1
|
Sun C, Ding L, Zhang Q, Nie J, Zhao Y, Xu D, Liu Z, Wu B. Research on the effects of 15-day of head-down tilt bed rest on arterial hemodynamics and blood supply using Doppler ultrasound technology. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:34-43. [PMID: 40280641 DOI: 10.1016/j.lssr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 04/29/2025]
Abstract
Prolonged exposure to microgravity would cause cardiovascular deconditioning in astronauts, leading to physiological discomfort, decreased cognitive function, and reduced work efficiency. This study aims to explore the hemodynamic effects of short-term -6° head-down tilt bed rest (HDBR) on the human circulatory system and the regulation mechanisms of blood supply to the neck and extremities. An HDBR experiment with a duration of 29 days was conducted. Doppler ultrasound was employed to quantify the blood flow spectra of the left carotid (CA), brachial (BA), radial (RA), and femoral (FA) arteries in 14 volunteers before and after HDBR. Blood flow velocity curves were obtained through edge contour extraction technology, to calculate hemodynamic parameters. After HDBR, the FA diameter significantly decreased by 0.2 mm. The resistance index (RI) of the RA, pulsatility index (PI) of the RA and PI of the FA significantly increased. The minute blood flow volume (MBF) in the CA, BA, RA, and FA significantly decreased. The proportion of total blood flow volume (PTBF) to the CA significantly increased by 4.8 %, while the PTBF to the FA significantly decreased by 4.1 %. After HDBR, the blood flow velocity, MBF, and total blood supply in the CA and extremities arteries decreased. Vasoconstriction and increased resistance in the FA led to a decreased blood supply ratio to the lower extremities and an increased ratio to the neck. This study provides a theoretical basis for the prevention of cardiovascular deconditioning and the establishment of targeted countermeasures, which are significant for enhancing astronauts' physical performance.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li Ding
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiachen Nie
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yiyang Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Dong Xu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training, Beijing, 100094, China
| | - Zhongqi Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Bin Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training, Beijing, 100094, China.
| |
Collapse
|
2
|
Hodgkiss DD, Balthazaar SJT, Welch JF, Wadley AJ, Cox PA, Lucas RAI, Veldhuijzen van Zanten JJCS, Chiou SY, Lucas SJE, Nightingale TE. Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol. BMJ Open 2025; 15:e089756. [PMID: 39819908 PMCID: PMC11751795 DOI: 10.1136/bmjopen-2024-089756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Individuals with higher neurological levels of spinal cord injury (SCI) at or above the sixth thoracic segment (≥T6), exhibit impaired resting cardiovascular control and responses during upper-body exercise. Over time, impaired cardiovascular control predisposes individuals to lower cardiorespiratory fitness and thus a greater risk for cardiovascular disease and mortality. Non-invasive transcutaneous spinal cord stimulation (TSCS) has been shown to modulate cardiovascular responses at rest in individuals with SCI, yet its effectiveness to enhance exercise performance acutely, or promote superior physiological adaptations to exercise following an intervention, in an adequately powered cohort is unknown. Therefore, this study aims to explore the efficacy of acute TSCS for restoring autonomic function at rest and during arm-crank exercise to exhaustion (AIM 1) and investigate its longer-term impact on cardiorespiratory fitness and its concomitant benefits on cardiometabolic health and health-related quality of life (HRQoL) outcomes following an 8-week exercise intervention (AIM 2). METHODS AND ANALYSIS Sixteen individuals aged ≥16 years with a chronic, motor-complete SCI between the fifth cervical and sixth thoracic segments will undergo a baseline TSCS mapping session followed by an autonomic nervous system (ANS) stress test battery, with and without cardiovascular-optimised TSCS (CV-TSCS). Participants will then perform acute, single-session arm-crank exercise (ACE) trials to exhaustion with CV-TSCS or sham TSCS (SHAM-TSCS) in a randomised order. Twelve healthy, age- and sex-matched non-injured control participants will be recruited and will undergo the same ANS tests and exercise trials but without TSCS. Thereafter, the SCI cohort will be randomly assigned to an experimental (CV-TSCS+ACE) or control (SHAM-TSCS+ACE) group. All participants will perform 48 min of ACE twice per week (at workloads corresponding to 73-79% peak oxygen uptake), over a period of 8 weeks, either with (CV-TSCS) or without (SHAM-TSCS) cardiovascular-optimised stimulation. The primary outcomes are time to exhaustion (AIM 1) and cardiorespiratory fitness (AIM 2). Secondary outcomes for AIM 1 include arterial blood pressure, respiratory function, cerebral blood velocity, skeletal muscle tissue oxygenation, along with concentrations of catecholamines, brain-derived neurotrophic factor and immune cell dynamics via venous blood sampling pre, post and 90 min post-exercise. Secondary outcomes for AIM 2 include cardiometabolic health biomarkers, cardiac function, arterial stiffness, 24-hour blood pressure lability, energy expenditure, respiratory function, neural drive to respiratory muscles, seated balance and HRQoL (eg, bowel, bladder and sexual function). Outcome measures will be assessed at baseline, pre-intervention, post-intervention and after a 6-week follow-up period (HRQoL questionnaires only). ETHICS AND DISSEMINATION Ethical approval has been obtained from the Wales Research Ethics Committee 7 (23/WA/0284; 03/11/2024). The recruitment process began in February 2024, with the first enrolment in July 2024. Recruitment is expected to be completed by January 2026. The results will be presented at international SCI and sport-medicine conferences and will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN17856698.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jet J C S Veldhuijzen van Zanten
