1
|
Tabuchi A, Kikuchi Y, Takagi R, Tanaka Y, Hoshino D, Poole DC, Kano Y. In vivo intracellular Ca 2+ profiles after eccentric rat muscle contractions: addressing the mechanistic bases for repeated bout protection. J Appl Physiol (1985) 2025; 138:1-12. [PMID: 39546386 DOI: 10.1152/japplphysiol.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Eccentric contractions (ECC) are accompanied by the accumulation of intracellular calcium ions ([Ca2+]i) and induce skeletal muscle damage. Suppressed muscle damage in repeated bouts of ECC is well characterized; however, whether it is mediated by altered Ca2+ profiles remains unknown. We tested the hypothesis that repeated ECC suppresses Ca2+ accumulation via adaptations in Ca2+ regulation. Male Wistar rats were divided into two groups: ECC single bout (ECC-SB) and repeated bout (ECC-RB). Tibialis anterior (TA) muscles were subjected to ECC (40 times, 5 sets) once (ECC-SB) or twice 14 days apart (ECC-RB). Under anesthesia, the TA muscle was loaded with Ca2+ indicator Fura 2-AM, and the 340/380 nm ratio was evaluated as [Ca2+]i. Ca2+ handling proteins were measured by Western blots. ECC induced [Ca2+]i increase in both groups, but ECC-RB evinced a markedly suppressed [Ca2+]i (Time: P < 0.01, Group: P = 0.0357). Five hours post-ECC, in contrast to the localized [Ca2+]i accumulation in ECC-SB, ECC-RB exhibited lower and more uniform [Ca2+]i (P < 0.01). In ECC-RB, mitochondria Ca2+ uniporter complex (MCU) components MCU and MICU2 were significantly increased pre-second ECC bout (P < 0.01), and both SERCA1 and MICU1 were better preserved after contractions (P < 0.01). Fourteen days after novel ECC, skeletal muscle mitochondrial Ca2+ regulating proteins were elevated. Following subsequent ECC, [Ca2+]i accumulation and muscle damage were suppressed and SERCA1 and MICU1 preserved. These findings suggest that tolerance to a subsequent ECC bout is driven, at least in part, by enhanced mitochondrial and sarcoplasmic reticulum Ca2+ regulation.NEW & NOTEWORTHY We demonstrated a reduced [Ca2+]i profile with suppressed muscle damage after a repeated bout of ECC in vivo: the ECC-induced immediate [Ca2+]i increase was suppressed and the persistence of increased [Ca2+]i with localized accumulation was diminished after repeated ECC. This effect occurred consonant with the upregulation of the mitochondrial Ca2+ uniporter complex and better preservation of SERCA1 and MICU1. These findings suggest that the mechanistic bases for repeated bout protection involve adaptation of Ca2+ regulation.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Optics and Engineering Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Yudai Kikuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Ryo Takagi
- Department of Physical Therapy, School of Nursing and Rehabilitation Sciences, Showa University, Kanagawa, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
2
|
Watanabe D, Nishi M, Liu F, Bian Y, Takeshima H. Ca 2+ storage function is altered in the sarcoplasmic reticulum of skeletal muscle lacking mitsugumin 23. Am J Physiol Cell Physiol 2024; 326:C795-C809. [PMID: 38223925 DOI: 10.1152/ajpcell.00440.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Mitsugumin 23 (MG23) has been identified as a ball-shaped cation channel in the sarcoplasmic reticulum (SR) but its physiological role remains unclear. This study aimed to examine the contribution of MG23 to Ca2+ storage function in skeletal muscle by using Mg23-knockout (Mg23-/-) mice. There was no difference in the isometric specific force of the extensor digitorum longus (EDL) and soleus (SOL) muscles between Mg23-/- and wild-type (Wt) mice. In Mg23-/- mice, the calsequestrin 2 content in the EDL muscle and SR Ca2+-ATPase 2 content in the SOL were increased. We have examined SR and myofibril functions using mechanically skinned fibers and determined their fiber types based on the response to Sr2+, which showed that Mg23-/- mice, compared with Wt, had: 1) elevated total Ca2+ content in the membranous components including SR, mitochondria, and transverse tubular system referred to as endogenous Ca2+ content, in both type I and II fibers of the EDL and SOL; 2) increased maximal Ca2+ content in both type I and II fibers of the EDL and SOL; 3) decreased SR Ca2+ leakage in type I fibers of the SOL; and 4) enhanced SR Ca2+ uptake in type I fibers of the SOL, although myofibril function was not different in both type I and II fibers of the SOL and EDL muscles. These results suggest that MG23 decreases SR Ca2+ storage in both type I and type II fibers, likely due to increased SR Ca2+ leakage.NEW & NOTEWORTHY The function of calcium storage within sarcoplasmic reticulum (SR) plays a pivotal role in influencing the health and disease states of skeletal muscle. In the present study, we demonstrated that mitsgumin 23, a novel non-selective cation channel, modifies SR Ca2+ storage in skeletal muscle fibers. These findings provide valuable insights into the physiological regulation of Ca2+ in skeletal muscle, offering significant potential for uncovering the mechanisms underlying muscle fatigue, muscle adaptation, and muscle diseases.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Feng Liu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuhan Bian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Kanzaki K, Watanabe D, Shi J, Wada M. Mechanisms of eccentric contraction-induced muscle damage and nutritional supplementations for mitigating it. J Muscle Res Cell Motil 2022; 43:147-156. [PMID: 35854160 DOI: 10.1007/s10974-022-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan
| | - Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan.
