031165 DOI: 10.1080/15438627.2015.1126279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study determined the effectiveness of antioxidant supplementation on high-intensity exercise-heat stress. Six males completed a high-intensity running protocol twice in temperate conditions (TEMP; 20.4°C), and twice in hot conditions (HOT; 34.7°C). Trials were completed following7 days supplementation with 70 ml·day(-1) effective microorganism-X (EM-X; TEMPEMX or HOTEMX) or placebo (TEMPPLA or HOTPLA). Plasma extracellular Hsp72 (eHsp72) and superoxide dismutase (SOD) were measured by ELISA. eHsp72 and SOD increased pre-post exercise (p < 0.001), with greater eHsp72 (p < 0.001) increases observed in HOT (+1.5 ng·ml(-1)) compared to TEMP (+0.8 ng·ml(-1)). EM-X did not influence eHsp72 (p > 0.05). Greater (p < 0.001) SOD increases were observed in HOT (+0.22 U·ml(-1)) versus TEMP (+0.10 U·ml(-1)) with SOD reduced in HOTEMX versus HOTPLA (p = 0.001). Physiological and perceptual responses were all greater (p < 0.001) in HOT versus TEMP conditions, with no difference followed EM-X (p > 0.05). EM-X supplementation attenuated the SOD increases following HOT, potentiating its application as an ergogenic aid to ameliorate oxidative stress.
Collapse
Affiliation(s)
- Lee Taylor
- a Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK.,g ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital , Athlete Health and Performance Research Centre , Doha , Qatar
| | - Ben J Lee
- b Department of Biomolecular and Sport Sciences , University of Coventry , Coventry , UK.,h Department for Health , University of Bath , Claverton Down , Bath , UK
| | - Oliver R Gibson
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK.,i Centre for Sports Medicine and Human Performance (CSMHP) , Brunel University London , Uxbridge , UK
| | - Adrian W Midgley
- d Sport and Physical Activity Department , Edge Hill University , Ormskirk , United Kingdom
| | - Peter Watt
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK
| | - Alexis Mauger
- e Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham Maritime , UK
| | - Paul Castle
- f Muscle Cellular and Molecular Physiology (MCMP) & Applied Sport and Exercise Science(ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK
| |
Collapse
|
7
|
Stary CM, Hogan MC. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers. J Appl Physiol (1985) 2016; 120:1260-6. [PMID: 26869714 DOI: 10.1152/japplphysiol.01060.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: <3 mmHg) or AMP kinase activation had no effect on HSP72 mRNA levels. These results suggest that the intermittent cytosolic Ca(2+) transient that occurs with skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
8
|
Henstridge DC, Febbraio MA, Hargreaves M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl Physiol (1985) 2015; 120:683-91. [PMID: 26679615 DOI: 10.1152/japplphysiol.00811.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022] Open
Abstract
By its very nature, exercise exerts a challenge to the body's cellular homeostatic mechanisms. This homeostatic challenge affects not only the contracting skeletal muscle but also a number of other organs and results over time in exercise-induced adaptations. Thus it is no surprise that heat shock proteins (HSPs), a group of ancient and highly conserved cytoprotective proteins critical in the maintenance of protein and cellular homeostasis, have been implicated in exercise/activity-induced adaptations. It has become evident that HSPs such as HSP72 are induced or activated with acute exercise or after chronic exercise training regimens. These observations have given scientists an insight into the protective mechanisms of these proteins and provided an opportunity to exploit their protective role to improve health and physical performance. Although our knowledge in this area of physiology has improved dramatically, many questions still remain unanswered. Further understanding of the role of HSPs in exercise physiology may prove beneficial for therapeutic targeting in diseased patient cohorts, exercise prescription for disease prevention, and training strategies for elite athletes.
Collapse
Affiliation(s)
- Darren C Henstridge
- Cellular & Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia;
| | - Mark A Febbraio
- Cellular & Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Division of Diabetes & Metabolism, The Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; and
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Australia
| |
Collapse
|
9
|
Lee BJ, Sukri NM, Ogden H, Vine C, Thake CD, Turner JE, Bilzon JLJ. A comparison of two commercially available ELISA methods for the quantification of human plasma heat shock protein 70 during rest and exercise stress. Cell Stress Chaperones 2015; 20:917-26. [PMID: 26111949 PMCID: PMC4595431 DOI: 10.1007/s12192-015-0610-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022] Open
Abstract
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp'd(™) HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng · mL(-1); range 0.08 to 14.01 ng · mL(-1)), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp'd(®) ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.