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Wahl U, Hirsch T. A systematic review of cardiovascular risk factors in patients with traumatic spinal cord injury. VASA 2021; 51:46-55. [PMID: 34852665 DOI: 10.1024/0301-1526/a000981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: The main risk factors for cardiac events, and particularly for the development of atherosclerosis, are diabetes mellitus, arterial hypertension, dyslipidemia and smoking. Patients with a traumatic spinal cord injury (SCI) may present with autonomic nervous system dysfunction depending on their level of spinal cord injury. Studies have found a rise in cardiovascular mortality. A systematic review was conducted that focused on this patient group's predisposition to vascular risk. Methods: We performed a PubMed and Cochrane database search. After applying specific search criteria, 42 articles were included in our analysis out of a total of 10,784 matches. The articles were selected with the aim of establishing cardiovascular risk factors in patients with traumatic spinal cord injury. Results: Patients with SCI are at an increased risk for peripheral artery disease even in the absence of cardiovascular risk factors. Major vascular changes to the arteries of patients with SCI include: a reduction in lumen size, increased vessel wall tension, higher vascular stiffness, an impaired reactive hyperemic response, and a lack of reduced vascular resistance. The findings for carotid atherosclerosis were inconclusive. This group of patients also has a higher disposition for diabetes mellitus, lipid metabolism disorders and coronary artery disease. Paraplegics are more likely to suffer from dyslipidemia, obesity and PAD, while tetraplegics are more likely to have diabetes mellitus. Conclusions: Patients with SCI are more likely to have cardiovascular risk factors and have cardiovascular disease compared to the normal population. Peripheral circulatory disorders are particularly common. Patients with SCI are now considered to be a new risk group for cardiovascular disease; however, large epidemiological studies are needed to verify in more detail the cardiovascular risk profile of this patient group.
Collapse
Affiliation(s)
- Uwe Wahl
- Department of Internal Medicine, BG Hospital Bergmannstrost Halle, Halle/Saale, Germany
| | - Tobias Hirsch
- Practice for Internal Medicine and Vascular Diseases, Vein Competence Centre, Halle/Saale, Germany
| |
Collapse
|
4
|
Harman KA, DeVeau KM, Squair JW, West CR, Krassioukov AV, Magnuson DSK. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiol Rep 2021; 9:e14969. [PMID: 34337884 PMCID: PMC8327165 DOI: 10.14814/phy2.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Hemodynamic instability and cardiovascular (CV) dysfunction are hallmarks of patients living with cervical and high thoracic spinal cord injuries (SCI). Individuals experience bouts of autonomic dysreflexia (AD) and persistent hypotension which hamper the activities of daily living. Despite the widespread use of exercise training to improve health and CV function after SCI, little is known about how different training modalities impact hemodynamic stability and severity of AD in a model of incomplete SCI. In this study, we used implantable telemetry devices to assess animals with T2 contusions following 3.5 weeks of exercise training initiated 8 days post-injury: passive hindlimb cycling (T2-CYC, n = 5) or active forelimb swimming (T2-SW, n = 6). Uninjured and non-exercised SCI control groups were also included (CON, n = 6; T2-CON, n = 7; T10-CON, n = 6). Five weeks post-injury, both T2-CON and T2-CYC presented with resting hypotension compared to uninjured CON and T10-CON groups; no differences were noted in resting blood pressure in T2-SW versus CON and T10-CON. Furthermore, pressor responses to colorectal distention (AD) were larger in all T2-injured groups compared to T10-CON, and were not attenuated by either form of exercise training. Interestingly, when T2-injured animals were re-stratified based on terminal BBB scores (regardless of training group), animals with limited hindlimb recovery (T2-LOW, n = 7) had more severe AD responses. Our results suggest that the spontaneous recovery of locomotor and autonomic function after severe but incomplete T2 SCI also influences the severity of AD, and that short periods (3.5 weeks) of passive hindlimb cycling or active forelimb swimming are ineffective in this model.
Collapse
Affiliation(s)
- Kathryn A. Harman
- Department of Health & Sport SciencesUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kathryn M. DeVeau
- Department of Anatomy and Cell BiologyGeorge Washington UniversityWashingtonD.C.USA
| | - Jordan W. Squair
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Christopher R. West
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Andrei V. Krassioukov
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- GF Strong Rehabilitation CentreVancouver Health AuthorityVancouverCanada
| | - David S. K. Magnuson
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
5
|
Huang Y, Guo C, Song K, Li C, Ding N. Association of clinical and laboratory variables with in-hospital incidence of deep vein thrombosis in patients after acute ischemic stroke: A retrospective study. Medicine (Baltimore) 2021; 100:e24601. [PMID: 33578563 PMCID: PMC7886450 DOI: 10.1097/md.0000000000024601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Deep vein thrombosis (DVT) is a serious complication in patients with acute ischemic stroke (AIS). Early prediction of DVT could enable physicians to perform a proper prevention strategy. We analyzed the association of clinical and laboratory variables with DVT to evaluate the risk of DVT in patients after AIS.AIS patients admitted to the Changsha Central Hospital between January 2017 and December 2019 with length of stay in hospital ≥7 days were included. Clinical and laboratory variables for DVT at baseline were collected, and the diagnosis of DVT was confirmed by ultrasonography. Independent factors were developed by Multivariate logistic regression analysis.A total of 101 patients were included in the study. The in-hospital incidence of DVT after AIS was 19.8%(20/101). The average level of D-dimer when DVT detected was significant increased around 4-fold than that on admission (P < .001). Pulmonary infection (odds ratio [OR] = 5.4, 95%CI:1.10-26.65, P = .037)) and increased muscle tone (OR = 0.11, 95%CI:0.02-0.58, P = .010) as independent relevant factors for DVT were confirmed.Pulmonary infection as a risk factor and increased muscle tone as a protective factor for DVT were identified in patients after AIS. The level of D-dimer which increased around 4-fold compared to the initial level could be an indicator for DVT occurrence.
