1
|
Dunn RA, Tinsley GM, Palmer TB, Benjamin CL, Sekiguchi Y. The Efficacy of Nutritional Strategies and Ergogenic Aids on Acute Responses and Chronic Adaptations to Exertional-Heat Exposure: A Narrative Review. Nutrients 2024; 16:3792. [PMID: 39599581 PMCID: PMC11597519 DOI: 10.3390/nu16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Global warming is attributed to an increased frequency of high ambient temperatures and humidity, elevating the prevalence of high-temperature-related illness and death. Evidence over recent decades highlights that tailored nutritional strategies are essential to improve performance and optimise health during acute and chronic exertional-heat exposure. Therefore, the purpose of this review is to discuss the efficacy of various nutritional strategies and ergogenic aids on responses during and following acute and chronic exertional-heat exposure. An outline is provided surrounding the application of various nutritional practices (e.g., carbohydrate loading, fluid replacement strategies) and ergogenic aids (e.g., caffeine, creatine, nitrate, tyrosine) to improve physiological, cognitive, and recovery responses to acute exertional-heat exposure. Additionally, this review will evaluate if the magnitude and time course of chronic heat adaptations can be modified with tailored supplementation practices. This review highlights that there is robust evidence for the use of certain ergogenic aids and nutritional strategies to improve performance and health outcomes during exertional-heat exposure. However, equivocal findings across studies appear dependent on factors such as exercise testing modality, duration, and intensity; outcome measures in relation to the ergogenic aid's proposed mechanism of action; and sex-specific responses. Collectively, this review provides evidence-based recommendations and highlights areas for future research that have the potential to assist with prescribing specific nutritional strategies and ergogenic aids in populations frequently exercising in the heat. Future research is required to establish dose-, sex-, and exercise-modality-specific responses to various nutritional practices and ergogenic aid use for acute and chronic exertional-heat exposure.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Ty B. Palmer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| |
Collapse
|
2
|
Bajolek K, Warne J. Electric Muscle Stimulation (EMS) Does Not Improve Anaerobic Performance Measures During a Repeated Wingate Test. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:725-731. [PMID: 35481945 DOI: 10.1080/02701367.2022.2052003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Introduction: The aim of this study was to examine differences between a control warm-up and an Electric Muscle Stimulation (EMS)-induced warm-up in off-road cyclists when examining anaerobic performance measures from a repeated Wingate test (WAnT). Methods: Twelve trained off-road cyclists completed a randomized crossover study (age: 31 ± 10 years, height: 176.79 ± 6.09 cm, body mass: 74.57 ± 4.77 kg). Participants completed two randomized, separate testing sessions involving a control warm-up and an EMS warm-up before undergoing the repeated WAnT, which was used to collect anaerobic performance and physiolo- gical measures during both sessions. High-frequency EMS was applied to the knee extensor muscles for 4 min after a standardized warm-up during the EMS session. Results: Analysis revealed that there were no significant differences between mean power output, peak power output, and percentage decrement between the two sessions. The EMS session resulted in significantly lower average HR values and significantly lower differences in pre-to-post-test blood lactate values when compared to the control session. Discussion: According to the results of this study, an acute application of EMS is not a useful tool for off-road cyclists to improve power output or maintain anaerobic capacity. Hence, its use before competition is questionable.