Collapse
Affiliation(s)
- B J Lee
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Biomolecular and Sport Sciences, Coventry University, Priory Street, Coventry, UK.
| | - N M Sukri
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - H Ogden
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - C Vine
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - C D Thake
- Department of Biomolecular and Sport Sciences, Coventry University, Priory Street, Coventry, UK
| | - J E Turner
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - J L J Bilzon
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
10
|
Gibson OR, Mee JA, Taylor L, Tuttle JA, Watt PW, Maxwell NS. Isothermic and fixed-intensity heat acclimation methods elicit equal increases in Hsp72 mRNA. Scand J Med Sci Sports 2015; 25 Suppl 1:259-68. [DOI: 10.1111/sms.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- O. R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - J. A. Mee
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - L. Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - J. A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - P. W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - N. S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| |
Collapse
|
11
|
Bruchim Y, Aroch I, Eliav A, Abbas A, Frank I, Kelmer E, Codner C, Segev G, Epstein Y, Horowitz M. Two years of combined high-intensity physical training and heat acclimatization affect lymphocyte and serum HSP70 in purebred military working dogs. J Appl Physiol (1985) 2014; 117:112-8. [PMID: 24903923 DOI: 10.1152/japplphysiol.00090.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Military working dogs in hot countries undergo exercise training at high ambient temperatures for at least 9 mo annually. Physiological adaptations to these harsh conditions have been extensively studied; however, studies focusing on the underlying molecular adaptations are limited. In the current study, military working dogs were chosen as a model to examine the effects of superimposing endurance exercise on seasonal acclimatization to environmental heat stress. The lymphocyte HSP70 profile and extracellular HSP70 were studied in tandem with physiological performance in the dogs from their recruitment for the following 2 yr. Aerobic power and heat shock proteins were measured at the end of each summer, with physical performance tests (PPTs) in an acclimatized room (22°C). The study shows that together with a profound enhancement of aerobic power and physical performance, hsp72 mRNA induction immediately post-PPT and 45 min later, progressively increased throughout the study period (relative change in median lymphocyte hsp72 mRNA first PPT, 4.22 and 12.82; second PPT, 17.19 and 109.05, respectively), whereas induction of HSP72 protein was stable. These responses suggest that cellular/molecular adaptive tools for maintaining HSP72 homeostasis exist. There was also a significant rise in basal and peak median optical density extracellular HSP at the end of each exercise test (first PPT, 0.13 and 0.15; second PPT, 1.04 and 1.52, respectively). The relationship between these enhancements and improved aerobic power capacity is not yet fully understood.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem;
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Ady Eliav
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Ilan Frank
- Israel Defense Force Military Working Dog Unit
| | - Efrat Kelmer
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Carolina Codner
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Gilad Segev
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Yoram Epstein
- Heller Institute of Medical Research, Chaim Sheba Medical Center, Tel Hashomer, and Tel-Aviv University Medical School, Israel; and
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| |
Collapse
|
12
|
Effects of heat acclimation on changes in oxidative stress and inflammation caused by endurance capacity test in the heat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:107137. [PMID: 24895525 PMCID: PMC4034648 DOI: 10.1155/2014/107137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/15/2014] [Accepted: 04/25/2014] [Indexed: 11/21/2022]
Abstract
Background. The aim was to determine the effect of heat acclimation (HA) on oxidative stress (OxS) and inflammation in resting conditions and on the response pattern of these parameters to exhausting endurance exercise. Methods. Parameters of OxS and inflammation were measured in non-heat-acclimated status (NHAS) and after a 10-day HA program (i.e., in heat-acclimated status; HAS) both at baseline and after an endurance capacity (EC) test in the heat. Results. As a result of HA, EC increased from 88.62 ± 27.51 to 161.95 ± 47.80 minutes (P < 0.001). HA increased OxS level: total peroxide concentration rose from 219.38 ± 105.18 to 272.57 ± 133.39 μmol/L (P < 0.05) and oxidative stress index (OSI) from 14.97 ± 8.24 to 20.46 ± 11.13% (P < 0.05). In NHAS, the EC test increased OxS level: total peroxide concentration rose from 219.38 ± 105.18 to 278.51 ± 125.76 μmol/L (P < 0.001) and OSI from 14.97 ± 8.24 to 19.31 ± 9.37% (P < 0.01). However, in HAS, the EC test reduced OSI from 20.46 ± 11.13 to 16.83 ± 8.89% (P < 0.05). The value of log high-sensitive C-reactive protein increased from −0.32 ± 0.32 to −0.12 ± 0.34 mg/L (P < 0.05) in NHAS and from −0.31 ± 0.47 to 0.28 ± 0.46 mg/L (P < 0.001) in HAS. Conclusion. HA increases OxS level. However, beneficial adaptive effects of HA on acute exhaustive exercise-induced changes in OxS and inflammation parameters occur in a hot environment.