Collapse
|
6
|
West CR, Poormasjedi-Meibod MS, Manouchehri N, Williams AM, Erskine EL, Webster M, Fisk S, Morrison C, Short K, So K, Cheung A, Streijger F, Kwon BK. A porcine model for studying the cardiovascular consequences of high-thoracic spinal cord injury. J Physiol 2020; 598:929-942. [PMID: 31876952 DOI: 10.1113/jp278451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We have developed a novel porcine model of high-thoracic midline contusion spinal cord injury (SCI) at the T2 spinal level. We describe this model and the ensuing cardiovascular and neurohormonal responses, and demonstrate the model is efficacious for studying clinically relevant cardiovascular dysfunction post-SCI. We demonstrate that the high-thoracic SCI model, but not a low-thoracic SCI model, induces persistent hypotension along with a gradual reduction in plasma noradrenaline and increases in plasma aldosterone and angiotensin II. We additionally conducted a proof-of-concept long-term (12 weeks) survival study in animals with T2 contusion SCI demonstrating the potential utility of this model for not only acute experimentation but also long-term drug studies prior to translation to the clinic. ABSTRACT Cardiovascular disease is a leading cause of morbidity and mortality in the spinal cord injury (SCI) population, especially in those with high-thoracic or cervical SCI. With this in mind, we aimed to develop a large animal (porcine) model of high-thoracic (T2 level) contusion SCI and compare the haemodynamic and neurohormonal responses of this injury against a low-thoracic (T10 level) model. Ten Yorkshire pigs were randomly subjected to 20 cm weight drop contusion SCI at either the T2 or the T10 spinal level. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were continuously monitored until 4 h post-SCI. Plasma noradrenaline (NA), aldosterone and angiotensin II (ANGII) were measured pre-SCI and at 30, 60, 120 and 240 min post-SCI. Additionally, two Yucatan pigs were subjected to T2-SCI and survived up to 12 weeks post-injury to demonstrate the efficacy of this model for long-term survival studies. Immediately after T2-SCI, SBP, MAP and HR increased (P < 0.0001). Between decompression (5 min post-SCI) and 30 min post-decompression in T2-SCI, SBP and MAP were lower than pre-SCI (P < 0.038). At 3 and 4 h after T2-SCI, SBP remained lower than pre-SCI (P = 0.048). After T10-SCI, haemodynamic indices remained largely unaffected. Plasma NA was lower in T2- vs. T10-SCI post-SCI, whilst aldosterone and ANGII were higher. Both chronically injured pigs demonstrated a vast reduction in SBP at 12 weeks post-SCI. Our model of T2-SCI causes a rapid and sustained alteration in neurohormonal control and cardiovascular function, which does not occur in the T10 model.
Collapse
Affiliation(s)
- Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Malihe-Sadat Poormasjedi-Meibod
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Alexandra M Williams
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Erin L Erskine
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Katelyn Short
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Amanda Cheung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Influence of cervical spinal cord injury on thermoregulatory and cardiovascular responses in the human body: Literature review. J Clin Neurosci 2019; 69:7-14. [DOI: 10.1016/j.jocn.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/04/2019] [Indexed: 11/20/2022]
|
8
|
Credeur DP, Vana LM, Kelley ET, Stoner L, Dolbow DR. Effects of Intermittent Pneumatic Compression on Leg Vascular Function in People with Spinal Cord Injury: A Pilot Study. J Spinal Cord Med 2019; 42:586-594. [PMID: 28770654 PMCID: PMC6758639 DOI: 10.1080/10790268.2017.1360557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: The purpose of this pilot study was to determine whether 60 mins of intermittent pneumatic compression therapy (IPC) could acutely increase leg blood flow-induced shear stress and enhance vascular endothelial function in persons with spinal cord injury (SCI). Design: Pretest with multiple posttests, within subject randomized control design. Setting: University of Southern Mississippi, Spinal Cord Injury Research Program within the School of Kinesiology, recruiting from the local community in Hattiesburg, Jackson, and Gulfport, MS. Participants: Eight adults with SCI (injury level: T3 and below; ASIA class A-C; age: 41±17 yrs). Interventions: A 60-min IPC session was performed in one leg (experimental leg; EXP), with the other leg serving as a control (CON). Outcomes Measures: Posterior-tibial artery shear rate (Doppler-ultrasound) was examined at rest, and at 15 and 45 mins during IPC. Endothelial function was assessed using the flow-mediated dilation (FMD) technique, before and after IPC. Results: Resting FMD (mm) was similar between legs at rest. A two-way repeated measures ANOVA (leg x time) revealed that during IPC, peak shear rate increased in the EXP leg (215±137 to 285±164 s-1 at 15 mins; +39±29%, P = 0.03), with no change occurring in the CON. In addition, FMD significantly increased in the EXP leg (Pre IPC: 0.36±0.14 vs. Post IPC: 0.47±0.17 mm; P = 0.011, d = 0.66), with no change occurring in the CON leg. Conclusion: These preliminary findings suggests that IPC therapy may acutely increase leg shear stress within 15 mins, with a resultant moderate-large improvement in vascular endothelial function after 60 mins in people with SCI.