Collapse
Affiliation(s)
| | - Joe Warne
- Technological University Dublin - Tallaght Campus
- Setanta College, Thurles Enterprise Centre
| |
Collapse
|
3
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Seccato AS, Bello FD, Queiroz ACC, Marins JCB, Miarka B, Carvalho PHBD, Brito CJ. Hyperproteic supplementation attenuates muscle damage after simulated Olympic cross-country mountain biking competition: a randomized case-control study. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Bianca Miarka
- Universidade Federal de Juiz de Fora, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
5
|
Supplemental Protein during Heavy Cycling Training and Recovery Impacts Skeletal Muscle and Heart Rate Responses but Not Performance. Nutrients 2016; 8:nu8090550. [PMID: 27618091 PMCID: PMC5037535 DOI: 10.3390/nu8090550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of protein supplementation on cycling performance, skeletal muscle function, and heart rate responses to exercise were examined following intensified (ICT) and reduced-volume training (RVT). Seven cyclists performed consecutive periods of normal training (NT), ICT (10 days; average training duration 220% of NT), and RVT (10 days; training duration 66% of NT). In a crossover design, subjects consumed supplemental carbohydrate (CHO) or an equal amount of carbohydrate with added protein (CP) during and following each exercise session (CP = +0.94 g/kg/day protein during ICT; +0.39 g/kg/day during RVT). A 30-kilometer time trial performance (following 120 min at 50% Wmax) was modestly impaired following ICT (+2.4 ± 6.4% versus NT) and returned to baseline levels following RVT (−0.7 ± 4.5% versus NT), with similar responses between CHO and CP. Skeletal muscle torque at 120 deg/s benefited from CP, compared to CHO, following ICT. However, this effect was no longer present at RVT. Following ICT, muscle fiber cross-sectional area was increased with CP, while there were no clear changes with CHO. Reductions in constant-load heart rates (at 50% Wmax) following RVT were likely greater with CP than CHO (−9 ± 9 bpm). Overall it appears that CP supplementation impacted skeletal muscle and heart rate responses during a period of heavy training and recovery, but this did not result in meaningful changes in time trial performance.
Collapse
|
6
|
Hansen M, Bangsbo J, Jensen J, Krause-Jensen M, Bibby BM, Sollie O, Hall UA, Madsen K. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr 2016; 13:9. [PMID: 26949378 PMCID: PMC4779585 DOI: 10.1186/s12970-016-0120-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Background Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp. Methods In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25–29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function. Results In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment. Conclusions Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested immediately after each training session in both groups. These findings suggest that the addition of protein to a carbohydrate supplement consumed during exercise does not improve recovery or performance in elite cyclists despite high demands of daily exhaustive sessions during a one-week training camp.
Collapse
Affiliation(s)
- Mette Hansen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Matilde Krause-Jensen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Bo Martin Bibby
- Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Ulrika Andersson Hall
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Klavs Madsen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark ; Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Ormsbee MJ, Gorman KA, Miller EA, Baur DA, Eckel LA, Contreras RJ, Panton LB, Spicer MT. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Appl Physiol Nutr Metab 2016; 41:719-27. [PMID: 27329516 DOI: 10.1139/apnm-2015-0526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.
Collapse
Affiliation(s)
- Michael J Ormsbee
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA.,b Discipline of Biokinetics, Exercise, and Leisure Studies, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Katherine A Gorman
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Elizabeth A Miller
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Daniel A Baur
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa A Eckel
- c Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Robert J Contreras
- c Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lynn B Panton
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Maria T Spicer
- a Department of Nutrition, Food, and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
8
|
Camerino SRAES, Lima RCP, França TCL, Herculano EDA, Rodrigues DSA, Gouveia MGDS, Cameron LC, Prado ES. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct 2016; 7:872-80. [DOI: 10.1039/c5fo01054c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Keto analogue and amino acid supplementation decreases ammonemia during exercise without affecting performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - L. C. Cameron
- Laboratory of Protein Biochemistry
- Federal University of State of Rio de Janeiro
- Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | |
Collapse
|
9
|
Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med 2014; 44:655-70. [PMID: 24435468 DOI: 10.1007/s40279-013-0137-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein supplements are frequently consumed by athletes and recreationally-active individuals, although the decision to purchase and consume protein supplements is often based on marketing claims rather than evidence-based research. OBJECTIVE To provide a systematic and comprehensive analysis of literature examining the hypothesis that protein supplements enhance recovery of muscle function and physical performance by attenuating muscle damage and soreness following a previous bout of exercise. DATA SOURCES English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition and muscle, alone or in combination as keywords. STUDY SELECTION Inclusion criteria required studies to recruit healthy adults less than 50 years of age and to evaluate the effects of protein supplements alone or in combination with carbohydrate on performance metrics including time-to-exhaustion, time-trial or isometric or isokinetic muscle strength and markers of muscle damage and soreness. Twenty-seven articles were identified of which 18 dealt exclusively with ingestion of protein supplements to reduce muscle damage and soreness and improve recovery of muscle function following exercise, whereas the remaining 9 articles assessed muscle damage as well as performance metrics during single or repeat bouts of exercise. STUDY APPRAISAL AND SYNTHESIS METHODS Papers were evaluated based on experimental design and examined for confounders that explain discrepancies between studies such as dietary control, training state of participants, sample size, direct or surrogate measures of muscle damage, and sensitivity of the performance metric. RESULTS High quality and consistent data demonstrated there is no apparent relationship between recovery of muscle function and ratings of muscle soreness and surrogate markers of muscle damage when protein supplements are consumed prior to, during or after a bout of endurance or resistance exercise. There also appears to be insufficient experimental data demonstrating ingestion of a protein supplement following a bout of exercise attenuates muscle soreness and/or lowers markers of muscle damage. However, beneficial effects such as reduced muscle soreness and markers of muscle damage become more evident when supplemental protein is consumed after daily training sessions. Furthermore, the data suggest potential ergogenic effects associated with protein supplementation are greatest if participants are in negative nitrogen and/or energy balance. LIMITATIONS Small sample numbers and lack of dietary control limited the effectiveness of several investigations. In addition, studies did not measure the effects of protein supplementation on direct indices of muscle damage such as myofibrillar disruption and various measures of protein signaling indicative of a change in rates of protein synthesis and degradation. As a result, the interpretation of the data was often limited. CONCLUSIONS Overwhelmingly, studies have consistently demonstrated the acute benefits of protein supplementation on post-exercise muscle anabolism, which, in theory, may facilitate the recovery of muscle function and performance. However, to date, when protein supplements are provided, acute changes in post-exercise protein synthesis and anabolic intracellular signaling have not resulted in measureable reductions in muscle damage and enhanced recovery of muscle function. Limitations in study designs together with the large variability in surrogate markers of muscle damage reduced the strength of the evidence-base.
Collapse
|
10
|
Wirnitzer KC, Kornexl E. Energy and macronutrient intake of a female vegan cyclist during an 8-day mountain bike stage race. Proc (Bayl Univ Med Cent) 2014; 27:42-5. [PMID: 24381405 DOI: 10.1080/08998280.2014.11929052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This report describes the dietary intake of a vegan mountain biker (height, 161 cm; weight, 49.6 kg; body mass index, 19.1 kg/m(2); relative peak power output, 4.6 W/kg) during the Transalp Challenge 2004 (altitude climbed, 22,500 m; total distance, 662 km), illustrating an aggressive dietary strategy that allowed the cyclist to be competitive. She finished the 8-stage event in 42 hours (mixed category, rank 16; 514 minutes behind the winners of this category), cycling with an average heart rate of 79.5% of laboratory-determined maximum, spending 892 minutes and 1627 minutes at intensities below and above 80%, respectively. During racing, the consumption of energy was 69.3 MJ (1.65 MJ/h), 65.76 MJ from carbohydrates (92 g/h), which was 35% of calories and 40% of carbohydrate total intake, and the fluid ingested was 3 L/day (570 mL/h), 55% of the total fluid consumed.
Collapse
Affiliation(s)
| | - Elmar Kornexl
- Department of Sport Science, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|
11
|
Lewis EJ, Fraser SJ, Thomas SG, Wells GD. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages. J Int Soc Sports Nutr 2013; 10:11. [PMID: 23432855 PMCID: PMC3623621 DOI: 10.1186/1550-2783-10-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. Methods In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 – 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. Results In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant’s body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C blood sodium concentrations were lower than the INW group post-training (p = 0.031) with a trend towards significance in the G group (p = 0.069). Conclusion Ad libitum fluid consumption in cold conditions was insufficient in preventing a decrease in body mass and blood electrolyte concentration post-training. However, when a fixed volume of 11.5 mL.kg.-1.h-1 was consumed during warm condition training, hydration status was maintained by preventing changes in body mass and urine specific gravity.
Collapse
Affiliation(s)
- Evan Jh Lewis
- Faculty of Kinesiology and Physical Education, The University of Toronto, 55 Harbord Street, Toronto, ON M5R 2W6, Canada.
| | | | | | | |
Collapse
|