Collapse
|
13
|
Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS. Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure. Cell Stress Chaperones 2014; 19:389-400. [PMID: 24085588 PMCID: PMC3982022 DOI: 10.1007/s12192-013-0468-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular heat shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50 % [Formula: see text] in three conditions (TEMP, 20 °C/63 % RH; HOT, 30.2 °C/51%RH; VHOT, 40.0 °C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4 %) (p < 0.05), but not TEMP (-1.9 %) or HOT (+25.7 %) conditions. eHsp72 returned to baseline values within 24 h in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5 and 39.0 °C, duration Trec ≥38.5 and ≥39.0 °C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- School of Sport and Service Management, Welkin Science Laboratories, University of Brighton, 30 Carlisle Road, Eastbourne, UK,
| | | | | | | | | | | |
Collapse
|
14
|
Kaldur T, Kals J, Ööpik V, Burk A, Kampus P, Zagura M, Zilmer M, Unt E. Heat acclimation increases arterial elasticity in young men. Appl Physiol Nutr Metab 2013; 38:922-7. [DOI: 10.1139/apnm-2012-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major physiological adaptations that occur during heat acclimation (HA) are well documented. However, no studies have provided compelling evidence about the effect of HA on arterial elastic properties. The aim of this study was to examine the changes in large artery elasticity (LAE) and small artery elasticity (SAE) concomitant with HA and to determine the potential relationships among changes in arterial elasticity, baseline aerobic fitness level, and improvement in endurance capacity (EC). During 10-day HA, the subjects (n = 21) exercised daily on a treadmill for 110 min at an intensity of 55%–60% of peak oxygen uptake in a climatic chamber preset to 42 °C and 18% relative humidity. EC was tested in the heat before and after HA. Arterial elasticity was assessed by diastolic pulse wave analysis (HDI/Pulse Wave CR-2000) at baseline and after HA. Blood samples were drawn at baseline. After HA, there was a 17% increase in LAE (from 21.19 ± 4.72 mL·mm Hg−1 × 10 to 24.77 ± 5.91 mL·mm Hg−1 × 10, p < 0.05) and an 18% increase in SAE (from 9.32 ± 1.76 mL·mm Hg−1 × 100 to 10.98 ± 1.75 mL·mm Hg−1 × 100, p < 0.01). EC increased by 86% (from 88.62 ± 27.51 min to 161.95 ± 47.80 min, p < 0.001) as a result of HA. No significant associations were revealed between changes in arterial elasticity parameters and improvement in EC or baseline aerobic fitness level. We demonstrated, for the first time, that HA has a positive impact on the parameters of arterial elasticity. Further investigations are needed to determine the mechanisms underlying these changes and the potential relationships among arterial elasticity, aerobic fitness level, and EC.
Collapse
Affiliation(s)
- Triin Kaldur
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 1a Puusepa Street, Tartu 50406, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Jaak Kals
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
- Department of Vascular Surgery, Tartu University Hospital, 8 Puusepa Street, Tartu 51014, Estonia
| | - Vahur Ööpik
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Andres Burk
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Priit Kampus
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
- Department of Cardiology, University of Tartu, 8 Puusepa Street, Tartu 51014, Estonia
| | - Maksim Zagura
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | - Eve Unt
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 1a Puusepa Street, Tartu 50406, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Department of Sports Medicine and Rehabilitation, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| |
Collapse
|
15
|
Tang Y, McGoron AJ. Increasing the rate of heating: A potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy. Int J Hyperthermia 2013; 29:145-55. [DOI: 10.3109/02656736.2012.760757] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Périard JD, Ruell P, Caillaud C, Thompson MW. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity. Cell Stress Chaperones 2012; 17:375-83. [PMID: 22222935 PMCID: PMC3312965 DOI: 10.1007/s12192-011-0313-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022] Open
Abstract
Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P < 0.001). The rate of rise in core temperature was 2.1°C h(-1) greater in the 75% trial than in the 60% trial (P < 0.001). A significant increase and correlation was observed between eHsp72 and eHsp27 concentrations at exhaustion (P < 0.005). eHsp72 was highly correlated with the core temperature attained (60% trial) and the rate of increase in core temperature (75% trial; P < 0.05). However, no common predictor variable was associated with the expression of both eHsps. The similarity in expression of eHsp72 and eHsp27 during moderate- and high-intensity exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.
Collapse
Affiliation(s)
- Julien D Périard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | | | |
Collapse
|