Collapse
Affiliation(s)
- Daniel P. Credeur
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Lena M. Vana
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Edward T. Kelley
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Lee Stoner
- The Department of Exercise and Sport Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R. Dolbow
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA,Correspondence to: Daniel P. Credeur, School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
9
|
Yin MZ, Kim HJ, Suh EY, Zhang YH, Yoo HY, Kim SJ. Endurance exercise training restores atrophy-induced decreases of myogenic response and ionic currents in rat skeletal muscle artery. J Appl Physiol (1985) 2019; 126:1713-1724. [DOI: 10.1152/japplphysiol.00962.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Atrophic limbs exhibit decreased blood flow and histological changes in the arteries perfusing muscles. However, the effect of atrophy on vascular smooth muscle function is poorly understood. Here, we investigated the effect of unilateral sciatic denervation on the myogenic response (MR) and the ionic currents in deep femoral artery (DFA) smooth muscles from Sprague-Dawley rats. Because denervated rats were capable of treadmill exercise (20 m/min, 30 min, 3 times/wk), the impact of exercise training on these effects was also assessed. Skeletal arteries were harvested 3 or 5 wk after surgery. Then skeletal arteries or myocytes were subjected to video analysis of pressurized artery, myography, whole-cell patch clamp, and real-time quantitative PCR to determine the effect of hindlimb paralysis in the presence/absence of exercise training on MR, contractility, ionic currents, and channel transcription, respectively. In sedentary rats, atrophy was associated with loss of MR in the DFA at 5 wk. The contralateral DFA had a normal MR. At 5 wk after surgery, DFA myocytes from the atrophic limbs exhibited depressed L-type Ca2+currents, GTPγS-induced transient receptor potential cation channel (TRPC)-like currents, 80 mM KCl-induced vasoconstriction, TRPC6 mRNA, and voltage-gated K+and inwardly rectifying K+currents. Exercise training abrogated the differences in all of these functions between atrophic side and contralateral side DFA myocytes. These results suggest that a probable increase in hemodynamic stimuli in skeletal artery smooth muscle plays an important role in maintaining MR and ionic currents in skeletal artery smooth muscle. This may also explain the observed benefits of exercise in patients with limb paralysis.NEW & NOTEWORTHY Myogenic responses (MRs) in rat skeletal arteries feeding the unilateral atrophic hindlimb were impaired. In addition, the L-type Ca2+channel current, the TRPC6-like current, and TRPC6 mRNA levels in the corresponding myocytes decreased. Voltage-gated K+channel currents and inwardly rectifying K+channel currents were also attenuated in atrophic side myocytes. Exercise training effectively abrogated electrophysiological dysfunction of atrophic side myocytes and prevented loss of the MR.
Collapse
Affiliation(s)
- Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Yeong Suh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Harman KA, States G, Wade A, Stepp C, Wainwright G, DeVeau K, King N, Shum-Siu A, Magnuson DSK. Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiol Rep 2019; 6:e13634. [PMID: 29595874 PMCID: PMC5875543 DOI: 10.14814/phy2.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that results in whole‐body dysfunction, notably cardiovascular (CV) disruption and disease. Injury‐induced destruction of autonomic pathways in conjunction with a progressive decline in physical fitness contribute to the poor CV status of SCI individuals. Despite the wide use of exercise training as a therapeutic option to reduce CV dysfunction, little is known about the acute hemodynamic responses to the exercise itself. We investigated CV responses to an exercise challenge (swimming) following both high and low thoracic contusion to determine if the CV system is able to respond appropriately to the challenge of swimming. Blood pressure (BP) telemetry and echocardiography were used to track the progression of dysfunction in rodents with T3 and T10 SCI (n = 8 each) for 10 weeks postcontusion. At 1 week postinjury, all animals displayed a drastic decline in heart rate (HR) during the exercise challenge, likely a consequence of neurogenic shock. Furthermore, over time, all groups developed a progressive inability to maintain BP within a narrow range during the exercise challenge despite displaying normal hemodynamic parameters at rest. Echocardiography of T10 animals revealed no persistent signs of cardiac dysfunction; T3 animals exhibited a transient decline in systolic function that returned to preinjury levels by 10 weeks postinjury. Novel evidence provided here illustrates that incomplete injuries produce hemodynamic instability that only becomes apparent during an exercise challenge. Further, this dysfunction lasts into the chronic phase of disease progression despite significant recovery of hindlimb locomotion and cardiac function.