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
4
|
Ashida Y, Himori K, Tamai K, Kimura I, Yamada T. Preconditioning contractions prevent prolonged force depression and Ca 2+-dependent proteolysis of STAC3 after damaging eccentric contractions. J Appl Physiol (1985) 2021; 131:1399-1407. [PMID: 34590910 DOI: 10.1152/japplphysiol.00463.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preconditioning contractions (PCs) have been shown to markedly improve recovery from eccentric contractions (ECCs)-induced force depression. We here examined the mechanism behind the effects of PCs with focusing on the SH3 and cysteine-rich domain 3 (STAC3) that is essential for coupling membrane depolarization to Ca2+ release from the sarcoplasmic reticulum. Rat medial gastrocnemius (MG) muscles were excised immediately (REC0), 1 day (REC1), and 4 days (REC4) after exposure to 100 repeated damaging ECCs in vivo. PCs with 10 repeated nondamaging ECCs were applied 2 days before the damaging ECCs. Damaging ECCs induced in vivo isometric torque depression at 50 and 100 Hz stimulation frequencies, which was accompanied by a significant decrease in the amount of full-length STAC3, an activation of calpain 1, and an increased number of Evans Blue dye-positive fibers in MG muscles at REC1 and REC4. Interestingly, PCs attenuated all these deleterious alterations induced by damaging ECCs. Moreover, mechanistic experiments performed on normal muscle samples exposed to various concentration of Ca2+ showed a Ca2+-dependent proteolysis of STAC3, which was prevented by calpain inhibitor MDL-28170. In conclusion, PCs may improve recovery from force depression after damaging ECCs, in part by inhibiting the loss of STAC3 due to the increased permeability of cell membrane and subsequent activation of calpain 1.NEW & NOTEWORTHY The SH3 and cysteine-rich domain 3 (STAC3) is a skeletal muscle-specific protein that couples membrane depolarization to sarcoplasmic reticulum Ca2+ release. No studies, however, examined the role of STAC3 in protective effects of preconditioning contractions (PCs) against damaging eccentric contractions (ECCs). Here, we demonstrate that PCs may improve recovery from damaging ECCs-induced force depression, in part by an inhibition of Ca2+-dependent proteolysis of STAC3 due to increased membrane permeability and subsequent calpain 1 activation.