Collapse
Affiliation(s)
- Kathryn A Harman
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gregory States
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Abigail Wade
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Chad Stepp
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Grace Wainwright
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Kathryn DeVeau
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Nicholas King
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Alice Shum-Siu
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David S K Magnuson
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Coombs GB, Barak OF, Phillips AA, Mijacika T, Sarafis ZK, Lee AHX, Squair JW, Bammert TD, DeSouza NM, Gagnon D, Krassioukov AV, Dujic Z, DeSouza CA, Ainslie PN. Acute heat stress reduces biomarkers of endothelial activation but not macro- or microvascular dysfunction in cervical spinal cord injury. Am J Physiol Heart Circ Physiol 2018; 316:H722-H733. [PMID: 30575438 DOI: 10.1152/ajpheart.00693.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Tanja Mijacika
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Zoe K Sarafis
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute Research Centre, Département de pharmacologie et physiologie, Faculté de Médecine, Université de Montréal , Montreal, Quebec , Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada.,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada.,International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
12
|
Paim LR, Schreiber R, de Rossi G, Matos-Souza JR, Costa E Silva ADA, Calegari DR, Cheng S, Marques FZ, Sposito AC, Gorla JI, Cliquet A, Nadruz W. Circulating microRNAs, Vascular Risk, and Physical Activity in Spinal Cord-Injured Subjects. J Neurotrauma 2018; 36:845-852. [PMID: 30122113 DOI: 10.1089/neu.2018.5880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to compare the expression of serum microRNAs (miRNAs) in individuals with spinal cord injury (SCI) (athletes [SCI-A] and sedentary [SCI-S]) and able-bodied (AB) individuals, and investigate the relationship of miRNAs with carotid intima-media thickness (cIMT) and serum oxidized LDL-cholesterol (oxLDL) among SCI subjects. Seventeen SCI-S, 23 SCI-A, and 22 AB males were evaluated by clinical and laboratory analysis, and had oxLDL and cIMT measured by enzyme-linked immunosorbent assay (ELISA) and ultrasonography, respectively. A total of 754 miRNAs were measured using a TaqMan OpenArray® Human MicroRNA system. SCI-S subjects had higher cIMT and oxLDL than SCI-A and AB. Compared with AB, only one miRNA was differently expressed in both SCI-A and SCI-S individuals, whereas 25 miRNAs were differently expressed in SCI-S, but not in SCI-A. Of these 25 miRNAs, 22 showed different expression between SCI-S and SCI-A. Several miRNAs correlated with oxLDL and cIMT among all SCI individuals. Notably, miR-125b-5p, miR-146a-5p, miR-328-3p, miR-191-5p, miR-103a-3p, and miR-30b-5p correlated with both oxLDL and cIMT, and showed distinct expression between the SCI-A and SCI-S groups. Gene set enrichment analysis demonstrated that miRNAs related to cIMT and oxLDL may be involved in molecular pathways regulating vascular function and remodeling. In conclusion, this exploratory analysis suggests that variations in circulating miRNA expression in individuals with SCI compared with AB subjects are markedly attenuated by regular physical activity. Several miRNAs may be involved in physical activity-related improvements in vascular risk and remodeling among SCI individuals.
Collapse
Affiliation(s)
- Layde R Paim
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Roberto Schreiber
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme de Rossi
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José R Matos-Souza
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Susan Cheng
- 4 Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Francine Z Marques
- 5 Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,6 Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Andrei C Sposito
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - José I Gorla
- 2 School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil
| | - Alberto Cliquet
- 7 Department of Orthopedics, University of Campinas, Campinas, São Paulo, Brazil.,8 Department of Electrical Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Wilson Nadruz
- 1 Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
An altered Bioheat model for persons with cervical spinal cord injury. J Therm Biol 2018; 77:96-110. [PMID: 30196905 DOI: 10.1016/j.jtherbio.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
The objective of this work is to develop a Bioheat model to predict the thermal responses of people with tetraplegia (TP) under hot, cold and neutral ambient conditions as well as different physical activities suitable for their level of injury. The focus is on TP with impairment or loss of motor and/or sensory function in C1 to C7 segments of the spinal cord due to damage of neural elements within the spinal canal. Starting from transient multi-segmented Bioheat model of able-bodied (AB) people, specific modifications were performed reflecting the changes in physiology due to the injury affecting the blood circulation system, energy expenditure, and thermoregulatory functions in the body. The TP Bioheat model predicts the TP thermal responses under steady and transient thermal conditions, and different activity levels that are appropriate for the level of injury. The model was validated with published experimental data reporting physiological and thermal data measurements on cases of people with complete and incomplete tetraplegia under controlled environmental conditions and activity levels. In both transient and steady state environmental conditions, the predicted core and mean skin temperature values were compared against the experimental data with maximum error of 0.86 °C and 0.9 °C respectively. The TP Bioheat model can be used as a tool to propose appropriate personal cooling strategies for TP.
Collapse
|
14
|
Hoskin JD, Miyatani M, Craven BC. Quality reporting of carotid intima-media thickness methodology; Current state of the science in the field of spinal cord injury. J Spinal Cord Med 2018; 41:479-489. [PMID: 28357930 PMCID: PMC6055970 DOI: 10.1080/10790268.2017.1301622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Carotid intima-media thickness (cIMT) may be used increasingly as a cardiovascular disease (CVD) screening tool in individuals with spinal cord injury (SCI) as other routine invasive diagnostic tests are often unfeasible. However, variation in cIMT acquisition and analysis methods is an issue in the current published literature. The growth of the field is dependent on cIMT quality acquisition and analysis to ensure accurate reporting of CVD risk. The purpose of this study is to evaluate the quality of the reported methodology used to collect cIMT values in SCI. METHODS Data from 12 studies, which measured cIMT in individuals with SCI, were identified from the Medline, Embase and CINAHL databases. The quality of the reported methodologies was scored based on adherence to cIMT methodological guidelines abstracted from two consensus papers. RESULTS Five studies were scored as 'moderate quality' in methodological reporting, having specified 9 to 11 of 15 quality reporting criterion. The remaining seven studies were scored as 'low quality', having reported less than 9 of 15 quality reporting criterion. No study had methodological reporting that was scored as 'high quality'. The overall reporting of quality methodology was poor in the published SCI literature. CONCLUSIONS A greater adherence to current methodological guidelines is needed to advance the field of cIMT in SCI. Further research is necessary to refine cIMT acquisition and analysis guidelines to aid authors designing research and journals in screening manuscripts for publication.
Collapse
Affiliation(s)
- Jordan D. Hoskin
- Toronto Rehabilitation Institute-UHN, Brain and Spinal Cord Rehabilitation Program, Toronto, Ontario, Canada,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Masae Miyatani
- Toronto Rehabilitation Institute-UHN, Brain and Spinal Cord Rehabilitation Program, Toronto, Ontario, Canada
| | - B. Catharine Craven
- Toronto Rehabilitation Institute-UHN, Brain and Spinal Cord Rehabilitation Program, Toronto, Ontario, Canada,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Correspondence to: B. Catharine Craven, BA, MD, MSc, FRCPC, Lyndhurst Centre, Toronto Rehabilitation Institute-UHN, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada.
| |
Collapse
|
15
|
Green DJ, Smith KJ. Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029819. [PMID: 28432115 DOI: 10.1101/cshperspect.a029819] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Physical activity has profound impacts on the vasculature in humans. Acute exercise induces immediate changes in artery function, whereas repeated episodic bouts of exercise induce chronic functional adaptation and, ultimately, structural arterial remodeling. The nature of these changes in function and structure are dependent on the characteristics of the training load and may be modulated by other factors such as exercise-induced inflammation and oxidative stress. The clinical implications of these physiological adaptations are profound. Exercise impacts on the development of atherosclerosis and on the incidence of primary and secondary cardiovascular events, including myocardial infarction and stroke. Exercise also plays a role in the amelioration of other chronic diseases that possess a vascular etiology, including diabetes and dementia. The mechanisms responsible for these effects of exercise on the vasculature are both primary and secondary in nature, in that the benefits conferred by changes in cardiovascular risk factors such as lipid profiles and blood pressure occur in concert with direct effects of arterial shear stress and mechanotransduction. From an evolutionary perspective, exercise is an essential stimulus for the maintenance of vascular health: exercise is vascular medicine.
Collapse
Affiliation(s)
- Daniel J Green
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L33AF, United Kingdom.,School of Human Sciences, The University of Western Australia, Crawley 6009, Australia.,Principal Research Fellow, National Health and Medical Research Council of Australia, Canberra 2601, Australia
| | - Kurt J Smith
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
16
|
Dolbow DR, Credeur DP. Effects of resistance-guided high intensity interval functional electrical stimulation cycling on an individual with paraplegia: A case report. J Spinal Cord Med 2018; 41:248-252. [PMID: 28868988 PMCID: PMC5901463 DOI: 10.1080/10790268.2017.1367358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Individuals with spinal cord injury (SCI) are more than twice as likely to develop and die from cardio-metabolic diseases as compared to able-bodied. This increased risk is thought to be in part due to accelerated muscle atrophy and reduced blood flow through sublesional arteries. Thus, strategies to recondition paralyzed skeletal muscles may help reduce cardio-metabolic disease risk. The purpose of this case report was to examine the impact of a novel, resistance-guided, high intensity interval training functional electrical stimulation (RG-HIIT-FES) cycling program on cardio-metabolic health in people with chronic SCI. CASE DESCRIPTION One adult female with chronic T10 SCI. INTERVENTION A novel RG-HIIT-FES cycling program three times per week for 10 weeks. Measures of body composition and cardio-metabolic health (vascular endothelial function of the brachial artery via flow-mediated dilation) and HbA1c blood values were performed at baseline and following completion of the RG-HIIT-FES program. OUTCOMES Total body lean mass and legs lean mass increased 2.8% and 5.3% respectively while vastus lateralis thickness increased by 59.5%. Reactive hyperemia and flow mediated dilation change in brachial artery diameter increased by 11.1% and 147.7% following the program, respectively. HbA1c level changed minimally (5 to 4.9%). DISCUSSION This case report suggests that RG-HIIT-FES cycling was an effective strategy to improve lean mass, and systemic vascular endothelial health in an individual with chronic SCI.
Collapse
Affiliation(s)
- David R. Dolbow
- Correspondence to: David R. Dolbow, PhD, DPT, RKT, School of Kinesiology, University of Southern Mississippi, 118 College Drive, #5142, Hattiesburg, MS 39406, USA. Ph: 601-266-6249.
| | | |
Collapse
|
17
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
18
|
Maessen MFH, Eijsvogels TMH, Grotens A, Hopman MTE, Thijssen DHJ, Hansen HHG. Feasibility and relevance of compound strain imaging in non-stenotic arteries: comparison between individuals with cardiovascular diseases and healthy controls. Cardiovasc Ultrasound 2017; 15:13. [PMID: 28521772 PMCID: PMC5437491 DOI: 10.1186/s12947-017-0104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compound strain imaging is a novel method to noninvasively evaluate arterial wall deformation which has recently shown to enable differentiation between fibrous and (fibro-)atheromatous plaques in patients with severe stenosis. We tested the hypothesis that compound strain imaging is feasible in non-stenotic arteries and provides incremental discriminative power to traditional measures of vascular health (i.e., distensibility coefficient (DC), central pulse wave velocity [cPWV], and intima-media thickness [IMT]) for differentiating between participants with and without a history of cardiovascular diseases (CVD). METHODS Seventy two participants (60 ± 7 years) with non-stenotic arteries (IMT < 1.1 mm) were categorized in healthy participants (CON, n = 36) and CVD patients (n = 36) based on CVD history. Participants underwent standardised ultrasound-based assessment (DC, cPWV, and IMT) and compound strain imaging (radial [RS] and circumferential [CS] strain) in left common carotid artery. Area under receiver operating characteristics (AROC)-curve was used to determine the discriminatory power between CVD and CON of the various measures. RESULTS CON had a significantly (P < 0.05) smaller carotid IMT (0.68 [0.58 to 0.76] mm) than CVD patients (0.76 [0.68 to 0.80] mm). DC, cPWV, RS, and CS did not significantly differ between groups (P > 0.05). A higher CS or RS was associated with a higher DC (CS: r = -0.32;p < 0.05 and RS: r = 0.24;p < 0.05) and lower cPWV (CS: r = 0.24;p < 0.05 and RS: r = -0.25;p < 0.05). IMT could identify CVD (AROC: 0.66, 95%-CI: 0.53 to 0.79), whilst the other measurements, alone or in combination, did not significantly increase the discriminatory power compared to IMT. CONCLUSIONS In non-stenotic arteries, compound strain imaging is feasible, but does not seem to provide incremental discriminative power to traditional measures of vascular health for differentiation between individuals with and without a history of CVD.