Collapse
Affiliation(s)
- Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Katsuyuki Tamai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Iori Kimura
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
5
|
Watanabe D, Ikegami R, Kano Y. Predominant cause of faster force recovery in females than males after intense eccentric contractions in mouse fast-twitch muscle. J Physiol 2021; 599:4337-4356. [PMID: 34368970 DOI: 10.1113/jp281927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We investigated the mechanisms underlying faster force recovery from eccentric contractions (ECCs) in female than in male mice, focusing on mitochondrial responses. At 3 days after repeated ECCs (REC3), female mice showed faster recovery from ECC-induced force depression than male mice. At REC3, the mitochondria in females displayed superior responses to those in males: (i) mitochondrial Ca2+ uniporter content of muscles at REC3 was higher than that of rested muscles in females, and (ii) mitochondrial volume density in females was higher than that in males at REC3. Ovariectomized (OVX) female mice showed lower mitochondrial responses at REC3, similar to those observed in male mice, but oestrogen replacement nullified such lower responses in OVX. We concluded that: (i) superior mitochondrial responses after ECCs, at least in part, cause faster force recovery from ECCs in females than in males, and (ii) oestrogen contributes to such superior responses in the mitochondria in females. ABSTRACT The purpose of this study was to investigate the mechanisms underlying sex differences in force recovery after eccentric contractions (ECCs). The left limbs of female and male mice were exposed to repeated ECCs (five sets of 50 contractions) elicited in vivo in the plantar flexor muscles. Isometric torques were measured before, immediately and at 3 days after ECCs (REC3), and gastrocnemius muscles obtained at REC3 were used for biochemical and morphological analyses. At REC3, a greater torque depression at 40 Hz was observed in males than females. Additionally, the following differences were observed at REC3: (i) in males but not females, triad structure was distorted, (ii) mitochondrial Ca2+ uniporter (MCU) content was increased in females but not in males, and (iii) mitochondrial volume density at REC3 was lower in males than in females. To examine the contribution of oestrogen to torque recovery, female mice were assigned to sham-operated (Sham), ovariectomized (OVX) and OVX treated with 17β-oestradiol (OVX + E2) groups. At REC3, (i) greater torque depression at 40 Hz was observed in the OVX group than in the Sham and OVX + E2 groups, (ii) MCU content was increased in the Sham and OVX + E2 groups but not the OVX group, and (iii) mitochondrial volume density at REC3 was lower in the OVX group than the Sham and OVX + E2 groups. These results suggest that faster force recovery in females than in males is, at least partly, ascribable to superior mitochondrial responses, and oestrogen supplementation, in part, enhances such responses.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Humanity and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Ikegami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yutaka Kano
- Department of Engineering Sciences, Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
6
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. l-arginine ingestion inhibits eccentric contraction-induced proteolysis and force deficit via S-nitrosylation of calpain. Physiol Rep 2019; 6. [PMID: 29368397 PMCID: PMC5789731 DOI: 10.14814/phy2.13582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022] Open
Abstract
It has been shown that calpains are involved in the proteolysis of muscle proteins that occurs with eccentric contraction (ECC) and that exogenously applied nitric oxide decreases the calpain‐mediated proteolysis. The aim of this study was to examine the effects of ingestion of l‐arginine (ARG), a nitric oxide precursor, on ECC‐related calpain activation. In the first and second experiments, male Wistar rats were given ARG in water for 7 days starting from 3 days before the ECC protocol (average ingestion, ~600 mg kg‐body wt−1 day−1). Tibialis anterior muscles underwent 200 repeated ECCs and, subsequently, were excised 3 days later. Whole muscle analyses (the first experiment) revealed that ARG attenuated ECC‐induced force deficit and autolysis of calpain‐1, and increased the amounts of S‐nitrosylated calpain‐1. Regarding ryanodine receptor (RyR) and dihydropyridine receptor (DHPR), ECC‐induced proteolysis was completely inhibited by ARG, whereas the inhibition was partial for junctophilin‐1 (JP1). Skinned fiber analyses (the second experiment) showed that ARG also inhibited ECC‐elicited reductions in the ratio of depolarization‐induced to maximum Ca2+‐activated force. In the third experiment, homogenates of rested muscles were treated with S‐nitrosylating agent, S‐nitrosoglutathione (GSNO), and/or high Ca2+ concentration ([Ca2+]). Treatment with high [Ca2+] and without GSNO produced proteolysis of RyR, DHPR, and JP1. On the other hand, treatment with high [Ca2+] and GSNO caused complete inhibition of RyR and DHPR proteolysis and partial inhibition of JP1 proteolysis. These results indicate that ARG ingestion can attenuate ECC‐induced proteolysis of Ca2+ regulatory proteins and force deficit by decreasing calpain activation via S‐nitrosylation.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
|
8
|
Yamada R, Himori K, Tatebayashi D, Ashida Y, Ikezaki K, Miyata H, Kanzaki K, Wada M, Westerblad H, Yamada T. Preconditioning contractions prevent the delayed onset of myofibrillar dysfunction after damaging eccentric contractions. J Physiol 2018; 596:4427-4442. [PMID: 30062729 DOI: 10.1113/jp276026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/30/2018] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS We examined the mechanisms underlying the positive effect of preconditioning contractions (PCs) on the recovery of muscle force after damaging eccentric contractions (ECCs). The mechanisms underlying the immediate force decrease after damaging ECCs differ from those causing depressed force with a few days' delay, where reactive oxygen species (ROS) produced by invading immune cells play an important causative role. PCs counteracted the delayed onset force depression and this could be explained by prevention of immune cell invasion, which resulted in decreased myeloperoxidase-mediated ROS production, hence avoiding cell membrane disruption, calpain activation and degenerative changes in myosin and actin molecules. ABSTRACT Preconditioning contractions (PCs) have been shown to result in markedly improved contractile function during the recovery periods after muscle damage from eccentric contractions (ECCs). Here, we examined the mechanisms underlying the beneficial effect of PCs with a special focus on the myofibrillar function. Rat medial gastrocnemius muscles were exposed to 100 repeated damaging ECCs in situ and excised immediately (recovery 0, REC0) or after 4 days (REC4). PCs with 10 repeated non-damaging ECCs were applied 2 days before the damaging ECCs. PCs improved in situ maximal isometric torque at REC4. Skinned muscle fibres were used to directly assess changes in myofibrillar function. PCs prevented the damaging ECC-induced depression in maximum Ca2+ -activated force at REC4. PCs also prevented the following damaging ECC-induced effects at REC4: (i) the reduction in myosin heavy chain and actin content; (ii) calpain activation; (iii) changes in redox homeostasis manifested as increased expression levels of malondialdehyde-protein adducts, NADPH oxidase 2, superoxide dismutase 2 and catalase, and activation of myeloperoxidase (MPO); (iv) infiltration of immune cells and loss of cell membrane integrity. Additionally, at REC0, PCs enhanced the expression levels of heat shock protein (HSP) 70, HSP25, and αB-crystallin in the myofibrils and prevented the increased mRNA levels of granulocyte-macrophage colony-stimulating factor and interleukin-6. In conclusion, PCs prevent the delayed force depression after damaging ECCs by an HSP-dependent inhibition of degenerative changes in myosin and actin molecules caused by myeloperoxidase-induced membrane lysis and subsequent calpain activation, which were triggered by an inflammatory reaction with immune cells invading damaged muscles.
Collapse
Affiliation(s)
- Ryotaro Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Kazumi Ikezaki
- Graduate School of Medicine & Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Hirohumi Miyata
- Graduate School of Medicine & Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Keita Kanzaki
- Faculty of Health Science & Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
9
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. Ingestion of soy protein isolate attenuates eccentric contraction-induced force depression and muscle proteolysis via inhibition of calpain-1 activation in rat fast-twitch skeletal muscle. Nutrition 2018; 58:23-29. [PMID: 30273822 DOI: 10.1016/j.nut.2018.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Eccentric contraction (ECC) is a contraction in which skeletal muscles are stretched while contracting. The aim of this study was to determine how ingestion of soy protein isolate (SPI) or animal-based proteins affect force deficit, calpain activation, and proteolysis of calcium ion (Ca2+)-regulatory proteins in rat fast-twitch muscles subjected to ECC. METHODS In the first experiment, male Wistar rats were randomly assigned to a control and an SPI group, which were fed a 20% casein and a 20% SPI diet, respectively, for 28 d before the ECC protocol. Anterior crural muscles underwent 200 repeated ECCs and were excised 3 d later. In the second experiment, half of the SPI rats were given water containing NG-nitro-l-arginine-methyl ester (L-NAME), an inhibitor of nitric oxide synthase, for 3 d of recovery after ECC. RESULTS SPI ingestion attenuated ECC-induced force deficit, proteolysis of Ca2+-regulatory proteins, and autolysis of calpain-1. Co-ingestion of L-NAME inhibited SPI-associated increases in nitrite and nitrate levels and negated the force recovery effects of SPI. CONCLUSION These results suggest that SPI ingestion inhibits ECC-elicited force deficit and proteolysis of Ca2+ regulatory proteins, which is caused by inhibited activation of calpain-1 via increased nitric oxide production.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