Collapse
Affiliation(s)
- Martijn F H Maessen
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands.,Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ayla Grotens
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands.,Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hendrik H G Hansen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Medical UltraSound Imaging Center (MUSIC), P.O. Box 9101 (766), 6500, HB, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Machin DR, Clifton HL, Garten RS, Gifford JR, Richardson RS, Wray DW, Frech TM, Donato AJ. Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis. Am J Physiol Heart Circ Physiol 2016; 311:H1375-H1381. [PMID: 27694218 DOI: 10.1152/ajpheart.00547.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease characterized by debilitating fibrosis and vascular dysfunction; however, little is known about the circulatory response to exercise in this population. Therefore, we examined the peripheral hemodynamic and vasodilatory responses to handgrip exercise in 10 patients with SSc (61 ± 4 yr) and 15 age-matched healthy controls (56 ± 5 yr). Brachial artery diameter, blood flow, and mean arterial pressure (MAP) were determined at rest and during progressive static-intermittent handgrip exercise. Patients with SSc and controls were similar in body stature, handgrip strength, and MAP; however, brachial artery blood flow at rest was nearly twofold lower in patients with SSc compared with controls (22 ± 4 vs. 42 ± 5 ml/min, respectively; P < 0.05). Additionally, SSc patients had an ∼18% smaller brachial artery lumen diameter with an ∼28% thicker arterial wall at rest (P < 0.05). Although, during handgrip exercise, there were no differences in MAP between the groups, exercise-induced hyperemia and therefore vascular conductance were ∼35% lower at all exercise workloads in patients with SSc (P < 0.05). Brachial artery vasodilation, as assessed by the relationship between Δbrachial artery diameter and Δshear rate, was significantly attenuated in the patients with SSc (P < 0.05). Finally, vascular dysfunction in the patients with SSc was accompanied by elevated blood markers of oxidative stress and attenuated endogenous antioxidant activity (P < 0.05). Together, these findings reveal attenuated exercise-induced brachial artery blood flow and conduit arterial vasodilatory dysfunction during handgrip exercise in SSc and suggest that elevated oxidative stress may play a role.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Heather L Clifton
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jayson R Gifford
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Veterans Affairs Salt Lake City, GRECC, Salt Lake City, Utah; and
| | - D Walter Wray
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Veterans Affairs Salt Lake City, GRECC, Salt Lake City, Utah; and
| | - Tracy M Frech
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah; .,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Biochemistry, University of Utah, Salt Lake City, Utah.,Veterans Affairs Salt Lake City, GRECC, Salt Lake City, Utah; and
| |
Collapse
|
20
|
Abstract
BACKGROUND Exercise training favorably alters arterial anatomy in trained limbs, though the simultaneous effects on passively trained arteries are unclear. Thus, brachial (non-trained limb), popliteal (trained limb) and carotid total wall thickness (TWT), wall-to-lumen ratios (W:L), intima-media thickness (IMT) and lumen diameters (LD) were compared between experimental (n = 14) and control (n = 11) participants before and after the experimental participants participated in marathon training. METHODS Arterial dimensions were measured with B-mode ultrasonography. Initial and final testing of VO2max and running speed at 3.5 mmol lactate were measured in the experimental group. RESULTS VO2max was unchanged by training, but running speed at 3.5 mmol lactate increased by 5 % (p = .008). Time by group interactions were observed for the brachial and popliteal measures (p < 0.05), but not the carotid. No changes were observed in the control group. Prior to the intervention the experimental group had larger LD in the brachial (p = .002) and popliteal arteries (p = .007) than controls; no other pre-testing differences were found. Following training, TWT declined in the brachial (pre = .99 ± .16 mm; post = .84 ± .10 mm; p = .007) and popliteal (pre = .96 ± .09 mm; post = .86 ± .11 mm; p = .005) arteries, characterized by a 0.07 mm decrease in brachial IMT (p = .032) and a non-significant 0.03 mm reduction in popliteal IMT. LD increased in the brachial (pre = 3.38 ± .35 mm; post = 3.57 ± .41 mm; p = .015) and popliteal (pre = 4.73 ± .48 mm; post = 5.11 ± .72 mm; p = .002) arteries. CONCLUSIONS These data suggest that exercise-induced alterations in arterial dimensions occur in trained and non-trained limbs, and that adaptations may be dose dependent.
Collapse
|
21
|
Abstract
Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative - once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance.
Collapse
Affiliation(s)
- Elizabeth Partida
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eugene Mironets
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Veronica J Tom
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Brown R, Celermajer D, Macefield V, Sander M. The Effect of Nitric Oxide Inhibition in Spinal Cord Injured Humans with and without Preserved Sympathetic Control of the Vasculature. Front Neurosci 2016; 10:95. [PMID: 27013957 PMCID: PMC4785190 DOI: 10.3389/fnins.2016.00095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Systemic pharmacological inhibition of nitric oxide (NO) causes a hypertensive response, which has been attributed both to inhibition of peripheral NO-mediated vasodilatation and to inhibition of central nervous NO-production leading to a later onset sympathetic vasoconstriction. In the present study we aimed to test the importance of these two mechanisms by comparing the time-courses of the hypertensive responses in spinal cord injured (SCI) subjects with varying degrees of loss of sympathetic vascular control depending on level of injury as well as able-bodied controls. We hypothesized that high level SCI with no sympathetic vasoconstrictor control would have an abbreviated time-course of the hypertensive response to the NO-inhibitor L-NAME, because they would lack the late onset sympathetic component to the hypertensive response. NO production was blocked in 12 subjects with SCI and 6 controls by intravenous infusion of L-NAME (1.55–2.7 mg/kg). We measured blood pressure, heart rate, and vascular conductance in the carotid, brachial, and femoral arteries before, during, and after 1 h of L-NAME in a 4-h protocol. Peak increases in mean arterial pressure were significantly larger in high level SCI vs. controls: 32 ± 6 vs. 12 ± 2 mmHg (both groups received 1.55 mg/kg). The decreases in vascular conductance in the brachial and femoral vascular beds were also larger in the high level SCI group, whereas decreases in heart rate and carotid conductance were not significantly different between the groups. There were no indications of any abbreviated responses in blood pressure or vascular conductance in the high level SCI compared to control. The mid level and low-level SCI subject had responses similar to controls. These data confirm previous reports that NO inhibition causes a larger increase in blood pressure in high level SCI, and extend these data by providing evidence for differences in vascular conductance in the limbs. The current data do not support an obligatory important role for sympathetic vasoconstriction in maintaining the hypertensive response to L-NAME in humans.
Collapse
Affiliation(s)
- Rachael Brown
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - David Celermajer
- Department of Medicine, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | - Vaughan Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Mikael Sander
- Neuroscience Research Australia Sydney, NSW, Australia
| |
Collapse
|
23
|
Vascular health toolbox for spinal cord injury: Recommendations for clinical practice. Atherosclerosis 2015; 243:373-82. [DOI: 10.1016/j.atherosclerosis.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022]
|
24
|
DE ROSSI GUILHERME, MATOS-SOUZA JOSÉR, COSTA E SILVA ANSELMODEA, CAMPOS LUISF, SANTOS LUIZG, AZEVEDO ELIZAR, ALONSO KARINAC, PAIM LAYDER, SCHREIBER ROBERTO, GORLA JOSÉI, CLIQUET ALBERTO, NADRUZ WILSON. Physical Activity and Improved Diastolic Function in Spinal Cord–Injured Subjects. Med Sci Sports Exerc 2014; 46:887-92. [DOI: 10.1249/mss.0000000000000187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Applanation tonometry: a reliable technique to assess aortic pulse wave velocity in spinal cord injury. Spinal Cord 2014; 52:272-5. [DOI: 10.1038/sc.2013.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/08/2022]
|
26
|
Oxidized low-density lipoprotein, matrix-metalloproteinase-8 and carotid atherosclerosis in spinal cord injured subjects. Atherosclerosis 2013; 231:341-5. [PMID: 24267248 DOI: 10.1016/j.atherosclerosis.2013.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/01/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Previous reports have indicated that subjects with chronic spinal cord injury (SCI) exhibit increased cardiovascular risk compared to able-bodied individuals. This study investigated the relationship between plasmatic oxidized low-density lipoprotein (OxLDL), matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) levels and vascular remodeling in SCI subjects and the role of physical activity in this regard. METHODS We studied 42 men with chronic (≥2 years) SCI [18 sedentary (S-SCI) and 24 physically active (PA-SCI)] and 16 able-bodied men by clinical, anthropometric, laboratory, and carotid intima-media thickness (IMT) analysis. All enrolled subjects were normotensive, non-diabetics, non-smokers and normolipemic. Plasmatic OxLDL, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay. RESULTS Carotid IMT, IMT/diameter ratio and OxLDL levels of PA-SCI and able-bodied subjects were statistically similar. Conversely, S-SCI subjects exhibited higher IMT, IMT/diameter ratio and OxLDL levels compared to PA-SCI (p < 0.01, p < 0.001 and p = 0.01, respectively) and able-bodied (p < 0.001 for all) individuals. Results of bivariate correlation analysis including all injured subjects showed that carotid IMT and IMT/diameter ratio only correlated with OxLDL, MMP-8 and MMP-8/TIMP-1 ratio. Further stepwise regression analysis adjusted for the presence or not of physical activity and age showed that OxLDL was associated with carotid IMT and IMT/diameter ratio, while MMP-8 was associated with IMT/diameter ratio in SCI individuals. CONCLUSIONS Plasmatic OxLDL and MMP-8 levels are associated with carotid atherosclerosis and there is an interaction among physical inactivity, atherosclerosis and OxLDL in SCI individuals.
Collapse
|