10
|
Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, Kakigi R, Okada T, Sakurai T, Kawamori R, Watada H. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 2017; 5:5/7/e13250. [PMID: 28408640 PMCID: PMC5392533 DOI: 10.14814/phy2.13250] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P < 0.05), whereas muscle weight and cross-sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12-week HFD group, but not in the 4-week HFD group, compared with controls (P < 0.05). No changes in the expression levels of calcium handling-related proteins and myofibrillar proteins (myosin heavy chain and actin) were detected in the HFD models, whereas fast-troponin T-protein expression was decreased in the 12-week HFD group, but not in the 4-week HFD group (P < 0.05). These findings indicate that a long-term HFD, but not a short-term HFD, impairs contractile force in fast-twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan .,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Kanzaki K, Watanabe D, Kuratani M, Yamada T, Matsunaga S, Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle. J Appl Physiol (1985) 2017; 122:396-405. [DOI: 10.1152/japplphysiol.00270.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca2+-regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca2+-ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca2+-regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca2+-ATPase, undergo calpain-dependent proteolysis.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Mai Kuratani
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Yamada
- School of Health Sciences, Sapporo Medical University, Hokkaido, Japan; and
| | | | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Yamada T, Abe M, Lee J, Tatebayashi D, Himori K, Kanzaki K, Wada M, Bruton JD, Westerblad H, Lanner JT. Muscle dysfunction associated with adjuvant-induced arthritis is prevented by antioxidant treatment. Skelet Muscle 2015; 5:20. [PMID: 26161253 PMCID: PMC4496877 DOI: 10.1186/s13395-015-0045-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background In addition to the primary symptoms arising from inflamed joints, muscle weakness is prominent and frequent in patients with rheumatoid arthritis (RA). Here, we investigated the mechanisms of arthritis-induced muscle dysfunction in rats with adjuvant-induced arthritis (AIA). Methods AIA was induced in the knees of rats by injection of complete Freund’s adjuvant and was allowed to develop for 21 days. Muscle contractile function was assessed in isolated extensor digitorum longus (EDL) muscles. To assess mechanisms underlying contractile dysfunction, we measured redox modifications, redox enzymes and inflammatory mediators, and activity of actomyosin ATPase and sarcoplasmic reticulum (SR) Ca2+-ATPase. Results EDL muscles from AIA rats showed decreased tetanic force per cross-sectional area and slowed twitch contraction and relaxation. These contractile dysfunctions in AIA muscles were accompanied by marked decreases in actomyosin ATPase and SR Ca2+-ATPase activities. Actin aggregates were observed in AIA muscles, and these contained high levels of 3-nitrotyrosine and malondialdehyde-protein adducts. AIA muscles showed increased protein expression of NADPH oxidase 2/gp91phox, neuronal nitric oxide synthase, tumor necrosis factor α (TNF-α), and high-mobility group box 1 (HMGB1). Treatment of AIA rats with EUK-134 (3 mg/kg/day), a superoxide dismutase/catalase mimetic, prevented both the decrease in tetanic force and the formation of actin aggregates in EDL muscles without having any beneficial effect on the arthritis development. Conclusions Antioxidant treatment prevented the development of oxidant-induced actin aggregates and contractile dysfunction in the skeletal muscle of AIA rats. This implies that antioxidant treatment can be used to effectively counteract muscle weakness in inflammatory conditions.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Jaesik Lee
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1, Higashi, Hiroshima Japan
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
13
|
Carmona G, Guerrero M, Cussó R, Padullés JM, Moras G, Lloret M, Bedini JL, Cadefau JA. Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric exercise. Scand J Med Sci Sports 2014; 25:e547-57. [PMID: 25441613 DOI: 10.1111/sms.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/16/2022]
Abstract
Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage.
Collapse
Affiliation(s)
- G Carmona
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - M Guerrero
- Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| | - R Cussó
- Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| | - J M Padullés
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - G Moras
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - M Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - J L Bedini
- Hospital Clínic de Barcelona, Barcelona, Spain
| | - J A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain.,Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Supinski GS, Wang L, Song XH, Moylan JS, Callahan LA. Muscle-specific calpastatin overexpression prevents diaphragm weakness in cecal ligation puncture-induced sepsis. J Appl Physiol (1985) 2014; 117:921-9. [PMID: 25170071 DOI: 10.1152/japplphysiol.00975.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent work indicates that infections are a major contributor to diaphragm weakness in patients who are critically ill and mechanically ventilated, and that diaphragm weakness is a risk factor for death and prolonged mechanical ventilation. Infections activate muscle calpain, but many believe this is an epiphenomenon and that other proteolytic processes are responsible for infection-induced muscle weakness. We tested the hypothesis that muscle-specific overexpression of calpastatin (CalpOX; an endogenous calpain inhibitor) would attenuate diaphragm dysfunction in cecal ligation puncture (CLP)-induced sepsis. We studied 1) wild-type (WT) sham-operated mice, 2) WT CLP-operated mice, 3) CalpOX sham-operated mice, and 4) CalpOX CLP-operated mice (n = 9-10/group). Twenty-four hours after surgery, we assessed the diaphragm force-frequency relationship, diaphragm mass, and total protein content and diaphragm levels of talin and myosin heavy chain (MHC). CLP markedly reduced diaphragm-specific force generation (force/cross-sectional area), which was prevented by calpastatin overexpression (force averaged 21.4 ± 0.5, 6.9 ± 0.8, 22.4 ± 1.0, and 18.3 ± 1.3 N/cm(2), respectively, for WT sham, WT CLP, CalpOX sham, and CalpOX CLP groups, P < 0.001). Diaphragm mass and total protein content were similar in all groups. CLP induced talin cleavage and reduced MHC levels; CalpOX prevented these alterations. CLP-induced sepsis rapidly reduces diaphragm-specific force generation and is associated with cleavage and/or depletion of key muscle proteins (talin, MHC), effects prevented by muscle-specific calpastatin overexpression. These data indicate that calpain activation is a major cause of diaphragm weakness in response to CLP-induced sepsis.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Kanzaki K, Kuratani M, Matsunaga S, Yanaka N, Wada M. Three calpain isoforms are autolyzed in rat fast-twitch muscle after eccentric contractions. J Muscle Res Cell Motil 2014; 35:179-89. [PMID: 24557809 DOI: 10.1007/s10974-014-9378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The present study investigated changes in autolysis of three calpain isoforms in skeletal muscles undergoing eccentric contractions (ECC), leading to prolonged force deficits. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC in situ, excised immediately after or 3 or 6 days after cessation of ECC, and used for measures of force output and for biochemical analyses. Full restoration of tetanic force in ECC-treated muscles was not attained until 6 days of recovery. Maximal calpain activity determined by a fluorogenic substrate was unaltered immediately after ECC, but increased to 313 and 450 % after 3 and 6 days, respectively. Increases in the amount of autolyzed calpain-3 were apparent immediately and developed progressively with recovery time, whereas elevations of autolyzed μ- and m-calpain occurred after 3 and 6 days, respectively. The protein content was augmented only in m-calpain. It is suggested that the three calpain isoforms may be involved in the dismantling, repair, remodeling and/or regeneration processes in ECC-treated muscles.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki-shi, Okayama, 710-0292, Japan
| | | | | | | | | |
Collapse
|
16
|
Gondin J, Giannesini B, Vilmen C, Le Fur Y, Cozzone PJ, Bendahan D. Effects of a single bout of isometric neuromuscular electrical stimulation on rat gastrocnemius muscle: a combined functional, biochemical and MRI investigation. J Electromyogr Kinesiol 2011; 21:525-32. [PMID: 21345698 DOI: 10.1016/j.jelekin.2011.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/25/2010] [Accepted: 01/26/2011] [Indexed: 11/28/2022] Open
Abstract
While muscle damage resulting from electrically-induced muscle isometric contractions has been reported in humans, animal studies have failed to illustrate similar deleterious effects and it remains to be determined whether these conflicting results are related to differences regarding experimental procedures or to species. We have investigated in vivo, in rat gastrocnemius muscles, using experimental conditions as close as possible to those used in humans (i.e., muscle length, number of contractions, stimulated muscle), the effects of a single bout of neuromuscular electrical stimulation (NMES). Maximal tetanic force was measured before, immediately after and 1h and 1, 2, 3, 7 and 14 days after NMES. Magnetic resonance imaging measurements, including volume of gastrocnemius muscles and proton transverse relaxation time (T(2)) were performed at baseline and 3, 7, and 14 days after the NMES session. Control animals did not perform any exercise and measurements were recorded at the same time points. For both groups, blood creatine kinase (CK) activity was measured within the first 3 days that followed the initial evaluation. Maximal tetanic force decreased immediately after NMES whereas measurements performed 1h and the days afterwards were similar to the baseline values. CK activity, muscle volume and T(2) values were similar throughout the experimental protocol between the two groups. Under carefully controlled experimental conditions, isometric NMES per se did not induce muscle damage in rat gastrocnemius muscles on the contrary to what has been repeatedly reported in humans. Further experiments would then be warranted in order to clearly delineate these differences and to better understand the physiological events associated with muscle damage resulting from NMES-induced isometric contractions.
Collapse
Affiliation(s)
- Julien Gondin
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Université de la Méditerranée, Faculté de Médecine de Marseille, Marseille, France.
| | | | | | | | | | | |
Collapse
|